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Spin-state estimation using the Stern-Gerlach experiment
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We present a state estimation scheme for spins using a modified setup of the Stern-Gerlach experiment in
which a beam of neutral spin-1/2 point particles interacts with a quadrupolar magnetic field. The proposed
estimation procedures, based either on a quadrant or a continuous intensity distribution detection, require a
suitable initial spatial state of the beam. The statistical characterization of the estimators of the initial spin state
allows us not only to associate an error to the estimated parameters, but also to define a measure for comparing
estimation procedures corresponding to different Stern-Gerlach setups.
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I. INTRODUCTION

The well-known Stern-Gerlach experiment [1], in which
a beam of neutral particles with definite magnetic dipole
moment is made to interact with an external magnetic field,
has been widely used to measure the spin projection of the
particles along the direction of the field [2-5]. In an ap-
proximation in which an inhomogeneous magnetic field with
a gradient only in the direction of a large reference field
[6,7] is considered, the Stern-Gerlach setup is an ideal spin
measurement apparatus [8]. More complete semiclassical [9]
and quantum [10,11] descriptions of the experiment, which
take into account a second gradient component to satisfy
Gauss’s law, have shown that the Stern-Gerlach setup is not
an ideal spin meter; the magnetic field inhomogeneities cause
beam deflections that are not determined only by the spin
projections of the particles. However, the presence of a strong
reference field still allows the correct estimation of the initial
spin projection along its direction.

Although the purpose of the Stern-Gerlach setup is to
measure a spin projection, it is tempting to question whether
setup modifications can provide more information. Weigert
[12] showed that projection measurements along two differ-
ent spatial directions, and one in the direction perpendicular
to both of them, enable state reconstruction. This method
requires changing the direction of the beam without modify-
ing the spin state. Stern-Gerlach setups lacking the reference
magnetic field allow either the estimation of two of the three
components of the Bloch vector that defines the initial spin
state of the beam [13], or the projective measurement of a
spin component, if the initial spatial wave function is carefully
chosen [14]. These results can be regarded as a demonstration
that a large reference field somewhat limits the information
that can be obtained about the spin state of the particles of the
beam.
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Could quadrupolar fields allow the estimation of the whole
initial spin state? In a naive view, the quadrupolar field can be
seen as two apparatuses which try to measure two orthogonal
components of the initial spin state. In such circumstances
it has been shown [15] that it is almost always possible to
estimate the whole state. This heuristic analysis points to a
positive answer to the previous question. In fact, as shown
in this work (Sec. III), it is possible to estimate the initial
(pure or mixed) spin state of a beam of neutral spin-1/2 parti-
cles, using linear inversion or maximum-likelihood estimation
[16], when the initial spatial state is chosen to be an elongated
Gaussian.

Our results are obtained by a combination of numerical
and analytical methods. The time evolution corresponding to
the Hamiltonian of the modified Stern-Gerlach setup (Sec. II)
is numerically performed using the Suzuki-Trotter method
(Appendix C). The error of the proposed state estimation
procedures is quantified by the logarithmic error A(G, s) of
the scheme, defined in Sec. IV. Although the logarithmic
error greatly varies from one set of parameters to another,
and also depends on the initial state, it is reasonably low in
some regions of the parameter space which are within reach
of current experimental techniques (Sec. V).

II. DESCRIPTION OF THE MODEL

Consider the Stern-Gerlach setup shown in Fig. 1: A beam
of neutral spin-1/2 particles of mass m and magnetic dipole
moment p is prepared in a particular factorized initial state,
0(0) = R(0)ps(0), where R describes the spatial state and pg
the spin state of the particles. The spatial state is considered
to be completely defined, while the spin state is taken to
be unknown. The particles of the beam are identical, indis-
tinguishable, independent, and far enough apart from each
other that any interaction between them can be ignored. After
preparation, the particles are sent through an inhomogeneous
magnetic field B, generated by a magnet of length L, which
deflects the beam. The magnetic field is assumed to have
components only on the plane (x,z) perpendicular to the
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FIG. 1. Modified Stern-Gerlach setup for the estimation of the initial spin state of a beam of neutral spin-1/2 particles. The magnet
generates a quadrupolar magnetic field with equal gradients in both the x and z directions.

propagation direction of the beam. Border effects are ignored.
After the interaction with the magnetic field, the beam might
evolve freely for some time before finally being detected on a
screen.

The Hamiltonian for each particle of the beam in the pres-
ence of the magnetic field is

P+l
2m

2
py

2m

H

= +,u§-l§(x,z)> =H,+H., (1)
where the subscripts indicate the dependence on the spa-
tial coordinates. The corresponding time evolution opera-
tor, U(t,0) = exp(—iHt/h), can be written as U(z,0) =
Uy (t,0)U,(t,0), where U, (¢,0) and U,(z,0) are the time
evolution operators corresponding to H,, and H,, respectively.

A factorized initial spatial state of the particles, R(0) =
R,;(0)R,(0), allows the separation of the dynamics along y,
the longitudinal coordinate. Since this dynamics corresponds
to a free evolution, the time spent on the magnetic field region
7 can be approximated by T = mL/lkoy,, where it has been
assumed that the momentum distribution in the y coordinate
is strongly peaked around /ikgy. Our study reduces to a two-
dimensional problem, because further influence of the time
evolution in the longitudinal coordinate can be ignored. The
remaining part of the initial spatial state, R,,(0), is assumed to
be of the form R,,(0) = [{,,) (Y|, Where

1 x? N 22
—exp|——+— |
2noo’ P 402 4072

The transit time 7 and the dispersion of the initial spatial
state in the x direction, o, are used as natural scales to define
the dimensionless quantitiesf = 1/7,X = x/0,Z7 = z/0, Py
o py/h, p; = o p./h, and Hy; = tHy /.

With these definitions, the equation of motion for the time
evolution operator Uy (7, 0) becomes

dU (1,0 - _
i% = Hz:Ux (7, 0),

(x, zlhz) =

where
2

Here, g = ubot/2h, g = ht/2mo? and {0}, i =1,2,3,
stand for the Pauli spin operators. For this model we have
considered a quadrupolar magnetic field of the form

Hy: = g(p2 + p7) + g1(F01 — Z03).

B(x,7) = —bo (xi — 7k). (3)

In the scaled coordinates, the initial Gaussian wave function

reads
[1 ¥+ (/A
—exp| ————|,
2T A 4

where A =o' /0.

