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Entropic uncertainty relations for general symmetric informationally complete positive
operator-valued measures and mutually unbiased measurements
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We construct inequalities between Rényi α-entropy and the indexes of coincidence of probability distributions,
based on which we obtain improved state-dependent entropic uncertainty relations for general symmetric in-
formationally complete positive operator-valued measures (SIC-POVMs) and mutually unbiased measurements
(MUMs). We show that our uncertainty relations for general SIC-POVMs and MUMs can be tight for sufficiently
mixed states, and, moreover, comparisons to the numerically optimal results are made via information diagrams.
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I. INTRODUCTION

Incompatible observables cannot be measured with cer-
tainty simultaneously, though contrary to the general cogni-
tion of the physical world based on macroscopic experience,
this is a fundamental element of quantum mechanics. Heisen-
berg made the first statement of this kind of uncertainty of
quantum mechanics [1], and formulated the first uncertainty
relation

�P�Q � h̄

2
, (1)

where �P and �Q denote the standard deviation of mo-
mentum and position along the same direction, respectively.
Robertson generalized it to two arbitrary observables [2]

�X�Y � 1
2 |〈ψ |[X,Y ]|ψ〉|, (2)

where [X,Y ] denotes the commutator between X and Y .
Though clear and elegant enough, the standard deviation

way of measuring uncertainty sometimes can be quite strange
[3–5] and it turns out to be inappropriate in applications of
information theory. On the other hand, entropy is found to be
a more universal and effective measure of uncertainty [3,6–
8], and entropic uncertainty relations (EURs) have many ap-
plications in quantum information theory. The lower bound
on conditional min-entropy can characterize how much ran-
domness one can extract from a source [9], and moreover,
as entanglement between two systems reduces the uncertainty
(lower bound on entropy) of measurements performed on one
system provided that the other one is accessible, EURs are
useful in entanglement witnessing [10–12]. EURs are also
important in the security proof of quantum cryptography as
they measure how much information is possibly leaked to an
eavesdropper [13,14]. (See more applications in the review
[15] and references therein.)

Any projective measurement made in one base cannot
reveal any information stored in bases that are mutually

*zbchen@nju.edu.cn
†sjwu@nju.edu.cn

unbiased to it, and this property endows mutually unbiased
bases (MUBs) with a special role in quantum informa-
tion theory. Based on the work of Deutsch [3] and Kraus
[16], Maassen and Uffink proved the famous tight state-
independent uncertainty relation for two MUBs in terms of
Shannon entropy [17], and a generalization to multiple MUBs
has also been explored [18–23]. However, an analytic con-
struction of more than three MUBs in general dimensions has
not yet been found, and the existence of complete MUBs in
non-prime-power-dimensional spaces such as d = 6 is still an
open question [24].

While general symmetric informationally complete posi-
tive operator-valued measures (SIC-POVMs) [25] and mu-
tually unbiased measurements (MUMs) [26] are positive
operator-valued measures with interesting properties similar
to MUBs, and a complete set of them can be constructed
analytically in all dimensions [26,27], uncertainty relations
have been naturally generalized to take into consideration
more generalized measurements [28–31] like them. In two re-
cent works EURs are also constructed from quantum designs
[32,33]. In this paper, we focus on uncertainty relations for
SIC-POVMs and MUMs and deal with them under a unified
framework.

This paper is structured as follows. In Sec. II we introduce
some necessary notations and review the concepts of entropy,
SIC-POVM, and MUM. In Sec. III we propose entropic un-
certainty relations for general SIC-POVMs, and in Sec. IV
uncertainty relations for MUMs are constructed. In Sec. V,
we make further discussions and draw a brief conclusion.

II. PRELIMINARIES

A positive operator-valued measure (POVM) P on a
d-dimensional Hilbert space Hd consists of a set of posi-
tive semidefinite operators that sum up to the identity P =
{Pi|Pi � 0,

∑
i Pi = 1d}. The probability distribution induced

by performing a POVM measurement P on a quantum state
ρ is denoted by P = (p1, p2, . . .), where pi = Tr(Piρ) is the
probability of obtaining the ith result; the corresponding index
of coincidence is defined as the sum of the squares of the
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TABLE I. Notations and meaning.

