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We investigate wave-packet dynamics across supercritical barriers for the Klein-Gordon and Dirac equations.
Our treatment is based on a multiple scattering expansion (MSE). For spin-0 particles, the MSE diverges,
rendering invalid the use of the usual connection formulas for the scattering basis functions. In a time-dependent
formulation, the divergent character of the MSE naturally accounts for charge creation at the barrier boundaries.
In the Dirac case, the MSE converges and no charge is created. We show that this time-dependent charge
behavior dynamics can adequately explain the Klein paradox in a first-quantized setting. We further compare
our semianalytical wave-packet approach to exact finite-difference solutions of the relativistic wave equations.
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I. INTRODUCTION

One of the salient features of relativistic quantum me-
chanics is the intrinsic mixture of particles with their
corresponding antiparticles. This aspect already appears in
“first-quantized” single-particle relativistic quantum mechan-
ics (RQM) [1]. This phenomenon becomes prominent when
a particle is placed in a very strong external classical field,
a field strong enough to close the gap between particles and
antiparticles—a supercritical field.

Most textbooks, as well as the overwhelming majority
of past works employ time-independent stationary phase or
plane-wave arguments when dealing with supercritical fields
within RQM. As is well known, in quantum scattering theory
time-independent quantities such as cross-sections or energy
levels can be readily computed, but it is often ambiguous to
attempt to infer the dynamics from considerations involving a
single plane wave. This is even more the case when relativistic
phenomena are investigated: One has to deal with additional
difficulties, such as the breakdown of the usual connection
formulas linking the scattering solutions in different regions,
or the Klein paradox—a phenomenon usually expressed as a
current reflected from a supercritical step or barrier higher
than the incident one. Standard textbooks (e.g., [1–4]) give
different, often conflicting accounts of the Klein paradox. This
situation is reflected even in recent works [5–15], that reach
different conclusions generally based on time-independent
considerations.

In part for this reason, it is often stated, in different situa-
tions dealing with the Klein paradox, that a RQM approach is
inadequate and that a quantum field theory (QFT) treatment is
necessary (see, e.g., [3] for the step case, or [8] for the barrier
case). Nevertheless even in a first-quantized framework the
RQM wave equations have charge creation built in. We argue

in this paper that this aspect is best understood by considering
the time-dependent wave-function dynamics. We will assess
whether this leads to a consistent first-quantized explanation
of the Klein paradox. Interestingly, other very recent works
have focused on different time-dependent aspects of the rela-
tivistic wave equations [16,17].

In this paper we will develop a time-dependent wave-
packet treatment suited to investigate the dynamics of spin-0
bosons and spin-1/2 fermions in model supercriticial barriers.
In order to develop our semianalytic wave-packet approach,
we will rely on a multiple scattering expansion (MSE). We
will see that the nature of the MSE is different for solutions of
the Klein-Gordon and Dirac equations. In the Klein-Gordon
case, the MSE diverges, physically corresponding to charge
creation as the wave packet hits a barrier’s edge. This implies
that the usual connection formulas between wave functions
in different regions, which are obeyed when a single step
potential is considered, are not applicable when dealing with
supercritical barriers. Employing connection formulas leads
to inconsistencies, such as superluminal traversal times, that
were recently noted [8] though (incorrectly, as we will see)
attributed to the limitations of the first-quantized formalism.
In the Dirac case, the MSE converges, as no charge is cre-
ated when the wave packet hits the barrier. This leads to an
interpretation of Klein tunneling that is qualitatively different
from the bosonic case. This also ensures that the connection
formulas, which have been employed in a countless number
of works, remain valid.

The multiple scattering expansion will be given in Sec. II,
after introducing the model barriers we will be working with.
These ingredients will be employed in Sec. III to build wave
packets. We will then give a couple of examples displaying
the dynamics of a bosonic or fermionic particle impinging
on a supercritical barrier. Our wave-packet results will be
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FIG. 1. A generic barrier is shown along with the three regions
j = 1, 2, 3. The scattering amplitudes of the multiple scattering
expansion at the left (l) and right (r) edges are indicated for an
incoming wave boundary condition (see text for details).

compared to numerical solutions obtained from a code we
have developed to solve numerically the relativistic wave
equations. Our results will be discussed in Sec. IV. We will
more specifically focus on the extent to which the Klein para-
dox can be accounted for within a first-quantized framework.
We close the paper with a Conclusion.