The free evolution of the beam just after the interaction
with the magnetic field and before being detected at time T
is represented by the operator Ux(zf )(T, 1) = exp[—iﬁgr )(T —

“4)

1)], where H)-g) =g+ ﬁ?). By combining the free and
magnetic parts of the time evolution, we obtain the time
evolution operator for the complete Stern-Gerlach setup,
U(T, 0) = UL (T, 1)Uz (1, 0). The final state of the parti-
cles of the beam just before detection will then be

p(T) = UL(T, 0)[R,.(0)ps(0)IUL(T, 0). (5)

From here on, we will drop the bar on top of the dimensionless
variables to unclutter the notation. The Stern-Gerlach setup
described in this work can be characterized by a set G =
{g1, 82, A, T} of parameters, g; and g,, associated with the
quadrupole field and the kinetic energy, respectively; A, which
measures the elongation of the initial spatial wave function;
and T — 1, the time interval of free evolution after interaction
with the magnetic field.

In the usual theoretical treatments of the Stern-Gerlach
experiment, it is assumed that the inhomogeneous magnetic
field has a large constant reference component, for example, in
the z direction. This field component allows one to neglect the
term gxo; in the corresponding Hamiltonian for sufficiently
localized spatial states in the neighborhood of x = 0. Un-
der this approximation, the complete time evolution operator
commutes with o3, and the z-component of the spin of the
particles [13] can be measured using the spatial degrees of
freedom, which have become correlated with this spin degree
of freedom (o3, in this case).

Correlations are established between spatial and spin de-
grees of freedom, even in the absence of the reference
magnetic field. Hence, in our model the spatial intensity dis-
tribution on the screen, I(x, z) = Trg ({x, z|p(T)|x, z)), would
still contain information about the initial spin state of the
beam. Here Tryg (-) denotes the trace over the spin degrees of
freedom.

In the next section we show that information about the
complete initial spin state of the beam is indeed contained
in the spatial intensity distribution of the beam. We then
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investigate how to use this intensity measurement to estimate
the initial spin state of the particles.

III. STATE ESTIMATION

It is intuitively reasonable that spin-state estimation using
measurements of the spatial intensity distribution should be
possible under fairly general conditions. However, as detailed
in Appendix A, initial spatial states which remain invariant
under rotations around the propagation direction of the beam
[»+ = 1in Eq. (4)] do not encode information about the second
spin component. Consequently, the complete estimation of the
initial spin state of the beam from measurements of its spatial
intensity distribution requires us to assume that A is different
from unity.

For a general final state p(T), the intensity at a point (x, z)
on the screen can be written as

I(x,2) = Tr[p(T) |x, 2) (x, 2l 60] = Tr [p(T)Qxz],  (6)

where Q,, was defined as Q,, = |x, z) (x, z| 09. Using Eq. (5),
we can express this distribution in the form

I(x,2) =Tr[UL(T, 0)R.-(0)ps(O)UL (T, 0)Q:
=Te[UN(T, 0)0.UL (T, 0)R(0)ps(0)]
=Trs[0x:(T)ps(0)], ©)

where sz(T) = Trxz[Ux(é)T(Ta O)szUx(;)(Tv 0)R;(0)] and
Tr,,(-) indicates the trace over the spatial degrees of freedom.
In this way we can interpret intensity at point (x,z) as a
measurement of the spin observable 0,.(T) over the initial
spin state of the beam. The complete set of operators Q,.(T')
represents the whole Stern-Gerlach setup: spatial preparation,
time evolution, and intensity measurement.

Both ps(0) and O,,(T') can be expanded in the basis {0}, },

1 3
ps0) =5 D 5u0u. ®)
n=0
3
0u(T) =) My(x,2,T)o,. ©)
n=0

Using these expressions into Eq. (7), we see that

3
I(x,2) =) Mu(x,2,T)s, (10)
n=0

relates the intensity measurements with the real parameters
sy, where 5o = Trs[ps(0)] and the Bloch vector components
sy, b =1, 2,3, define the initial spin state. Since QXZ(T) is
Hermitian, the coefficients M, (x, z, T') are also real.

We will consider two different approaches for the estima-
tion of the initial spin state. The first one, in the spirit of the
original Stern-Gerlach setup, divides the intensity measure-
ment in quadrants. This measurement will be represented by
four observables, the minimum number of operators required
for the complete estimation of the state [16]; since the spin
state can be defined by three real parameters, at least four
different measurements are necessary for their estimation. The
second approach uses the intensity at every point on the screen
to reconstruct the initial spin state.

Region 2 Region 1

Region 3 Region 4

FIG. 2. Chosen regions over the (x, z) plane for the definition of
the intensity measurement operators necessary for the estimation of
the initial spin state of the beam. The division of the detection screen
is similar to the design of quadrant detectors.

A. Quadrant approach
We arbitrarily choose the four regions 2, k =1, 2, 3, 4,
shown in Fig. 2 for the measurement of the spatial intensity
distribution of the beam. Each one of these measurements will
be represented by a spin operator

OuT)= | QOu(T)dxdz. (1)

Q

Since the set {Q(T')} constitutes a POVM (positive operator-
valued measure), the intensities px(7T) = Trs[ps(0)0x(T)]
can be interpreted as the probabilities of detection of one
particle at each region.

Following a similar procedure to the one leading to
Eq. (10), we can express the theoretical probabilities of de-
tection as

3
pi(T) =) Myu(T)sy, (12)
n=0
where
My, (T) = M, (x,z,T)dxdz (13)
Qe

are the coefficients of the expansion of operators Oy (7T)
in terms of Pauli spin operators. Defining the vectors p =
(p1, p2, 3, p4) and s = (so, 51, 52, 53), Eq. (12) takes the sim-
ple matrix form

p(T) = M(T)s, (14)

where M(T'), whose elements are My, (T ), is called the mea-
surement matrix of the system.

To estimate the components of the Bloch vector, we must
relate probabilities py(T), and therefore parameters s,, to
the outcomes of the measuring process. If we consider the
beam to be formed by N particles, these outcomes correspond
to the number of particles n; detected at region k, where
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Z::l n; = N. The values n = {ny, n,, n3, ny} constitute a set
of random variables whose joint probability distribution is a
multinomial distribution of the form [17]

4
1 e
Pmm=Nanmmn]. (15)

The dependence of this distribution with respect to s comes
from relation (12).

When seen as a function of the unknown state pg(0), in-
stead of a function of n, distribution (15) corresponds to the
likelihood function of the state. By maximizing this function
with respect to pg(0) and under the adequate constraints, we
can find a maximum-likelihood estimator for the components
sy, [16,18].

It is usually simpler to maximize the natural logarithm of
the likelihood function, i.e., the log-likelihood function. A
detailed exposition of the maximization of this function is
presented in Appendix B.

By considering only that the estimated state should be
normalized, we obtain the following relation between the ob-
served frequencies fy = ni/N and 5, the estimators of s,

3
fe=" My, (16)

As in the case of Eq. (14), relation (16) can be written as

S =M, where f = (fi, f2, f5, f1) and § = (3, 31, 52, 53).
Consequently, § is easily calculated as

§=M"YT)f. (17)

This estimator corresponds to a linear inversion estimator
[16]. In a more general setup, when the intensity distribution
is measured in more than four regions and the measurement
matrix becomes nonsquare, Eq. (17) holds if M~ (T') is inter-
preted as the Moore-Penrose inverse.

