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Quantum battery of interacting spins with environmental noise
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A quantum battery is a temporary energy-storage system. We construct a quantum battery model of an N-spin
chain with nearest-neighbor hopping interaction and investigate the quantum battery’s charging process. We
obtain the maximum energy in the quantum battery charged by a coherent cavity driving field or a thermal heat
bath. We confirm that for a finite-length spin chain, thermal charging results in a nonzero ergotropy, contradicting
a previous result: An incoherent heat source cannot charge a single-spin quantum battery. The nearest-neighbor
hopping interaction induces energy-band splitting, enhancing the energy storage and the ergotropy of the
quantum battery. We find a critical point in the energy and ergotropy resulting from the ground-state quantum
phase transition after which the energy significantly enhances. Finally, we also find that disorder increases the
energy of the quantum battery.
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I. INTRODUCTION

A quantum battery (QB) system can potentially provide
temporary energy storage. The initially proposed QB was a
two-level system that stores energy from an external field [1],
and the initial physical model was proposed as a single two-
level spin system. Further studies verified that a N-spin chain
with an external field increases the charging power of the QB
[2,3]. A primary goal of QB studies is finding the maximum
energy stored during the charging time and increasing the
energy release after the charging process [2,4–13]. Another
research focus is the entanglement and work-extraction capa-
bility of the QB [14–21]. As the energy released in a QB is
usually in a thermal heat bath, a QB has commonly discussed
the energy for work in terms of ergotropy [22].

In the usual case, a QB is charged by an external field.
An energy-charged cavity field in an excited energy state
can save such external fields [2]. Energy oscillations dur-
ing the charging process necessitate accurate control of the
charging time. Other charging sources include a magnetic
field or a thermal heat bath [7,11,23,24]. A QB charged by
a thermal bath must be discussed as an open quantum sys-
tem. A single-spin QB can be charged by a thermal heat
bath, but its useful energy for work is always zero [24]. Due
to the decay rate and the driving field, the energy-charging
process of the QB gradually stabilizes in an open quantum
system [18,24–31], so controlling the charging time is not
necessary.

Few previous studies have considered the hopping inter-
action between each spin in a QB [26,32–34]. In studies
that do consider such interactions, the energy charging and

*Corresponding author: doufq@nwnu.edu.cn
†Corresponding author: qzhaoyuping@bit.edu.cn

release by the QB are not discussed. In a real spin-chain
model, the hopping interaction is vital and cannot be ignored.
The spin-chain interaction creates a ground-state quantum
phase transition and influences the ground-state properties
of the QB. The quantum phase transition also influences
the energy charging and release of the QB. The most
simple interaction in a spin chain is the nearest hopping
interaction.

In this paper, we discuss a N-spin QB with nearest-
neighbor hopping interaction and the quantum-phase influ-
ence of the QB. Figure 1 shows the charging protocol of our
QB system. The physical model of the QB is a N-spin Dicke-
spin chain with hopping interaction J . The QB is coupled to
a cavity field with the decay rate of the κ-boson heat bath.
Because κ decays at a certain rate, we must investigate the
charging of the QB in an open quantum system. The energy
charging of the QB is accomplished by an external coherent
driving field or is directly provided by the thermal heat bath.
We study the energy and ergotropy of the QB with or with-
out the nearest-neighbor hopping interaction. We compare
the difference between the two types of charging protocol:
charging from an external coherent driving field and directly
charging from a thermal heat bath. We investigate how the
hopping interaction and the spin numbers influence the energy
and ergotropy of the QB. Finally, we also study how disorder
influences the performance of the QB.

This paper is organized as follows. In Sec. II, we introduce
the QB model and the dynamic equations. We define the
energy and ergotropy of the QB. In Sec. III, we report on
the dynamics of QB charging without and with the hopping
interaction, respectively. We also investigate the ground-state
quantum phase transition (QPT) of the QB. In Sec. IV, we
discuss the QPT influence on the charging time of the QB,
and the disorder influence on the energy and ergotropy of the
QB. The conclusion is given in Sec. V.
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FIG. 1. A schematic of the QB charging protocol used in this
paper. It includes a N-spin chain with a frequency of ωa. The spin
has a nearest-neighbor hopping interaction with a strength of J . The
spin is coupled with a single-photon cavity with a frequency of ωc

and a decay rate of κ .