II. CHARGE CREATION AND MULTIPLE SCATTERING
EXPANSIONS

A. Potential barriers

We are interested in this work by the dynamics of a
relativistic “particle” impinging on a one-dimensional static
barrier of width L. The barrier should be discriminated from
the step, which is by far the case that has most often been
considered in studies of the Klein paradox. The relevant wave
equations for spin-0 and spin-1/2 particles are recalled in Sec.
S1 of the Supplemental Material [18].

The simplest case is the rectangular barrier defined by
V (x) = V θ (x)θ (L − x) where θ denotes the unit-step function
and V denotes the barrier height. We will also consider smooth
barriers, for which we will employ the potential Vs(x, ε) =
V
2 {tanh(εx) − tanh [ε(x − L)]} since for this potential analyt-
ical solutions are known [19]; ε is the smoothness parameter.

1. Subcritical barriers

Let us consider a rectangular barrier. Plane-wave solutions
of the canonical Klein-Gordon (KG) equation (see [18]) are
of the form

ψ±
j (t, x) = (A±

j eip j x/h̄ + B±
j e−ip j x/h̄)e∓iE (p1 )t/h̄, (1)

where j = 1, 2, 3 denotes the regions depicted in Fig. 1 and
the ± signs correspond to states with positive and negative
energies ±E (p1) with E (p1) =

√
m2c4 + p2

1c2. p j is the mo-
mentum; for positive energies, p j > 0 gives a wave moving
from left to right (but from right to left for negative energies).

As is well known [1,20], for “subcritical” potentials (p2

is imaginary) plane-waves scattering is similar to the usual
nonrelativistic situation (small transmission amplitude and ex-
ponentially decreasing waves). Assume boundary conditions
for which an incident positive energy wave travels from left
to right; this imposes B3 = 0 and for definiteness we set the
incoming amplitude to A1 = 1. The other amplitudes Aj and
Bj are deduced by matching the wave functions and their
space derivatives at the boundaries x = 0 and x = L (for rea-
sons that will become clear below, we will not need to deal
with boundary conditions for negative energy plane waves;
we henceforth write A for A+, etc.). This way of obtaining
the amplitudes does not necessarily hold when V becomes
supercritical.

2. Supercritical barriers

A supercritical potential is a potential high enough to give
rise to Klein tunneling [21], whereby the incoming wave
packet penetrates undamped (p2 is real) inside the barrier. In
the bosonic case, this gives rise [20] to superradiance (a re-
flected current higher than the incoming one). In the fermionic
case there is no superradiance (although some authors suggest
differently; see, e.g., [2,13]), and supercritical steps have been
deemed to have an acceptable interpretation only within a
QFT approach [22–24], a point that appears to be supported
by the wide variety of conflicting interpretations of Klein
tunneling that have been proposed within the first-quantized
framework [5–15].

B. Multiple scattering expansions

It is well known that when transmission of waves across
several media takes place, one has to take into account a
multiple scattering process. Referring again to Fig. 1, consider
an asymptotically free (at x = −∞) wave coming toward the
barrier (we set again A1 = 1 and B3 = 0). Reflection of the
incoming wave on the barrier takes place with amplitude ri

l ,
which is the reflection amplitude of a step. The transmitted
amplitude at that point, t i

l , is that of a step, but the wave
traveling inside the barrier reaches the right edge and gets
transmitted and reflected with amplitudes t i

r and ri
r . This re-

flected wave travels back towards the left side of the barrier,
getting reflected and transmitted with coefficients ro

l and t o
l .