1. ρ Density matrix

2. L The length of a probability distribution
3. Hd d-dimensional Hilbert space
4. 1d d-dimensional identity matrix
5. P A boldfaced letter is, if not specified

otherwise, a finite set of POVMs
6. P A probability distribution
7. I (P ) Index of coincidence of P
8. I (P|ρ ) The sum of indexes of coincidence

induced by performing P on ρ

9. Hα (P|ρ ) Sum of Rényi α entropies for the
measurements P performed on ρ

10. PL
x [c],PL

y [c] Defined in Eqs. (10) and (11), two
probability distributions over L

outcomes, I (PL
x [c]) = I (PL

y [c]) = c

probabilities, i.e.,

I (P|ρ) = I (P ) =
∑

i

p2
i . (3)

The Shannon entropy of P , defined by H (P ) =
H (P|ρ) = −∑d

i=1 pi log2 pi, gives a measure of the uncer-
tainty for the measurement outcomes. Rényi generalized it to
a family of entropies [34]

Hα (P|ρ) = 1

1 − α
log2

(∑
i=1

pα
i

)
(α > 0, α �= 1),

which reduces to Shannon entropy in the limitation limα→1

Hα (P|ρ) = H1(P|ρ) = H (P|ρ). Following Ref. [35], we call
the range of the map P → [I (P ), Hα (P )] information dia-
grams.

For any finite set of POVMs P = {P1,P2, . . .} performed
on ρ, we consider the sum of indexes of coincidence

I (P|ρ) =
|P|∑

m=1

I (Pm|ρ), (4)

and the sum of entropies Hα (P|ρ) = ∑
m Hα (Pm|ρ).

Table I contains some notations that are frequently used in
this paper.

A. Symmetric informationally complete POVM

A POVM on Hd is said to be symmetric information-
ally complete (SIC-POVM) [25] if it consists of d2 rank-1
operators S = {Si} such that Tr(SiS j ) = dδi j+1

d2(d+1) . From the

geometric point of view, with Si = 1
d |φi〉〈φi|, SIC-POVM

comprises d2 subnormalized equiangular vectors { 1
d |φi〉} in

Cd as |〈φi|φ j〉|2 = dδi j+1
d+1 and

∑d2

i=1
1
d |φi〉〈φi| = 1d . Although

research is still ongoing to prove or disprove the existence
of SIC-POVM for general d , analytic and numerical results
confirmed its existence for dimensions up to 67 [36].

SIC-POVM is informationally complete, as when per-
formed on a system the resulting probability distributions
fully reveal all the information of the corresponding density

matrix. More concretely, any density matrix ρ can be con-
structed from the probabilities {p j} induced by SIC-POVM,
and with Tr(ρS j ) = p j there is ρ = ∑

j p j[d (d + 1)S j − 1d ]
[29].

By generalizing the method proposed in Ref. [23], Rastegin
obtained [28]

I (S|ρ) =
d2∑

i=1

p2
i = 1 + Tr(ρ2)

d (d + 1)
, (5)

where pi = Tr(ρSi ).
Generalizations of SIC-POVM to that with elements of any

rank have been explored in Refs. [37,38], and in Ref. [27]
the authors proved the existence of general SIC-POVMs in all
dimensions by giving the explicit construction. Any general
SIC-POVM Sg = {Si} (i = 1, 2, . . . , d2) is a POVM satisfying

Tr(SiSi ) = a (∀i, 1/d3 < a � 1/d2),

Tr(SiS j ) = 1 − ad

d (d2 − 1)
(∀i �= j).

It is shown in Ref. [29] that

I (Sg|ρ) = (ad3 − 1)Tr(ρ2) + d (1 − ad )

d (d2 − 1)
. (6)

B. Mutually unbiased measurements

We say two orthonormal bases {|b1
i 〉} and {|b2

j〉} (1 � i, j �
d) in Hd are mutually unbiased bases (MUBs) [39–42] if the
inner products between their basis vectors satisfy |〈b1

i |b2
j〉| =

1√
d

(∀1 � i, j � d). For any d � 2, one can find at least three
MUBs and at most d + 1 MUBs (an informationally complete
set of MUBs). A complete set of MUBs can always be found if
d is the power of a prime number, while the maximal number
of MUBs in general is still an open question [24].