Although the estimator (17) has a simple analytical ex-
pression in terms of the measurement results, it could lead
to nonphysical estimations of the initial spin state; a real state
should not only be normalized but also positive semidefinite.
Considering this constraint, the estimators for the initial spin
state satisfy 5o = 1 and

(1= F0)s, =7, (1)
for u =1, 2, 3, where
Lk
Fu= ~— M, (T), (19)
" ;m0>“

and values P (T') are calculated from Eq. (12) using estima-
tors 5, instead of parameters s,,.

Relation (18) is highly nonlinear and cannot, in general,
be solved by analytical means. However, there are several
algorithms for its numerical computation [18,19]. Here we
will use the “RpR algorithm” [19], which allows the iterative
computation of the estimators. The details of the derivation of
this method are presented in Appendix B. The estimators of
the initial spin state, for u = 1, 2, 3, are calculated as follows:

2an) — g;(f)j;(n)

wn+1) _
§ =T o
27 +ym

n

(20)

where the superscript (n) indicates the iteration step and

3
=) - ()
n=1

Each iteration results in a normalized estimated state, so that
50V = 1 for every n.

The numerical implementation of this algorithm requires
the previous definition of the initial estimated state. This state
is usually taken to be the maximally mixed spin state defined
by 3y =1and3® =0forpu=1,2,3.

B. Continuous distribution approach

When we consider the complete intensity distribution over
the screen, the outcomes of the measuring process are not
interpreted as a set of particle detections in a given region.
Instead, the results of the measurement will correspond to a
set of coordinates v = {(x, zx)}, where each pair indicates
that a particle is detected in a small region around the position
(xx, zx ) on the screen.

The set v constitutes a set of two-dimensional, continuous
random variables whose joint probability density function is
given by

N
Fols) = [ [ 1k, 20, 1)

k=1

where, as in relation (10), I(x, z) = Zi:o M, (x,z,T)sy.

When seen as a function of pg(0) instead of variables
(xx, zx), F(v|s) is interpreted as the likelihood function of the
state. By maximizing the corresponding log-likelihood func-
tion under the considerations that the estimated state should
be normalized and positive semidefinite (see Appendix B), the
estimators for the initial spin state fulfill the relations §y = 1
and

(1 —-Rp)3, =R, (22)
for u =1, 2, 3, where
N
1 7, T
Z My 2, T) (23)
— T, z)

The function (x, z) is calculated from relation (10) using
estimators §,, instead of parameters s,,.

As in the case of the quadrant approach, Eq. (22) cannot, in
general, be solved analytically. By using the RpR algorithm,
the estimators 5, for © =1, 2, 3, can be calculated numeri-
cally from the iterative relation

B _ y(m[r(n)

D) 2R, — 5,01

sﬂ — v(n)—v’ (24)
2Ry’ +T'™

where
3

[ — Z (Iél(:wf

pn=1

~ (BY.

As before, each iteration results in a normalized estimated
state (V(") = 1), and the computation begins by choosing a
maximally mixed initial state.
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In the remainder of the document, we will refer to estima-
tor (17) as the linear inversion estimator of the initial spin
state, while estimators (18) and (22), and their corresponding
numerical versions Eqgs. (20) and (24), will be referred to as
the discrete and continuous maximum-likelihood estimators of
the initial spin state, respectively.

IV. ERROR OF THE ESTIMATION

In principle, the linear inversion and maximum-likelihood
estimators allow the estimation of all the parameters defining
the initial spin state. However, it is necessary to evaluate how
reliable the estimation of these parameters can actually be. It
is expected, for example, that the estimation of s, becomes
increasingly difficult as A approaches unity. A suitable state
estimation thus requires a proper choice of the setup param-
eters G = {g1, &2, A, T}. To investigate this problem, we will
quantify the error of the estimation and analyze its dependence
on the setup parameters.

Statistically, the performance of estimators §,, is character-
ized by their bias, b(5,) = E[$, — s,], and their covariance
matrix cov(§, §) [20], whose elements are defined by

cov($,, 5,) = E[5,5,] — E[5,]E[S,].

The symbol E[-] indicates a statistical expectation value
with respect to the corresponding probability distribution
or probability density function. The diagonal elements of
the covariance matrix, i.e., the variances, are associated
with the error of the estimated parameters, s, = E[5,] £
Jeov(3,, §,). Good estimators for the initial spin state should
have small values of |b(5,)| and cov(3,, §,,).

The linear inversion estimator is unbiased, b(5,) = 0 for
all u, so its performance is determined entirely by its co-
variance matrix. The maximum-likelihood estimators, on the
other hand, are asymptotically unbiased; thus, by considering
a large enough number of particles, their performance will
also be determined their respective covariance matrices [20].

The maximum performance of the state estimation
schemes, corresponding to the minimum values that the vari-
ances can take, will be characterized by the inverse of their
Fisher information matrix (or simply information matrix),
J (s). For the linear inversion estimator, this characterization
is justified, because any unbiased estimator of s satisfies the
Cramér-Rao lower bound [20]:

cov(3, §) — I (s) >0, (25)

where the inequality indicates that the difference between ma-
trices is positive semidefinite. Therefore J ~'(s) is the lowest
possible covariance matrix associated to the linear inversion
estimation procedure.

For the maximum-likelihood estimators, the use of the
information matrix is justified by noticing that they are
asymptotically efficient; thus, for a large enough number of
particles, their respective covariance matrices will correspond
to J ' (s) [20]:

Nlim cov(d, ¥) = I (). (26)

The information matrix does not depend on the construc-
tion of the estimator of the spin state; it only depends on the

corresponding probability distribution or probability density
function. As a consequence, the linear inversion and discrete
maximum-likelihood estimators, i.e., the quadrant approach
estimation procedures will have the same information matrix,
whose elements are calculated as

lenP(n|s)]

27
05,08, @7

Juw(s) = —E|:
where P(n|s) is the multinomial distribution given by Eq. (15).
A direct computation of these elements shows that they can be

written in terms of the elements of the measurement matrix,
My, (T), as

‘1
T =N oM (TMio(T) = N (). (28)
k=1

where the dependence of elements K,,,(s) on s comes form
. 3
relation p(T) = Zu=0 My, (T)sy,.
For the continuous maximum-likelihood estimator, the
components of the information matrix are given by

9% 1n F(v|s):|

05,05,

Juw(s) = —IE|: 29)
where F(vls) is the probability density function given by
Eq. (21). As in the case of the linear inversion and discrete
maximum-likelihood estimators, a direct calculation of the
elements J,, (s) reveals that they can be written in terms of
functions M, (x, z, T) as

1

o0
JMV(S) = N/_OO mMu(x, Z, T)MV()C, Z, T)dxdz

= NK/LU(S)v (30)

where in this case the dependence of elements K,,,(s) on s
comes from the relation /(x, z) = Zizo M, (x,z,T)s,.