This process is iterated an infinite number of times yielding

r ≡ B1 = ri
l + t i

l t
o
l ri

r

∑
n�0

(
ro

l ri
r

)n
, t ≡ A3 = ∑

n�0 t i
l

(
ro

l ri
r

)n
t i
r,

A2 = ∑
n�0 t i

l

(
ri

l r
o
l

)n
, B2 = ∑

n�0 t i
l r

i
r

(
ro

l ri
r

)n
,

A1 = 1, B3 = 0.

(2)
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The amplitudes obtained by using this MSE should match
those obtained by employing the usual connection formulas
at the boundaries, but this will happen only provided the sums
in Eq. (2) converge.

1. Klein-Gordon equation: Divergent multiple
scattering expansion

Let us consider the KG equation in the presence of a su-
percritical step V θ (x) at x = 0. Scattering of a positive energy
plane wave coming from the left, as given by Eq. (1), sets
Ā1 = 1, B̄2 = 0 (we use the bar to avoid confusion between
the step and barrier amplitudes). Ā2 and B̄1 are thus obtained
by applying the boundary conditions at x = 0, yielding B̄1 =
(p1 − p2)/(p1 + p2) and Ā2 = 2p1/(p1 + p2) where follow-
ing our notation given above, p1 > 0 is the momentum of the
incoming plane wave (in region 1) and

p2(p1) = −1

c

√
p2

1c2 − 2V
(
m2c4 + p2

1c2
)1/2 + V 2. (3)

The amplitudes B̄1 and Ā2 of the step correspond to the
amplitudes ri

l and t i
l of the barrier MSE, Eq. (2). ri

r and t i
r

are obtained by considering the step V θ (L − x), and ro
l and

t o
l arise from the step V θ (x) with a wave coming from the

right (see Sec. S2 of [18]). By inserting the values for these
elementary scattering amplitudes into the MSE of Eq. (2), we
obtain the scattering amplitudes for the rectangular barrier.
These amplitudes converge if |(p1 − p2)/(p1 + p2)| < 1 in

which case it can be checked that the amplitudes Aj and Bj

match the ones obtained by using the connection formulas at
the boundaries.

This condition is fulfilled for subcritical barriers (both p1

and p2 are positive) but for supercritical barriers, we have
p1 > 0 and p2 < 0 and the MSE diverges. This divergence
does not make much sense in a stationary plane-wave pic-
ture, in which the scattering amplitudes become infinite, but
we will see below in Sec. III that in a time-dependent ap-
proach, the divergence corresponds physically to the creation
of charge each time a wave packet hits a barrier edge.

Interestingly, if the “converged” amplitudes (usually ob-
tained by employing the connection formulas) are employed
in the supercritical case, unphysical results are obtained. It
was recently noticed [8] in a plane-wave analysis that the
barrier traversal time defined from the phase energy deriva-
tive was superluminal in the supercritical case, an unphysical
result attributed to the limitations of the first-quantized for-
malism. In a wave-packet approach, building wave packets
with the converged amplitudes results in an acausal wave
packet coming out from the right side of the supercritical
barrier before the incoming wave packet has even hit the
barrier [25]. Other works have also employed the connection
formulas in a supercritical context [6,12].

2. Dirac equation: Convergent multiple scattering expansion

The derivation of the MSE for the Dirac equation is similar
to the one we have given for the KG equation. The plane-wave
solutions of the two-component state �(t, x) take the form

�±
j (t, x) =

[
A±

j

(
1

α±
j (p1)

)
e

ip j x/h̄ + B±
j

(
1

−α±
j (p1)

)
e

−ip j x/h̄
]

e−i
√

m2c4+p2
1c2t/h̄n±

j (p1), (4)

where the coefficients α±
j are given by Eqs. (S-20)–(S-23)

of [18]. j refers again to the three regions depicted in Fig. 1
and n±

j are normalization coefficients.
As in the KG case, let us treat the barrier as a multiple

scattering expansion, with the same boundary conditions. The
amplitudes A±

j and B±
j are again given by Eq. (2), with coeffi-

cients ri
l , t i

l ... that are different for positive and negative energy
wave functions. As in the KG case, the MSE for a rectangular
barrier is built from the reflection and transmission amplitudes
Ā±

j and B̄±
j of the steps V θ (x) and V θ (L − x). The matching

condition �+
1 (t, x = 0) = �+

2 (t, x = 0) yields

B̄+
1 = α+

1 (p1) − α+
2 (p1)

α+
1 (p1) + α+

2 (p1)
, Ā+

2 = 2α+
1 (p1)

α+
1 (p1) + α+

2 (p1)

n+
1

n+
2

.