According to Ref. [23], for a set B of MUBs in Hd ,

I (B|ρ) � Tr(ρ2) + |B| − 1

d
. (7)

Introduced as generalizations of MUBs, mutually unbiased
measurements (MUMs) [26] are a set of POVMs P =
{P1,P2, . . .} with each Pm containing d elements Pm =
{Pm

1 , . . . , Pm
d } and satisfying

Tr
(
Pm

i

) =1,

Tr
(
Pm

i Pm′
j

) =κδi jδmm′ + (1 − δi j )δmm′
1 − κ

d − 1
+ (1 − δmm′ )

1

d
,

where κ ( 1
d < κ � 1) is called the efficiency parameter. Note

that the case κ = 1 corresponds with projective measurements
consisting of mutually unbiased bases.

For any set P of MUMs on Hd there is [26,30]

I (P|ρ) � |P|
d

+ κd − 1

d (d − 1)
[d Tr(ρ2) − 1], (8)

and if P is complete,

I (P|ρ) = d + 1

d
+ κd − 1

d (d − 1)
[d Tr(ρ2) − 1]. (9)
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III. UNCERTAINTY RELATIONS FOR GENERAL SIC-POVMs

In the following discussions we always arrange the probabilities in a probability distribution in descending order and ignore
the probabilities being zero as they do not contribute to entropy, and we will frequently consider the two kinds of distributions
described below. For any integer L � 2 and ∀c ∈ [ 1

L , 1], PL
x [c] and PL

y [c] are two probability distributions over L outcomes,
the indexes of coincidence of which are both c:

PL
x [c] =

(
1 + √

(Lc − 1)(L − 1)

L
, (L − 1) 
 1 − √

(Lc − 1)/(L − 1)

L

)
, I

(
PL

x [c]
) = c, (10)

PL
y [c] =

⎛
⎝(�1/c� − 1) 


1 +
√

(� 1
c �c − 1)/(� 1

c � − 1)

� 1
c �

,
1 −

√
(� 1

c �c − 1)(� 1
c � − 1)

� 1
c �

⎞
⎠, I

(
PL

y [c]
) = c, (11)

where � 1
c � is the smallest integer that � 1

c and l 
 p is short-
hand for l probabilities being p. Note here the number of
nonzero probabilities in PL

y [c] is L, L − 1, . . ., respectively,
when c ∈ [ 1

L , 1
L−1 ), [ 1

L−1 , 1
L−2 ), . . ., i.e., �1/c�. Two examples

of distributions over 4 outcomes are presented in Fig. 1.
We show in Appendix A the following theorem.
Theorem 1. For any discrete probability distribution

P over L outcomes there is Hα (PL
y [I (P )]) � Hα (P ) �

Hα (PL
x [I (P )]) for α ∈ (0, 2], and Hα (PL

x [I (P )]) �
Hα (P ) � Hα (PL

y [I (P )]) for α ∈ [2,+∞), where Hα (P )
is the Rényi α-entropy of P and I (P ) is the index of
coincidence of P .

Thus Hα (PL
x [c]) and Hα (PL

y [c]) are boundary curves of
the diagram of I (P )-Hα (P ). The case L = 4 is shown in
Fig. 2 as an example. The gray (thick) solid line is the
graph of H2(P ) = − log2[I (P )]. The upper bound (UB) on
Shannon entropy (blue dashed line) and the lower bound (LB)
on Rényi 5-entropy (orange dashed-dotted line) are respec-
tively given by H (P4

x [c]) and H5(P4
x [c]). At the same time,

the lower bound on Shannon entropy (blue solid line) and
the upper bound on Rényi 5-entropy (red dotted line) are
respectively given by H (P4

y [c]) and H5(P4
y [c]).