To eliminate the dependence of the information matrix on
the number of runs of the experiment, we consider the scaled
information matrix K(s) = J(s)/N, whose elements are the
values K, (s) introduced in Egs. (28) and (30). Since J=(s)
decreases at a rate N~!, we can achieve a desired value for
the variances by choosing a large but adequate number of
particles. However, the choice of N will be strongly limited
by how large the diagonal elements of K~!(s) are. For this
reason we will ignore the explicit presence of the number of
particles and define the error of the estimation procedure as a
function of these diagonal elements.

To quantify the quality of the estimation, we define the
logarithmic error

A(G, 5) = logo[tr(K~'(s))], (31

where we use the symbol tr(-) to distinguish the trace of
matrix from the trace of an operator, indicated by Tr(-). The
logarithmic error depends not only on the state parameters
s but also on the set of parameters G = {g, g2, A, T'} of the
experimental setup. This dependence comes from the ele-
ments My, (T) and the functions M, (x, z, T), but also from
probabilities p(T) and the intensity distribution /(x, z). The
logarithmic scale is useful for large variances, like those that
are expected for values of A around unity.
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FIG. 3. Error of the linear inversion and discrete maximum-likelihood estimation procedures, A(G, s), as a function of parameters g; and
g, for different values of parameter A. The beam was assumed to be detected just at the end of the interaction with the magnetic field, that is,
at T = 1.0. The initial spin state of the beam was a pure state defined by its Bloch vector s = (sin 8 cos ¢, sin 0 sin ¢, cos 9), where 6 = 1.91

and ¢ = 4.78.

To study the performance of the linear inversion and
maximum-likelihood estimators, we will assume that the ini-
tial spin state is normalized, so = Trs[ps(0)] = 1. As a result,
the partial derivatives with respect to sp in the definition of
elements J,,,(s) are not taken into account, so we can ignore
the elements with £ = 0 and v = 0 in Eqgs. (28) and (30), and
K(s) becomes a 3 x 3 matrix in each case.

Since the logarithmic error depends on seven parameters,
a relatively large parameter space, we need to focus on a sen-
sible parameter subspace. We will consider initial pure spin
states, which can be parametrized by the angles 0 € [0, 7]
and ¢ € (0, 2], where s; = sin 6 cos ¢, s, = sin 6 sin ¢, and
s3 = cos 6. We will assume no free evolution after the beam
interacts with the magnetic field; that is, 7 = 1. In the usual
setup of the Stern-Gerlach experiment, the additional free evo-
lution helps to clearly split the beam, guaranteeing a projective
measurement of the spin component in that direction. Here, no
beam separation is expected; therefore this free evolution is
not necessary. However, the influence of the parameter 7 will
be considered at the end of this section. In previous studies
[10,11], the deflection of the beam in the usual experimental
setup was found to be sizable when the product g;g, ex-
ceeds unity. We will consider values of g; € [1.0,5.0] and
g2 € (0, 4.0]. These values for g; and g,, similar to those used
in these studies, are far from the usual approximation where
g1 > g [10].

To calculate A(G, s) we must numerically determine func-
tions M, (x, z, T) and components My, (T ). For this purpose
we use a numerical method based on the Trotter-Suzuki ex-
pansion (see Appendix C). In the following computations, the
x and z coordinates are sampled over the interval [—50, 50],

the total number of samples in each direction is N, = N, =
600, and the total number of temporal steps is N; = 600.

Since the exploration of the reduced parameter space
would be quite time consuming, we consider the variation
of A(G,s) as a function of g; and g, for different values of
A and a fixed initial spin state, as shown in Fig. 3 for the
linear inversion and discrete maximum-likelihood estimators
and in Fig. 4 for the continuous maximum-likelihood esti-
mator. The error for the chosen initial state, defined by the
values 6 = 1.91 and ¢ = 4.78, is maximum in a setup where
g1 =4.0, go =04, and A = 0.3 when using the quadrant
approach to the estimation procedure. We expect this error
to be a pessimistic estimation of the typical error for other
values of the parameters g, g», and A, and for the continuous
maximum-likelihood estimation procedure. We choose values
of A for which the error shows local minima.

Inspection of Figs. 3 and 4 shows that the error A(G, s)
greatly decreases when using the continuous maximum-
likelihood estimator instead of the linear inversion or discrete
maximum-likelihood estimators. When using a quadrant ap-
proach to the estimation procedure, there are regions of the
parameter space where the error sharply increases and others
where it is relatively low. For the continuous distribution ap-
proach, on the other hand, the error remains lower and stabler.

To test our suspicion that the variance of §, is responsible
for large errors, we plot in Figs. 5 and 6 the error of the esti-
mation excluding this variance. We find that for most setups
this is indeed the case when using a quadrant approach for
estimation of the spin state. For example, for a setup defined
by g1 = 2.2, go = 2.4, and A = 1.1, the variance of §, is of
order of 10'2, while the variances of §; and 3 are 3.82 and
2.64, respectively; for g; = 4.6, go = 0.24, and A = 0.2, the
variance of ¥, is of order of 103, while the variances of ¥; and
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FIG. 4. Error of the continuous maximum-likelihood estimation procedure, A(G, s), as a function of parameters g, and g, for different
values of parameter A. The beam was assumed to be detected just at the end of the interaction with the magnetic field, that is, at 7 = 1.0. The
initial spin state of the beam was a pure state defined by its Bloch vector s = (sin 6 cos ¢, sin 0 sin ¢, cos0), where 6 = 1.91 and ¢ = 4.78.

53 are 4.15 and 34.2, respectively. Notice that this behavior is When using the continuous distribution approach, the error
found not only for values of A close to unity. However, there of the estimation behaves similarly, although the variances of
are setups where the variance of §, is not the largest one. For 3§, are considerably lower. For g; =4.0,g, =3.1,and A = 1.1
example, for g; = 1.0, g» = 3.96, and A = 0.2, the variances  the variance of 3, is of order of 10%, while the variances
of 31, 52, and §3 are 10.6, 60.8, and 119.0, respectively. of §; and §3 are 2.18 and 1.82, respectively; for g; = 3.3,

FIG. 5. Error of the linear inversion and discrete maximum-likelihood estimation procedures, A(G, s), as a function of the parameters g,
and g, for different values of parameter A, without including the variance corresponding to the estimation of s,. The beam was assumed to be
detected just at the end of the interaction with the magnetic field, that is, at 7 = 1.0. The initial spin state of the beam was a pure state defined
by the values 6 = 1.91 and ¢ = 4.78.
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FIG. 6. Error of the continuous maximum-likelihood estimation procedure, A(G, s), as a function of parameters g, and g, for different
values of parameter A, without including the variance corresponding to the estimation of s,. The beam was assumed to be detected just at the
end of the interaction with the magnetic field, that is, at 7 = 1.0. The initial spin state of the beam was a pure state defined by the values

0 =191 and ¢ =4.78.

g>=0.19, and A = 1.1 the variance of §, is of order of
10*, while the variances of ¥; and §3 are 7.68 and 7.07,
respectively. We also find cases where the variance of 5,
is not the largest one: for gy = 4.9, g = 0.37, and A = 0.2
the variances of 3, 3,, and §3 are 1.68, 3.10, and 4.26,
respectively.