(5)

The amplitudes B̄1 and Ā2 of the step correspond to the am-
plitudes ri+

l and t i+
l entering the MSE for the barrier. The

other step amplitudes are obtained in the same manner [see
Eq. (S-15) of [18]]. It can be seen that the series converge

provided | α+
1 (p1 )−α+

2 (p1 )
α+

1 (p1 )+α+
2 (p1 )

| < 1 which is verified since α+
2 (p1) is

positive when V is supercritical.
Therefore for the Dirac equation, the MSE converges. The

usual connection formulas at x = 0 and x = L may be em-

ployed to obtain directly the barrier amplitudes A±
j and B±

j
given by Eqs. (S-24)–(S-27) of [18]. Note that most past
works (e.g., [12,26,27]) have indeed employed such connec-
tion formulas without, however, examining the justifications
for their use.

III. WAVE-PACKET DYNAMICS

A. Construction from plane-wave expansions

The most straightforward way to construct wave packets
starting from an initial distribution is to employ a plane-wave
expansion, valid everywhere except in the slope region for a
sufficiently steep barrier.

1. Klein-Gordon equation wave packets

The Klein-Gordon plane waves were given in Eq. (1).
These solutions can be expressed in Hamiltonian form [18],
as

�±
j (t, x) = N

⎛
⎝mc2 ±

√
m2c4 + p2

jc
2

mc2 ∓
√

m2c4 + p2
jc

2

⎞
⎠(A±

j eip j x/h̄

+ B±
j e−ip j x/h̄)e∓i

√
m2c4+p2

1c2t/h̄, (6)
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where p3 = p1 and p2 is given by Eq. (3), the amplitudes A±
j

and B±
j are given by Eq. (2), and N is a global normalization

constant.
Assume that at t = 0 we have an initial wave function

G(t = 0, x) = (ϕG(0, x), χG(0, x)) in region 1, to the left of
the barrier. The time evolution can be employed by apply-
ing the pseudounitary evolution operator on G(t = 0, x), or
equivalently by using the Fourier transform G(t = 0, x) =∫

d p eipx/h̄Ĝ(t = 0, p). The time-evolved wave packet can
then be written as

G(t, x) =
∑

j

θ j

∫
d p1[c+

KG(p1)�+
j (t, x; p1)

+ c−
KG(p1)�−

j (t, x; p1)], (7)

where θ j ensures each expression is used only in the region j
in which it is valid, as per Fig. 1 [explicitly, θ1 = θ (−x), θ2 =
θ (x)θ (L − x), and θ3 = θ (x − L)].

To be specific, we will choose an initially localized state of
the form

G(0, x) =
(

exp

(−(x − x0)2

4d2
− ip0x/h̄

)
, 0

)
. (8)

Picking x0 far to the left of the barrier and p0 > 0, the
choice (8) gives an initial state with positive charge. The co-
efficients c±

KG = 〈�±
1 |G〉KG are readily computed [Eq. (S-19)

of [18]] and it can be seen that c−
KG is nonzero (although it

is small for nonrelativistic velocities). This negative energy
component moves to the left (recall that p0 > 0 yields an
antiparticle that moves in the negative direction), so only
the positive energy wave packet (particle) impinges on the
barrier [28].

2. Dirac equation wave packets

A similar construction can be used to build wave pack-
ets evolving according to the Dirac equation, starting from
an initial state |G(t = 0)〉 of the same form as Eq. (8) now
expanded over the Dirac equation plane-wave solutions. The
time-evolved wave packet is

G(t, x) =
∑

j

θ j

∫
d p1[c+

D (p1)�+
j (t, x; p1)

+ c−
D (p1)�−

j (t, x; p1)], (9)

where the coefficients c±
D = 〈�±

1 |G〉 are given by Eq. (S-28)
of [18].