We should emphasize that Theorem 1 is a generalization of
the Shannon entropic bounds obtained earlier in Refs. [19,35]
to Rényi entropy. With Theorem 1 we immediately have the
Rényi α-entropy Hα (Sg|ρ) for performing any general SIC-
POVMs with parameter a on Hd would satisfy

(2 − α)Hα (Sg|ρ) � (2 − α)Hα

(
Pd2

x [I (Sg|ρ)]
)
, (12)

(2 − α)Hα (Sg|ρ) � (2 − α)Hα

(
Pd2

y [I (Sg|ρ)]
)
, (13)

FIG. 1. Illustrations of distributions over four outcomes.

where I (Sg|ρ) is given by (6). This is the best result that can
be obtained based on (6) only, hence uncertainty relations
constructed from (6) such as those proposed in Refs. [28,29]
cannot be stronger than our results. In the case α → ∞,
Eq. (12) reduces to the result proposed previously by Rastegin
[29],

H∞(Sg|ρ) � 2 log2 d − log2[1 +
√

ad3 − 1
√

Tr(ρ2)d − 1].
(14)

Now we show (12) and (13) are tight, respectively,
when Tr(ρ2) ∈ [ 1

d , d2a] and Tr(ρ2) ∈ [ 1
d , d−2+ad2

(d−1)2 ]. We only

need to show the probability distributions Pd2

y/x[I (Sg|ρ)] can
be achieved by some positive semidefinite matrix in the
form ρ = ∑

i xiSi, where xi = d (da−1)+d (d2−1)pi

d3a−1 is the solu-

tion to Tr(ρ) = 1 and Tr(ρSi ) = pi ∈ Pd2

y/x[I (Sg|ρ)]. For (12),
when Tr(ρ2) � d2a, we have x1 � x2 = · · · = xd2 � 0, obvi-
ously ρ � 0. As for (13), we have x1 = · · · = xd2−1 � xd2 ,
as

∑
i Si = 1d , then ∀|φ〉 ∈ Hd , 〈φ|ρ|φ〉 = 〈φ|∑i xiSi|φ〉 =

x1 + (xd2 − x1)Tr(Sd2 |φ〉〈φ|) � x1 + (xd2 − x1)/d � 0, thus
ρ is a density matrix.

By random sampling over density matrices on H3, we
obtain the information diagram shown in Fig. 3. It is not a
surprise to see that our entropic lower bound for SIC-POVM
is not tight when Tr(ρ2) > 1

2 since (12) and (13) are based
on Eq. (6) only. Interestingly, the corresponding tight bound

FIG. 2. Information diagrams of Shannon entropy and Rényi 5
entropy (see also Refs. [19,35]).
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FIG. 3. Information diagram of Shannon entropy for SIC-POVM
on H3 (cyan region).

agrees with

H (Sg|ρ) � H
(
P4

y [2I (Sg|ρ)]
) + 1. (15)

IV. UNCERTAINTY RELATIONS FOR MUMs

A. Rényi entropy with α � 1

We show Theorem 2 in Appendix C.
Theorem 2. The sum of Shannon entropies for a finite set P

of |P| MUMs with efficiency parameter κ and performed on
an arbitrary d-dimensional system ρ is bounded from below
by

H
(
Pd

y [c]
) + k log2 n + (|P| − k − 1) log2(n + 1), (16)

with C(P|ρ)=|P|
d + κd−1

d (d−1) [d Tr(ρ2) − 1], where n = � |P|
C(P|ρ)�,

k=�[C(P|ρ) − M
n+1 ](n + 1)n�, and c=C(P|ρ) − k

n − |P|−k−1
n+1 .

Despite the complex expression, this theorem can be under-
stood in a simple way as is discussed in Appendix C. When
Tr(ρ2) ∈ [ 1

d , d+κ−2
(d−1)2 ], (16) reduces to

(|P| − 1) log2 d + H
(
Pd

y [C(P|ρ) − (|P| − 1)/d]
)
, (17)

which is actually valid for arbitrary Rényi α-entropy with 0 <

α � 1, and quite similar to (12) it is tight.
We can linearize the first term of Eq. (16) based on its

concavity with respect to c as follows, H (Pd
y [c]) � H (Pd

y

[ 1
n+1 ]) + n(n + 1)(c − 1

n+1 )[H (Pd
y [ 1

n ]) − H (Pd
y [ 1

n+1 ])],
which would then reduce to the result of Wu et al. [23] for
MUBs,

H (B|ρ) �[|B| − nC(B|ρ)](n + 1) log2(n + 1)

−[|B| − (n + 1)C(B|ρ)]n log2 n, (18)

where C(B|ρ) is given by the right-hand side of (7) and n =
� |B|

C(B|ρ)�. (16) is generally improved from (18) and they are

equivalent only when c = 1
n or 1

n+1 .
As can be seen in Fig. 4, similar to (13), (16) is not tight

when Tr(ρ2) > 1
2 for d = 3 and the tight lower bound seems

to be

H (B|ρ) � 1 + 3H

(
P3

y

[
1 + Tr(ρ2)

3

])
. (19)

FIG. 4. Information diagram of Shannon entropy for complete
MUBs in H3.