From the point of view of elements My, (T) and functions
M, (x,z,T), large variances associated to the estimation of
a parameter s,, indicate that the corresponding probability
distribution or probability density function encodes very little
information about this parameter. In general, the variances
associated with the quadrant detection are larger than those
associated with the continuous estimation. To obtain a better
estimation of the initial spin state, it is advisable to use an esti-
mation procedure that uses the complete intensity distribution
on the detection screen.

The best regions to perform state estimation are those
where the error remains low and stable under small, but not
infinitesimal changes of the parameters that define the exper-
imental setup. For the quadrant approach, for example, when
g1 = 2.0, go = 3.24, » = 0.3, the variance associated to §, is
55.3, while those associated to 5; and 53 are 3.75 and 2.12,
respectively. For the continuous distribution approach, when
the setup is defined by g; = 4.9, go = 0.37, and A = 0.2, the
variances for 5, §,, and §3 are 1.68, 3.10, and 4.26, respec-
tively.

For a given set of parameters g;, g», and A, the error
of the estimation depends on the spin state to be estimated.
However, if the difference between the lowest and the largest
possible error remains sufficiently small, as in the examples
of Fig. 7, the error of the estimation procedure can be defined

as the error associated to the state with the worst possible
estimation.

To quantify the role of the free evolution on the estimation
error, it is necessary to increase the (x, z) region where the
intensity distribution is calculated because the wave function
broadens. For this computation, the x and z coordinates were
sampled over the interval [—100, 100], and the total number
of samples in each direction was increased to 650.

In Fig. 8 we show examples of the influence of parameter
T on the estimation error. For the quadrant approach there are
cases where the error monotonically grows with 7' (for exam-
ple, for g; = 2.0, g» = 3.24, and A = 0.3); for other setups, it
rapidly increases before decreasing again and reaching a sta-
ble value, lower than the one obtained just after the interaction
with the magnetic field (for example, for g; = 4.0, g, = 0.5,
and A = 0.3). However, errors are larger than the minimum
error found without free evolution. For the continuous distri-
bution approach, we also find setups with monotonic growth
of error (for example, for g; = 2.0, g, = 3.24, and A = 0.3).
However, unlike the previous case, we find setups where the
error decreases to a minimum before increasing again and
stabilizing (for example, for g; = 4.0, g, = 0.5,and A = 0.3).
These errors are also usually larger than the minimum error
found without free evolution.

Even if it is not generally the case, having a setup where
the time of detection ensures a lower value of the error of es-
timation could prove useful for experimental situations where
optimal values for parameters g; and g, cannot be easily
obtained. In these situations, one could choose an optimum
value for X, and/or other regions over which the intensity
is evaluated (as a modification to the quadrant approach), to
lower the error as much as possible.
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FIG. 7. Error of the estimation procedure, A(G, s), for the quadrant (left) and continuous (right) approaches to the estimation procedure
as a function of the parameters defining a pure initial spin state, 6 and ¢. The setup parameters used were g; = 2.0, g, = 3.24, A = 0.3, and

T =1.0.

As a final remark, we would like to compare the vari-
ances obtained by our estimation procedures with the lowest
possible values they can take. These lowest possible values
are determined by the quantum Cramér-Rao lower bounds
[17,21], which state the lower possible values the information
matrix J ~!(s) can take:

J7(s) > }vw‘”(s)rl, J7Ns) > }vw‘“(s)rl. (32)

The matrices J®(s) and J®(s) are called the symmetric
and right quantum Fisher information matrices [17]. These
matrices are interpreted as a maximization of the informa-
tion matrix over all the POVMs chosen for the estimation
of the initial spin state. Since the POVM used in this work
represents the whole Stern-Gerlach setup, including intensity
measurement and spatial state preparation, J®)(s) and J ®(s)
are interpreted as a maximization of J(s) over the set of
parameters G = {g1, g2, A, T'} and over all the possible forms
of measuring the final intensity distribution of the beam. Thus

LAY ¢ 1=20,9=324 A=0.3
s 1=20,0=20,A=11
“, v g1=40,0=05X=03

A(G, s)
.

20000

the quantum Fisher information matrices will only depend on
the initial spin state to be estimated.
The components of J®(s) and J ®(s) are calculated as

[TO)] 0w = UL, L)), (33)

[T R )]0 = (L), (34)

where the symbol {-} indicates an anticommutator and () =
Trs[(-)ps(0)]. Operators L, and L[’L are called the symmetric
and right logarithmic derivatives, respectively, and are defined
as [17]

aps(O) _ l 8;OS(O) _ /
95, z{ps(O),Lu} C Tas, ps(0)L,. (35)
From these relations, it can be shown that
IO, = 3{ou. ) — (03)(00), (36)
[T, = (0.00) — (0u)(00), 37)

) W
) M
3 0 k‘AA Ladl

U | ShAAAMAAET
) ¢ g1=20,9=324,1=03
W 25 A 1=20,0=20,A=1.1
a v g1=40,90=05X=03

FIG. 8. Error of the estimation procedure, A(G, s), for the quadrant (left) and continuous (right) approaches to the estimation procedure
as a function of the detection time T for the setups g; = 2.0, go = 3.24, » = 0.3 (red, diamond), g, = 2.0, g» = 2.0, A = 1.1 (green, triangle
up), and g; = 4.0, g» = 0.5, L = 0.3 (blue, triangle down). The initial spin state of the beam was a pure state defined by the values § = 1.91

and ¢ = 4.78.
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which correspond to the symmetrized and unsym-
metrized covariance matrices of the Pauli spin operators,
respectively [22].

The previous treatment is only valid for a mixed ini-
tial spin state. For pure initial spin states, it can be shown
that [J (S)(s)]l;} = 8,» [23]. However, operators L, cannot
be defined, and the components [J®(s)]7} are not easily
calculated [24]. As a consequence, we will take into account
only [J®)(s)]~" as the reference for the lower bound of the
information matrix for the case of pure initial spin states.