B. Numerical solutions

We have computed numerical solutions to the Klein-
Gordon and Dirac equations. This was done by discretizing
the corresponding evolution operator in real space for small
time steps. The initial wave function G(t = 0, x) is discretized
on a fixed space grid and the derivatives in the evolution
operator are approximated by finite differences in the fourth-
or fifth-order approximation. The computational details are
given in Sec. S4 of [18] (see also Refs. [30–32]).

FIG. 2. Wave-packet dynamics for a spin-0 boson described by
the Klein-Gordon equation impinging on a smooth supercritical
barrier. The charge density ρ(t ) is given for different times as spec-
ified on each plot. Our semianalytic wave-packet approach is shown
in black solid lines, while for the sake of comparison our finite-
difference solutions are shown upside-down with a dashed (online:
red) line. The supercritical barrier lies within the dotted vertical gray
lines. The same initial state, shown in (a), is taken for the wave packet
and the numerical calculations and no adjustments or renormaliza-
tions are made at longer times (the change in scale reflects charge
creation). Note that (f) is a zoom of (e) in the region around the right
edge of the barrier. The values of the parameters employed are given
in the main text. Natural units (h̄ = c = m = ε0 = 1) are used [29].

C. Illustrative results

We will now illustrate our wave-packet approach and com-
pare it with fully numerical solutions obtained by solving the
relativistic wave equations with a finite-difference scheme.
Figure 2 illustrates the wave-packet dynamics for a spin-0
boson impinging on a smooth barrier Vs(x, ε) with ε = 5, L =
400, and V = 3.4 (we use natural units [29]). We pick the ini-
tial state, Eq. (8), with x0 = −400, p0 = √

5/2, and d = 50
(in order to have a rather narrow momentum distribution).
We also provide numerical solutions obtained by using our
finite-difference scheme introduced above (these solutions are
plotted upside-down). The wave packet moves towards the
barrier (save for an antiparticle component moving to the
left, visible at t = 200), and has appreciably hit the barrier

042203-4



RELATIVISTIC TIME-DEPENDENT QUANTUM DYNAMICS … PHYSICAL REVIEW A 103, 042203 (2021)

FIG. 3. Wave-packet dynamics for a spin-1/2 fermion described
by the Dirac equation impinging on a supercritical barrier. The den-
sity ρ(t ) is given for different times as specified. The semianalytic
wave-packet approach gives the results shown in black solid lines,
while the finite-difference solutions are shown upside-down with a
dashed (online: red) line. The supercritical barrier lies within the
dotted vertical gray lines. The same initial state, shown in (a), is
taken for the wave packet and the numerical calculations and no
adjustments or renormalizations are made at longer times. The values
of the parameters employed are given in the main text. Natural units
(h̄ = m = c = ε0 = 1, where m is the electron mass) are used.

by t = 400, while at t = 800 one sees Klein tunneling ac-
companied by charge production both inside and outside the
left edge of the barrier (note the vertical scale). At t = 1000,
the antiparticle wave packet hits the right edge of the barrier,
inducing additional charge production both for the transmitted
(particle) wave packet and for the reflected (antiparticle) one.
This motion continues, with the amplitude inside the barrier
growing at each reflection.

The MSE-based wave-packet dynamics match very well
the computations obtained from the finite-difference solu-
tions. In practice, the number of terms that need to be taken
into account in the MSE sum (2) is congruent with the time
t at which the wave packet is computed. Indeed, the nth term
corresponds formally to a wave packet translated by the order
of 2nπL, that for values of n that are high enough did not
have time to reach the barrier. Hence these terms do not
contribute to the wave packet (in the calculations shown in
Fig. 2, including terms up to n = 4 is sufficient).

The wave-packet dynamics for a spin-1/2 fermion is
shown in Fig. 3. We picked the same barrier and initial
state parameters as in the Klein-Gordon case except that the
smoothness parameter was taken to be the size of the space
integration step in the numerical code (ε � 250), effectively
corresponding to the rectangular barrier limit. We note again

the very good agreement between the wave packets con-
structed with Eq. (9) and the numerical solutions.