As for the upper bound, with L = d we only propose the
following two unproved approximations,

(d + 1)H
(
Pd

x [I (B|ρ)/(d + 1)]
)
, Tr(ρ2) ≈ 1, (20)

d log2 d + H
(
Pd

x [I (B|ρ) − 1]
)
, Tr(ρ2) ≈ 1

d
. (21)

B. Rényi entropy with α � 2

Theorem 3. Let P be a set of mutually unbiased measure-
ments performed on a d-dimensional system ρ, then for any
α � 2,

1

|P|Hα (P|ρ) � α

1 − α
log2 pa + log2 d

(1 − α) ln
[
1 + (d − 1)

2
α

]
× ln

[
1 + (d − 1)

2
α

p2
b

p2
a

]
, (22)

where pa = 1+√
(d−1)(dc−1)

d , pb = 1−√
(dc−1)/(d−1)

d , and c =
1

|P| I (P|ρ) is the average index of coincidence.
This inequality is a direct result of the fact that the right-

hand side of (22) is convex with respect to c. When α > 2,
Eq. (22) is improved from Rastegin’s lower bounds LRas1 [28]
and LRas2 [33],⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

LRas1 = α

2(1 − α)
log2 c,

LRas2 =α − 2

1 − α
log2

(
1 + √

(dc − 1)(d − 1)

d

)

+ 1

1 − α
log2 c,

(23)

and when α = 2 they all reduce to − log2 c. A comparison
between these results when α = 3 and d = 8 is shown in
Fig. 5.

C. Entropy region

The entropies of performing a finite ordered set of gen-
eralized measurements P = {Pm} on a d-dimensional system
described by ρ form a vector, the mth element of which is

042205-4
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FIG. 5. Lower bound on Rényi 3-entropy of a single probability
distribution.

H (Pm|ρ). The region of all possible entropic vectors induced
by P is called the entropy region of P. The entropy region
of a given measurement set contains much more information
besides the entropic lower bound, and we expect it to be as
meaningful in quantum information theory as in the classical
counterpart.

We make a comparison here between the Shannon entropy
region for three MUBs in Hd and that of three probability
distributions over d outcomes satisfying

3

d
�

3∑
m=1

I (Pm) � max
ρ

{I (B|ρ)} = 1 + 2

d
. (24)

As can be seen in Fig. 6, the entropy region of probability
distributions satisfying Eq. (24) is the same as that for three
MUBs when d = 2, while in higher dimensions distinctions
show up at places where the sum of entropies is relatively
small, which is in accordance with the information diagrams.

V. DISCUSSIONS

We can see from Figs. 3, 4, and 7 that the tight lower Rényi
entropic (α < 2) bound curves for both complete MUBs
and SIC-POVMs are nondifferentiable at Tr(ρ2) = 1

k (∀k =
2, . . . , d − 1), which divide the curves into d − 1 sections.
A natural thought is that different sections correspond with
density matrices at different boundaries of the set of positive
semidefinite Hermitian matrices, namely, different sections of
the lower bound curve are attained by density matrices of
different ranks.

Conjecture. The tight lower bound on Shannon entropy for
complete MUBs or SIC-POVMs on Hd can only be achieved
by density matrices satisfying (λ1, λ2, . . .) = Pd

y [Tr(ρ2)],
where {λi} are nonzero eigenvalues of ρ and arranged in
descending order.

We believe this conjecture, if confirmed, will be helpful
in searching for tight state-independent EURs for complete
MUBs and SIC-POVMs, which could be more efficient in
applications of quantum information theory.

FIG. 6. Shannon entropy regions for three MUBs.