In analogy to Eq. (31), we define the logarithmic quantum
error of the estimation as

Ag(s) = logo[r((J Q)17 ], 0=S,R,  (38)

which satisfies the relation A(G, s) > Ay(s). Using Egs. (36)
and (37), we see that

3
As(s) = Ag(s) = log,, (3 - Zsi>

u=1

for mixed initial spin states. Since Zi:l si <1, AG,s) >
log,4(2) ~ 0.301. For pure spin states A(G,s) = Ag(s) =
log,,(3) ~ 0.4717.

As can be seen in Figs. 3-8, our estimation procedure
does not attain the lowest possible bound. In the explored
region of parameters, only the estimations of parameters s
and s3 are close to the optimal value of the error, when using
a continuous distribution approach to the state estimation.
However, in the case of a real experiment, a suitable choice of
the number of particles can help to obtain reasonable values
for the variances of all the parameters that define the initial
spin state.

V. CONCLUSIONS AND PERSPECTIVES

In this work we have shown how a modified setup of the
Stern-Gerlach experiment can be used to estimate the initial
spin state of a beam of neutral spin-1/2 particles. There are
three modifications: the use of a magnetic field without a large
reference component, the measurement of the spatial intensity
distribution of the beam over at least four different regions or
over the complete plane of detection, and the suitable choice
of the initial spatial state of the beam of particles.

Using a quantum-mechanical description of the experi-
mental setup, we derived linear inversion and maximum-
likelihood estimation procedures for the parameters that
define the initial spin state. It was found that unless the ini-
tial spin state is rotationally invariant along the direction of
propagation of the beam, all of the parameters that define the
initial spin state can be estimated.

The quality of the estimation of the initial spin state was
quantified by the logarithm of the sum of the variances of
the parameters which characterize the state (Bloch vector
components). This measure allowed us to compare the errors
associated to different experimental setups and to find the
typical values of the variances that can be obtained with the
use of the estimation procedures. Although these variances
do not generally attain the lower limit imposed by quantum
Cramér-Rao bound, they can take reasonably low values when
the number of particles of the beam is large enough. An

optimization of the error of estimation could reveal possible
experimental setups that attain variances that are closer to this
lower bound.

A straightforward rotation of the usual experimental setup
allows the measurement of the spin components transverse
to the propagation direction of the beam. However, we are
not aware of any setup for neutral beams, which enables the
estimation of the spin component in the direction of propaga-
tion without previously changing the spin of the particles (by
means of another magnetic field, for example). Thus, despite
its shortcomings and technical difficulties, the proposal made
in this paper may be a viable alternative to estimate the spin
state of neutral beams.

It is interesting to discuss a possible set of experimen-
tal parameters compatible with the values of g, and g, that
we chose for the quantification of the estimation error. In
terms of the real experimental parameters, g = ubo v /2h and
g2 = hit /2mo?. We will assume that the particles of the beam
are neutrons; in this way we fix the values of u and m to
w=0.97 x 1072 J/T and m = 1.67 x 10~2" kg. Usual field
gradients in Stern-Gerlach experiments vary between 1 and
100 T/m [2,3,5]. If the neutrons are slow enough, a large
gradient is not necessary, so it is reasonable to assume that b ~
1 T/m. In these same experiments, the length of the magnet is
usually close to 1 m; we will take this value as a reasonable
length for the magnet. Experiments with cold neutrons report
average beam speeds between 400 and 600 m/s [5]. Assuming
these speeds, the time of interaction with the magnetic field
would vary between 7 ~ 1.7ms and t ~ 2.5ms. By taking
these values for b and 7, and considering the conditions over
g1 and g, that were used to calculate the error of the estima-
tion, o would vary between o ~ 5 um and ¢ ~ 10 um.

We consider the values for speeds, field gradients, and
other physical quantities discussed on the previous paragraph
to be adequate for an experimental implementation of the
estimation procedure. Although actual experimental results
might significantly differ from our numerical results, due to
the idealizations we have made in the model Hamiltonian
(like neglecting the variation of the magnetic field along the
direction of the beam), we would expect state estimation to be
possible.

APPENDIX A: INTENSITY MEASUREMENTS FOR A =1

In this Appendix we show that the spatial intensity distri-
bution of the beam does not encode information about the
parameter s, when A = 1. The Hamiltonian H,, is, in polar
coordinates,

L?
H,. = g2<p3 + r—;) + gir(cosfo; —sinfoz),  (Al)

where p, is the radial momentum, L, the angular momentum
in the y direction, x = rcos8, and z = rsinf. The initial
spatial state, expressed in the same coordinates, is

1 2 ) r2sin 6
(r,01Ye) = 4/ 3¢ TP |:(k - I)T]. (A2)

While the state of the beam at time of detection is p(T) =
U (T, 0)| W) (Wy, |,05(0)UXTZ(T, 0), the evolution operator can

[}
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be factorized as U,.(T, 0) = Ux(zf)(T, 1)U,.(1, 0). By expand-
ing Uy.(1,0) as Uy (1,0) = Y2 _ A,0,, and the initial spin
state as ps(0) = (1/2) Y, _y 5,0, we find

T —1 3 T T A3
P =2 Y, 0u0upldaTNp(Mlsy, (A3

a,B,u=0

where |6 (7)) = UL (T, DAal¥rc).

We expand operator U,.(1,0) in a power series of the
Hamiltonian H,,, U,,(1,0) = Z;io %Hfz. We also expand
each power of the Hamiltonian as HY = ZZ:O h®a,, where
{hP} are spatial Hermitian operators. In this way, Uy, (1, 0) =
Y 3, Cpkg,. By direct comparison, A, is
found to be

A (A4)

o (=)
Ay =Y .

k=0
Since the coefficients {hg‘)} are obtained from powers of the
Hamiltonian, we can find recurrence relations between them
for each order in the power series. By using the relation
H®D = H, H®, we find the following expressions for the
computation of the coefficients at higher orders:

hy T = g2Ph” + gir(cos OR —sin0h),  (AS5)
WY = g P + gir(cosOhy +isin6hy”),  (A6)
By = P hy) — igir(cosOhs) +sin0h7), (A7)
BT = gP? Y — gir(sin 6K — icosOh),  (A8)

where we have made the definition P? = p? + r~2L2. These
relations are complemented by the initial conditions hg)) =
L, h(lo) = h;o) = h§0) = 0, where I,; is the identity operator
over H,..

When acting over the initial spatial state, coefficients {h*)}
satisfy the following relations for every order:

KO = (1 =22 GP 1), (A9)

(sin6 1 + cos 0 1) [¥e) = (1 = 22 GYv),  (A10)

(sinOL,AY — cos OLAP) W) = (1 — 22 FY 19,
(A11)

Ly ) = (1= ) Gy o). (A12)
Operators ng), Ggg), Flg‘), and Gg‘) generally depend on r, 6,
and A.