IV. DISCUSSION

A. General remarks

We have developed a wave-packet approach to describe
Klein tunneling across a supercritical barrier both for Klein-
Gordon and Dirac particles.

The main ingredient was seen to be the multiple scattering
expansion, that diverges in the KG case but converges in the
Dirac case.

The main issue now is whether these results lend to a
consistent interpretation of the Klein paradox within the
first-quantized formalism. This is known to be problematic
when basing considerations on stationary plane waves, and
indeed different, sometimes conflicting interpretations of su-
perradiance and supercritical tunneling in a first-quantized
framework have been given [5–15]. Klein tunneling has
even been denied to exist in the bosonic case [14] or
for fermions [10]. Of course since particle creation is in-
duced by supercritical potentials, a proper approach requires
a QFT treatment. But time-dependent QFT approaches to
tackle this problem are scarce (with the exception of the
work reviewed in Ref. [23], where supercriticial steps,
rather than barriers, were investigated both for fermions
and bosons; see also [33], and references therein for recent
ramifications of this time-dependent QFT method). Hence,
although time-independent approaches to Klein tunneling
within the first-quantized framework might be seen as un-
reliable, it would be worthwhile to consider the merits of a
time-dependent first-quantized account, and examine its con-
sistency with time-dependent QFT approaches.

B. Klein paradox in a first-quantized framework

1. Bosons

For the Klein-Gordon equation, the account seems rather
simple: A supercritical potential creates positive and negative
charges in equal amounts but in different spatial regions. In
our wave-packet approach, this is explained by the divergent
character of the multiple scattering expansion, although this
property is encapsulated in the pseudounitary evolution oper-
ator that is solved numerically in the finite-difference code.

Hence, when a particle impinges on a supercritical barrier,
the reflected wave packet has a higher amplitude than
the incoming one. Similarly, when the Klein tunneling
wave packet reaches the right edge of the barrier, a
positively charged wave packet leaves the barrier, and
this is compensated by additional negative charge inside the
barrier. This process goes on indefinitely with positive and
negative charge increasing at each reflection (to the extent
that the supercritical potential can be maintained despite the
growing charge inside the barrier).

It is difficult to accommodate the charge creation mech-
anism by supercritical fields with the idea that the first-
quantized framework would describe a single particle in a
superposition of states of different charges (rather than ex-
plaining this feature in terms of particle-antiparticle creation).
However, leaving this important physical issue aside, we
see that the time-dependent wave packets by themselves do
account for the bosonic Klein paradox.
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2. Fermions

For the Dirac equation, the dynamics is very different.
Assume the incoming particle is an electron (with negative
charge). Part of the incoming wave packet gets reflected by the
barrier, and part gets transmitted. Contrary to the bosonic case,
there is no charge creation, so the reflected wave packet has a
smaller amplitude than the incoming one. Since the total prob-
ability density is conserved, requiring charge conservation
implies that the wave-packet tunneling inside the barrier also
has negative charge. This is difficult to accommodate within a
single-particle picture, even by relying on hole theory.

Indeed, according to the standard hole theory account of
the Klein paradox for fermions (see Chap. 12 of [1]), the
energy levels of the Dirac sea are raised inside the barrier
by the supercritical potential. The incoming electron can then
“knock off” an electron from the Dirac sea inside the barrier.
This would account for the reflected electron, and would leave
a hole in the Dirac sea, corresponding to a positively charged
positron. However, we have seen that the wave function we
have obtained inside the barrier has an overall negative charge,
so that in addition to the hole, an electron should also propa-
gate inside the barrier.

C. Relation to time-dependent QFT

Klein tunneling and the Klein paradox ultimately de-
pend on a multiparticle process involving particle-antiparticle
pairs creation, that should therefore be described by QFT.
A time-dependent QFT scheme [23] has investigated Klein
tunneling for rectangular and smooth steps. The QFT cal-
culations have been compared to numerical solutions of the
Klein-Gordon [34] and Dirac [19,35] equations.