Based on the conjecture above, we have an alternative form
of Eq. (16) for MUBs when Tr(ρ2) � 1

d−1 ,

H (B|ρ) � (|B| − 1) log2 d − Tr[ρ log2 ρ], (25)

which coincides with the uncertainty relation for two observ-
ables proposed by Berta et al. [43].

Lastly, we show an application of entropic uncertainty
relations in entanglement detection. Let ρAB = ∑

i piρ
A
i ⊗ ρB

i
be an arbitrary separable state on the bipartite Hilbert space
HA ⊗ HB, and ρA = TrB(ρAB) and ρB = TrA(ρAB) are the re-
duced density matrices. According to the results shown in
Ref. [11], for any nondegenerate observables {A1, A2, . . . } on

FIG. 7. Information diagram of Shannon entropy for complete
MUBs in H4.
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HA and {B1, B2, . . . } on HB, there is∑
m

Hα (P (Am ⊗ Bm|ρAB)) � D = max{DA, DB},

where

DA =
∑

m

Hα (P (Am|ρA)),

DB =
∑

m

Hα (P (Bm|ρB)) (α > 0). (26)

Here, P (Am ⊗ Bm|ρAB) is the probability distribution induced
by measuring Am ⊗ Bm on ρAB, and P (Am|ρA) and P (Bm|ρB)
are the two corresponding marginal probability distributions.

Any bipartite state violating Eq. (26) must be entangled.
When {Am} and {Bm} are complementary observables, D is the
sum of entropies for measuring ρA or ρB in MUBs. According
to our uncertainty relations in the previous section, a further
lower bound for D can be obtained directly from (22) when
α � 2 and from (16) when α = 1.

As an example, consider a pair of qudits in a Werner
state WAB = 1−p

d2 1d2 + p|ψ〉〈ψ | (0 � p � 1), where |ψ〉 =
1√
d

(|0〉 ⊗ |0〉 + · · · + |d − 1〉 ⊗ |d − 1〉), and {σm} (m =
1, 2, . . . , M) is a set of complementary observables in Hd .
The density matrix of a single qudit is then WA = WB = 1

d 1d ,
which is independent of p. For simplicity, suppose now d
is a prime power and M = d + 1, in which case D = (d +
1) log2 d is state independent, and moreover, the strongest
form of (26) becomes

d+1∑
m

H∞(P (σm ⊗ σm|WAB)) � (d + 1) log2 d, (27)

since Rényi α-entropy is a nonincreasing function of α. Nu-
merical results show that (27) can be violated for p > 0.33
when d = 2 and for p > 0.46 when d = 3. As the bipartite
Werner state is entangled if and only if p > 1

d+1 [44–47],
Eq. (27) is strong enough when d = 2 but it is not strong when
d = 3 and fails to detect all entangled states.

From the above example we know that our EURs can be
used to detect entanglement, and stronger separability cri-
teria based on our uncertainty relations are also possible.
More works on entropic separability criteria can be found in
Refs. [11,15,23].

VI. CONCLUSION

In this paper we have obtained improved entropic un-
certainty relations for general symmetric informationally
complete positive operator-valued measures and mutually un-
biased measurements in terms of Rényi entropy, which are
shown to be tight for sufficiently mixed states. By random
sampling density matrices and calculating the corresponding
entropy for a given set of measurements, comparisons be-
tween our entropic bounds and the numerical optimal bounds
are made via information diagrams. Our investigation of en-
tropic uncertainty relations could provide some insights for
further applications of uncertainty relations in information
theory.
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APPENDIX A: PROOF OF THEOREM 1

With Lagrangian’s multiplier method it is easy to prove
that for Rényi α entropy to be local extreme in the set
{P|length(P ) = L, I (P ) = c} at P , the positive probabili-
ties in P take on at most two different values, say, pa and pb.
We can parametrize these kinds of probability distributions
with three parameters as follows: N , the number of positive
probabilities; Na, the number of probabilities being pa; c, the
index of coincidence. We arrange the positive probabilities in
descending order and represent the distribution formally as

P[c, N, Na]

= [Na 
 pa, (N − Na) 
 pb] (1/N � c � 1/Na), (A1)

where Na 
 pa is shorthand for Na probabilities being pa.
Combined with the condition that Na pa + (N − Na)pb = 1
and I (P[c, N, Na]) = c, we have pa = 1+√