To prove these properties, we will proceed by induction. At
first order these properties are valid; there are two nonvanish-

S
igir s1;1(29) and

ing terms, F1(31) = o

—ig,r? sin(26)
326
+ 4+ D2 — 12222 4+ 1))

Gy = [(A* = 1)r? cos(26)

Assuming that all properties hold at order k, we obtain the
following expressions for the operators at order k + 1:

Gy = gP*GY — igirGY,
GE™D = PGV — g2r (G + 2iFY) + igirGY,
FyT) = go(P* +3r HFY — gir(GY + GY)
+ 2igor (LY — 1)GY,
GytD = P2 Gy — gir(FY — i GY).

Therefore, relations (A9)—(A12) hold for every order.
We use now Eq. (A4) to express the previous properties in
terms of operators {A}:

AsYrr) = (1 = A7) Gal¥rea). (A13)

(A1 + xA3)[Yrz) = (1 — A7) Gs| ), (A14)
(LyAy — 2LyA3) W) = (1 = A%) Fislr), (A15)
LyAolyrz) = (1 = 2) Go ). (A16)

where G,, Gi3, Fi3, and Gy are obtained from the corre-
sponding series of operators {G;k)}, {G(II;)}, {Fl(3k )}, and { Gg‘)},
respectively.

Now we can explore the implications of having A = 1.
Equation (A13) implies that [¢,(T')) = 0. Equation (A14), on
the other hand, implies that A |v{,.) = xA|¥,,) and Asz|,.) =
—7A|Yy;). Additionally, when combined with Eq. (A15), it
yields to the relation (p,A; + p.A3)|¥y;) = 0, which allows
us to see that

(zUL(T, DA +xUL(T, DA3)|y.) = 0. (A17)

This means that x|¢3(T)) = —z|¢;(T)), which, in turn, im-
plies that [¢3(T)) (@1 (T)| — |1(T))(p3(T)| = 0.

These results have an enormous influence in the structure
of the spatial intensity distribution of the beam. Remember-
ing the expression I(x, z) = Trg ({x, z|p(T)|x, z)) and using
Eq. (A3), we see that

3
[x,2)= Y dappda(x, 2. T)¢5(x, 2. )5, (AIS)
o,B,u=0

where dy,p = Trs(0,0,08)/2, and functions ¢, (x, z, T') are
calculated as (x, z|¢(T)). For the intensity distribution to
depend on 55, the term 2Re(¢op;) — 2Im(¢g;¢p5) must be dif-
ferent from zero. However, when A = 1, this term identically
vanishes, and thus the estimation of s, cannot be achieved
by using intensity measurements over any region of the (x, z)
plane.

APPENDIX B: COMPUTATION OF THE
MAXIMUM-LIKELIHOOD ESTIMATORS

In this Appendix we show how to derive the maximum-
likelihood estimators for the initial spin state. In the case of
the quadrant approach, the log-likelihood function reads

4 4
Isln) =InN!=> " m! +N > filn[pe(T)].  (BI)

k=1 k=1
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Taking the variation of this function with respect to ps(0) and
remembering that pi(T) = Trs[Qr(T)ps(0)], we see that

4
8l(sln) =N Y fi8 In[pi(T)]

k=1

=N Z —kTrs[Qk(T)Sps(O)]

k=1

e (25

=1
= Trs[Rsdps(0)], (B2)

Qk(T)>5/0s(0):|

where

&—Zﬁ@m

k= l

In this way, a maximum-likelihood estimator for the spin state,
which we will denote pg, must satisfy the relation

Tes[Rs805(0)]l y0p = . (B3)

Now we must determine the variation of the ps(0). Here is
where the different constraints over the estimation of the spin
state can be included. If we ask for the estimated state to be
only normalized, we can express the initial spin state as

b
Trs(B)’

where g is an arbitrary Hermitian operator. This form of pg(0)
implies that

ps(0) =

8 Trs(88)
305(0) = —L_ _ p(0) 2P
Trs(B) Trs(B)
Replacing into Eq. (B3), and after some algebra, we find that
the estimator of the spin state must satisfy the relation

——Trs[(Rs — 00)3 ] =0. (B4)
ps(0)=ps

Tr (ﬂ)

Since § 8 is arbitrary, we find
Rs = oy, (BS)

Wherg Ry is operator R calculated using the values p(T) =
Trs[Q (T )ps] instead of probabilities py (7). This equation is
solved for f; = pi(T), that is,

3
fe= My, (B6)
n=0

where we have used the expansion pg = % Zi:o §$,0,. This
is the expression for the linear inversion estimator.

Additionally asking for the state to be positive semidefinite,
we can express pg(0) as [16]

ATA

ps(0) = m,

where A is an arbitrary and generally non-Hermitian operator.
With this definition, § p5(0) reads

Trg(SATA + AT8A)
Trs(ATA)

SATA + AT5A

3ps(0) = TrsATA)

ps(0).

Replacing into Eq. (B3), and after some long algebra, we
obtain

Trs[(Rs — 00)sATA]

1
Trs(ATA) ps(0)=ps

Trs[(Rs — 00)AT8A] =0. (B7)

ps(0)=ps

1
" Trg(ATA)

Since 8A y 8A" are arbitrary, this relation implies that

A(Rs = 00, 01—,
= (Rs — o)A’ yps O—ps =0 (B8)
or, equivalently,
ps(0)(Rs — 00)|ps(0)=2,5
= (Rs —00)ps(0)] o, =0.  (BY)

Thus the estimator for the initial spin state satisfies the
relations
Rsps = psRs = p (B10)
Using ps = % Zi:o 5,0, and expanding the operator Rg
in terms of Pauli spin operators as

3

RS: E FMO—M

where

multiplying Eq. (B10) by o, and taking the trace, we find 5y =
1 and

(1_7'0)§a :fa’ (Bll)
which are the expressions for the discrete maximum-
likelihood estimator of the initial spin state.

The procedure to obtain the continuous maximum-
likelihood estimator is completely analogous to the one just
described. We need only take into account that the log-
likelihood is written as

N
Islv) = Y InlI(x, 20)],

k=1

(B12)

which leads to a change in the definition of operator Ry:
N ~
Z Q Xk Tk (T)

N = I z)
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The expansion of operator R in terms of Pauli matrices will
then have the form

3
Ry =Y Ryo,.
n=0

where
N

R’ 1 ZM/,LV(xka Tk T)
Pl (C7 954
with I(x,2) = Yo M (x. 2. T)3,..
Thus the estimators for the initial spin state will read 5o = 1
and

(1 — Ro)Se = R,. (B13)

Now, for the numerical computation of the maximum-
likelihood estimators, we can see that Eq. (B11) can be cast
into the form

RspsRs = ps. (B14)
This is the central expression of the RpR algorithm [19].
The algorithm states that the estimator pg can be computed

iteratively from the relation
v (n+1) _ (1) % (1) 73(n)
Ps —N[Rs ps Ry ]’

where the symbol A/[-] indicates the normalization to trace
one of the corresponding operators.