1. Bosonic QFT

In the absence of any incoming particle, space-time depen-
dent charge densities obtained from the bosonic field operator
indicate that the supercritical step induces pair creation, par-
ticles with positive energies moving away from the step, and
wave packets with negative energies (antiparticles) “tunnel-
ing” inside the step [34]. When a particle is sent towards
the barrier, the QFT computations show that pair creation
is enhanced [precisely by the transmission amplitude t i

l of
Eq. (2)]. This enhancement corresponds to the first-quantized
computations for the step. The same correspondence between
QFT and our results can be thought to hold in the barrier case:
The wave packets we obtained would correspond to the pair
creation enhancement produced by sending a particle on the
barrier, on top of the pair creation process out of the vacuum.
Note that in the barrier case, spontaneous pair creations are
also expected to lead to an amplification mechanism through
multiple reflections inside the barrier.

2. Fermionic QFT

In the Dirac case, QFT computations of the time-dependent
spatial densities from the fermionic operators for a step show
that an incoming electron modifies the pair production process
induced by the supercritical field [35]. The reflected fraction
of the incoming first-quantized wave packet appears as an
excess of the particle charge (relative to the charge produced

by the step). The transmitted wave packet, propagating inside
the step, appears instead as a dip in the antiparticle (positronic)
charge produced by the supercritical potential. The interpre-
tation is that, as a result of the Pauli principle, the incoming
electron decreases the pair-production process that takes place
at the step. The decrease of antiparticle production at the edge
of the step gives rise to a hole in the positronic charge inside
the step. The dip in the electron production is partially com-
pensated by the incoming electron that is interpreted [35] as
being fully reflected, yielding overall an excess of electronic
charge which is the reflected first-quantized wave packet.

It is not obvious whether one can extrapolate straight-
forwardly the QFT results for a step to a fermionic barrier.
Now both edges of the barrier have a pair-production process.
Inside the barrier, the Pauli principle also applies to positrons.
This has no counterpart in a first-quantized framework. Nev-
ertheless, one can speculate that, at least for a sufficiently
wide barrier, an incoming electron partially suppresses pair
production (similarly to the step) at the left edge of the
barrier. The hole in positronic charge propagating inside the
barrier partially lifts the blockade due to the Pauli principle.
Upon reaching the right edge of the barrier, this results in
an enhancement in pair production. The wave packet coming
out from the barrier in our first-quantized calculations should
therefore correspond to the additional electrons produced on
the right side of the barrier as the hole reaches the right edge.
The additional positrons that are produced are responsible for
the smaller amplitude of the hole reflected inside the bar-
rier. This process continues inside the barrier with the hole
oscillating with decreasing amplitude. While this QFT-based
picture, hinging on the results obtained for a step appear to
be consistent with the present first-quantized results, time-
dependent QFT computations for the barrier would be needed
in order to confirm the precise relationship between both
pictures of supercritical Klein tunneling.

V. CONCLUSION

We have investigated in this paper the Klein paradox for
barriers from a time-dependent perspective within the first-
quantized framework. We have developed a semianalytical
wave-packet approach relying on the properties of a multi-
ple scattering process inside the barrier. This yields a very
different behavior for bosons and fermions. In the bosonic
case, each collision of the wave packet on an edge of the su-
percritical potential creates charge (as the multiple scattering
process diverges), leading to superradiance. In the Dirac case,
Klein tunneling occurs without superradiance (the MSE con-
verges). The wave-packet calculations were complemented
with exact numerical solutions obtained by implementing a
finite-difference code, leading to an excellent agreement for
rectangular and smooth barriers.

We have argued that while a stationary first-quantized ap-
proach to the Klein paradox has resulted in different and
conflicting interpretations, a time-dependent account ade-
quately describes the dynamics. We further believe such
wave-packet calculations might be valuable in order to have
a qualitative or quantitative understanding for processes that
should in principle be described by space-time QFT ap-
proaches, which are computationally much more involved.
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