(Nc−1)(N−Na )/Na

N

and pb = 1−√
(Nc−1)Na/(N−Na )

N . We can see that P[c1, N, Na]
majorizes P[c2, N, Na] if c1 > c2, thus Hα (P[c, N, Na]) is a
decreasing function of c. To show Theorem 1, note that given
any u, c, α > 0, and N (Na) ∈ N+, the values of Na (N), pa,
and pb, if exist, are all uniquely determined by (A2):

{
0 � pb � pa, N � Na � 1,

Na pa + (N − Na)pb = 1, Na p2
a + (N − Na)p2

b = c, Na pα
a + (N − Na)pα

b = u,
(A2)

Hα

(
P

[
1

N
+ s, N, Na

])
= log2 N − αNs

2 ln 2
+ α(α − 2)N

3
2 Nas

3
2

4 ln 2(N − Na)
+ o(s2)

(
0 < s � 1

N

)
. (A3)

Hence Hα (P[c, N, Na]) is monotonic of both N and Na, and more concretely, taking the above series expansion of entropy into
consideration, we have

(2 − α)Hα (P[c, N, Na1]) � (2 − α)Hα (P[c, N, Na2])

(
Na1 < Na2,

1

N
� c � 1

Na2

)
, (A4)

(2 − α)Hα (P[c, N1, Na]) � (2 − α)Hα (P[c, N2, Na])

(
N1 < N2,

1

N1
� c � 1

Na

)
. (A5)
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We can conclude from (A4) and (A5) that for any distribution P over L outcomes with I (P ) = c there is

(2 − α)Hα (P[c, L, 1]) � (2 − α)Hα (P ) � (2 − α)Hα (P[c, N, N − 1]), (A6)

where N is an integer such that 1
N � c < 1

N−1 , namely, N = � 1
c �. This completes the proof of Theorem 1.

APPENDIX B: CONCAVITY AND CONVEXITY

Let us reparametrize P[c, N, Na] as P∗[c, N, θ ], where θ = 2 arccos
√

Na/N and θ ∈ [0, π ). We have

Hα (P∗[c, N, θ ]) = 1

1 − α
log2

[
N cos2 θ

2

(
1 + √

Nc − 1 tan θ
2

N

)α

+ N sin2 θ

2

(
1 − √

Nc − 1 cot θ
2

N

)α
]

= 1

1 − α
log2 Mα (P∗[c, N, θ ]),

(α − 1)
∂2

∂c2
Hα (P∗[c, N, θ ]) = f (α, z, θ )

αNα+1 sin θ
2 cos3 θ

2

4 ln 2(Nc − 1)3/2M2
α (P∗[c, N, θ ])

(
1 + √

Nc − 1 tan
θ

2

)2α−2

,

where, with z = 1−√
Nc−1 cot θ

2

1+√
Nc−1 tan θ

2
(0 < z � tan θ

2 ),

f (α, z, θ ) = 2 tan2 θ
2

1 + z tan2 θ
2

(zα−1 − 1)2 + zα−1

[
− tan2 θ

2
zα−1 + z1−α + (α − 1)

(
z tan2 θ

2
− 1

z

)
+ (2 − α)

(
tan2 θ

2
− 1

)]

� zα−1

[
− tan2 θ

2
zα−1 + z1−α + (α − 1)

(
z tan2 θ

2
− 1

z

)
+ (2 − α)

(
tan2 θ

2
− 1

)]
,

when 0 < α < 1 or α � 2 and 0 < tan θ
2 � 1,

f (α, z, θ ) � zα−1

[
−zα−1 + z1−α + (α − 1)

(
z − 1

z

)]
� 0 �⇒ (α − 1)

∂2

∂c2
Hα (P∗[c, N, θ ]) � 0. (B1)

As for Shannon entropy, when 0 < z < tan θ
2 � 1,

∂2

∂c2
H (P∗[c, N, θ ]) = log2

(
1 + z tan

θ

2

)
− log2

(
1 − z cot

θ

2

)
− 1

1 − z cot θ
2

+ 1

1 + z tan θ
2

� 0. (B2)

(B1) and (B2) imply that when Na ∈ [N/2, N], Hα (P[c, N, Na]) is concave with respect to c when α � 1 and convex with
respect to c when α � 2.