Using the expansions of operators Rg and ps in terms
of Pauli spin matrices, we find for the discrete maximum-
likelihood estimator,

NIRRT = 287 +p™,

(B15)

(B16)

where
> 2
V() _ 22 _ (v
v —Z(”u)_(ro)'
pn=1
For the continuous maximum-likelihood estimator, we find
similar expressions,

NRS " R] = 2R + 1, (B17)

where
3

(0= Y () - (8’

p=1

Multiplying Eq. (B15) without the normalization by o,
taking the trace, and then dividing by A/ [ﬁg”) ,bé”)lég”)], we find
following expression for the discrete maximum-likelihood es-
timator:

50D = 25 — ngn)y(n)_ (B18)
25" 4y

For the continuous maximum-likelihood estimator, we find a
completely analogous expression:

2R _ g

:Sf,(n+1) —
2R\ + '

o

(B19)

APPENDIX C: NUMERICAL CALCULATION OF THE
FUNCTIONS M, (x,z,T)

The complete implementation of the algorithms described
by Egs. (20) and (24), and the calculation of the error of the
estimation, Eq. (31), requires the determination of functions
M, (x, z, T), which in turn determine the elements of the mea-
surement matrix My, (T').

As stated before, these functions are the co-
efficients of the expansion of operator Q,.(T) =
Trxz[sz(T, 0)0,, U, (T, 0)R,;(0)] in terms of Pauli matrices.
Recalling that R (0) = |¢.) (¥, and expanding the
time evolution operator as U, (T,0) = ZZ:O Ag(T)oy,
the operator Q..(T') can be recast as

3
0u(T)= Y ¢ulx.2.T)$}(x. 2. T)ow0p,

o, p=0

where ¢y (x,z, T) = (x, z|Ax(T)|¥y,). From this expression
we see that

3
M2, T) = ) ¢a(x,2, TG, 2, T)dapys  (CD)
o,=0

where dyg,, = Trs(0,080,)/2. Following Eq. (13), the com-
ponents of the measurement matrix are calculated as

3
M) = Y dug | 0ute 2. I Tz, (€2)
a,=0 S

As can be seen, the determination of M, (x,z, T') relies
in the computation of the four functions ¢, (x, z, T). These
functions are not easily calculated by analytical means, so
we will compute them using the numerical method described
below. Though we will assume a pure initial spin state of the
beam for the description of the method, the results are also
valid for mixed initial spin states.

The state of the particles at time 7', the time of detection, is
Y(T)) = UL (T, D)Uz(t, 0)l )| ), where UL (T, 1) and
Us:(t, 0) are the evolution operators, free and in the presence
of the magnetic field, respectively. Particles are assumed to
enter and to exit the magnetic field region at times = 0 and
t = 1, respectively.

Let us begin with the evolution in the magnetic field re-
gion. Since h; = g»(p% + p?) and h,, = g1(xo1 — zo3) do not
commute, it is difficult to find an analytic expression for
the unitary operator U,,(t, 0) = exp [—i(h; + h,,)t]; in fact,
no closed expression is known. However, the Suzuki-Trotter
decomposition,

: t ot : r N
Ue(t,0) = lim [e”"mow e M e mag 7 (C3)
N;— 00
can be used as an approximation by using a large but finite N,.
This decomposition is used to iteratively find the state |y (¢)),

—ihn & —ily8t i, &
Y (1)) = e~z em Mot e=n s |y (8, _y)), (C)

where §t =t/N;, |V (ty)) = |¥x)|x), with |x) an arbitrary
spin state, and |y (fy,)) = [¢(¢)). The index n runs from
0to N;.

At each time step, three evolution operators are
applied. For the application of the first one, it is
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convenient to expand the state and the evolution opera-
tor as [ (7)) = Zizo |pu(t2))oulx) and exp (—ihydt/2) =
Zi:o u,(8t/2)o,, respectively. Hence,

3
M E Y t)) = Y 1))l x).
n=0

where
3

|Bottn)) = D (8/2)d, (1)),

u=0

|1(t2)) = wi(81/2)|o(tn)) + uo(81/2)I¢n (t))

3
+iY o eulg;t), 1=1,2.3,
ij=1

and ¢;;; is the completely antisymmetric Levi-Civita symbol.

The second operator to be applied at each time step is
exp (—ilyt /N;). In this case, there is no need to expand the
operator in terms of Pauli spin operators, because #; is de-
fined only over H,.. However, since /; is multiplicative in the
momentum representation, we must transform the state to this
representation before applying the second unitary operator.
The result is then transformed back to the position represen-
tation. Without taking into account these transformations, we
have

3
™M= 1y (1)) = 3 1t} X)
M:O

where |¢3M (t,)) = exp (—ih16t)|d3,1 (t,)). The possible free evo-
lution of the particles after they exit the magnetic field region,
which has the same form, is handled in the same way. At the
end of each time step, we apply operator exp (—ih,t/2N;)

once more. The procedure is exactly the same as in the first
application.

After N, steps and after considering the free evolution
before detection, we obtain the approximated state |y (T)) ~
Zi:o l¢.(T))o,lx). The vectors |¢,(T)) correspond to
approximations to the vectors A, (T)|Y..), so the values
(x,z|l¢,(T)) correspond to approximations to the functions
¢/L (-x > Zs T)

The implementation of the previous method requires
the additional step of discretizing both position and mo-
mentum. The x and z coordinates are sampled over the
intervals [Xmin, Xmax] and [Zmin, Zmax] at sampling frequen-
cies dx = (xmax - xmin)/Nx and 6z = (Zmax - Zmin)/Nz’ re-
spectively. Here N, and N, indicate the number of samples
in each coordinate. It is important that the coordinate in-
tervals are large enough to reduce the effects generated by
the artificial boundary conditions [11]. Similarly, the mo-
mentum coordinates p, and p, are sampled in steps of
8py = 2m /(Nyéx) and §p, = 2m /(N,8z), over the intervals
[—m/éx, w /é6x] and [~ /8z, 7 /8z]. Vectors |¢,(t,)) and op-
erators u,,(6¢/2) and exp (—ih;6t) then turn into (N, + 1) x
(N, + 1) arrays. Accordingly, the multiplicative application
of discretized operators over discretized states becomes a
Hadamard (element-wise) product between arrays of the same
size, and the transformation from position to momentum rep-
resentation becomes a fast Fourier transform.

Having found the arrays ¢, (x, z, T), functions M, (x, z, T')
are calculated form relation (C1). For the elements My, , the
integral in Eq. (C2) is computed as

D bulnizj, TIh(xi 2, T)SxSz,
(Xiqu)EQk

where the sum extends over the pairs (x;, z;) belonging to the
region 2.
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