APPENDIX C: PROOF OF THEOREM 2

Let g = {Pg} denote the probability distributions at which
∑M

m=1 H (Pm) is minimum under the restriction

∀1 � m � M, length(Pm) = L,

M∑
m=1

I (Pm) =
∑

m

cm = c
(

c is a constant, c ∈
[M

d
, M

])
, (C1)

where Pg is the gth distribution in g. First, according to Theorem 1, (A6), and (B2), we have the following:
Property 1. Pg must be in the form Pg = PL

y [cg] for any g.
Property 2. At most one element in g, Pk say, is not uniform in its nonzero part.
It can be proved that for any 1 � m < n (n, m ∈ N+),{

1. H
(
PL

y [1/n]
) + H

(
PL

y [1/m + s]
)

> H
(
PL

y [1/m]
) + H

(
PL

y [1/n + s]
)
, 0 � s � 1/n/(n − 1),

2. H
(
PL

y [1/n − s]
) + H

(
PL

y [1/m]
)

� H
(
PL

y [1/m − s]
) + H

(
PL

y [1/n]
)
, 0 � s � 1/n/(n + 1)

. (C2)

Note here: I
(
PL

y [1/n]
) + I

(
PL

y [1/m + s]
) = I

(
PL

y [1/n + s]
) + I

(
PL

y [1/m]
)
,

I
(
PL

y [1/n − s]
) + I

(
PL

y [1/m]
) = I

(
PL

y [1/m − s]
) + I

(
PL

y [1/n]
)
,

with Ng denoting the number of nonzero probabilities of Pg, a direct result of Properties 1 and 2 and (C2) is the following:
Property 3. (1) maxg,g′ |{Ng − Ng′ }| � 1; (2) if Nk = ming{Ng}, then ∀g, Ng − Nk = 0.
With Properties 1–3, it is enough to determine g (Theorem 2). To show the first inequality of (C2) we only need to show

log2 N − H (Py[1/N + s, N, N − 1]) is an increasing function of N . Under the parametrization introduced in Appendix B we
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have

log2 N − H (P∗[1/N + s, N, θ ]) = cos2 θ

2

(
1 +

√
Ns tan

θ

2

)
log2

[
cos2 θ

2

(
1 +

√
Ns tan

θ

2

)]
,

sin2 θ

2

(
1 −

√
Ns cot

θ

2

)
log2

[
sin2 θ

2

(
1 −

√
Ns cot

θ

2

)]
= h(s, N, θ ). (C3)

Let θy(N ) = 2 arctan 1√
N−1

, then P[c, N, N − 1] = P∗[c, N, θy(N )],

∂

∂N
h(s, N, θ ) = s

N

∂

∂s
h(s, N, θ ) > 0,

∂

∂θ
h(s, N, θ ) < 0,

dθy

dN
< 0,

∂

∂N
h(s, N, θy(N )) =

[
∂

∂N
h(s, N, θ ) + ∂

∂θ
h(s, N, θ )

dθy

dN

]∣∣∣∣
θ=θy (N )

� 0. (C4)

Hence h(s, N, θy(N )) is an increasing function of N , and the second inequality of (C2) can be proved similarly.
It turns out that g is also the set of probability distributions that descends entropy the fastest locally. Consider c = M

L (this is
when probability distributions are all uniform) in the beginning and then let c increase, so according to Properties 1, 2, and (A3)
obviously the steepest descent of Shannon entropy is given by⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{
(M − 1) 
 PL

y

[
1
L

]
,PL

y

[
c − M−1

L

]}
, M

L � c � M−1
L + 1

L−1{
(M − 2) 
 PL

y

[
1
L

]
,PL

y

[
1

L−1

]
,PL

y

[
c − M−2

L − 1
L−1

]}
, M−1

L + 1
L−1 � c � M−2

L + 2
L−1

· · · · · ·{
(M − 1) 
 PL

y

[
1

L−1

]
,PL

y

[
c − M−1

L−1

]}
, M

L−1 � c � M−1
L−1 + 1

L−2

· · · · · ·

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= g,

where M 
 P is shorthand for M probability distributions being P .
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