II. MODEL

The QB is modeled by a N-spin chain as shown in Fig. 1.
The hopping interaction strength between nearest-neighbor
spins is J . The spin is embedded in a microcavity with a
cavity loss rate of κ . The Rabi frequency of the spin-photon
interaction is g. The total Hamiltonian of this QB system is as
follows:

HS = HA + HB + HI , (1)

HA = ωcc†c, (2)

HB = ωa

N∑
i=1

σ i
+σ i

− + J
N−1∑
i=1

(σ i
+σ i+1

− + H.c.), (3)

HI =
N∑

i=1

g(σ i
+c + H.c.). (4)

In the above expressions, HA is the Hamiltonian of the cavity
part with annihilation (creation) operator c(c†). ωc is the cav-
ity frequency of the cavity field. HB is the Hamiltonian of the
QB with σ i

± as the raising or lowering spin operator for the
ith spin and a spin frequency of ωa. J is the nearest hopping
interaction. HI is the interaction term between the spin and the
cavity field with spin-photon coupling constant g.

Within this setup, the cavity field is driven by an external
classical field that charges the QB. The energy input from
the driving field later transfers to the QB via the cavity-spin
interaction. In this paper, the QB is charged in two ways: First
from an external coherent driving field acting on the cavity,
and second from a thermal heat bath coupled with the cavity
field. We denote these two charging approaches as coherent
and thermal charging, respectively.

The Hamiltonian of the coherent driving field is

H ′
d = f (e−iωd t c† + eiωd t c). (5)

Here, f is the driving field strength. After a unitary transfor-
mation U = eiωct , the explicit time dependence term can be
removed into [24]

H ′
d = f (e−i δt c† + ei δt c), (6)

where δ = ωd − ωc. When we take ωc = ωd for simplicity,
the driven field Hamiltonian will reduce to

Hd = f (c† + c). (7)

The dynamic process of the QB coherent charging is obtained
by solving the Lindblad master equation,

ρ̇S (t ) = −i[HS + Hd , ρS (t )] + κLc[ρS], (8)

where κ is the decay rate of the cavity field, and Lc[ρS] =
cρSc† − 1

2 (c†cρS + ρSc†c) is the Lindblad superoperator.
The dynamics of thermal charging are obtained by solving

the Lindblad master equation,

ρ̇S (t ) = −i[H, ρS (t )] + κ (nB + 1)Lc[ρS] + κnBLc† [ρS], (9)

where nB = 1/{exp[ωc/(kBT )] − 1} is the mean occupation
number of the boson heat bath.

The charging process of the QB fills the empty QB from the
cavity field. We prepare an empty QB by initializing the spin
in its ground-state |g〉B. The initial state of the cavity is the
vacuum state |0〉A. Thus, the initial state of the whole system
is as follows:

|ψ (0)〉 = |0〉A ⊗ |g〉B, (10)

where |ψ (0)〉 is the initial state of the whole system and |g〉B

is the initial state of the QB corresponding to the energy
ground state of HB. When the cavity two-level interaction g is
turned on, the charging process immediately starts the energy
exchange between the spin chain and the cavity field.

The energy storage in the QB at time t is given by

EB(t ) = tr[HBρB(t )], (11)

where ρB(t ) = trA[ρS (t )] is the reduced density matrix of the
QB at time t . The energy charged into the QB is EB(t ) −
EB(0), where EB(0) = EG is the ground-state energy of the
QB. Therefore, the actual charging energy of the QB is

�E (t ) = EB(t ) − EG. (12)

The charging energy �E (t ) can characterize the property
of the QB. However, under the second law of thermodynam-
ics, it cannot be transformed into work without dissipating the
heat. Ergotropy characterizes the ability of the QB to generate
useful work [22]. The ergotropy is defined as

εB(t ) = EB(t ) − min
U

tr[HBUρB(t )U †]. (13)

Diagonalizing HB and ρB(t ), respectively, we obtain

ρB(t ) =
∑

n

rn(t )|rn(t )〉〈rn(t )|, (14)

HB =
∑

n

en|en〉〈en|. (15)

The eigenvalues of ρB(t ) are arranged in descending
order as r0 � r1 � · · · , and the eigenvalues of HB are
arranged in ascending order as e0 � e1 � · · · . The term
minU tr[HBUρB(t )U †] of Eq. (13) can be simplified as follows
[22,24]:

min
U

tr[HUρ(t )U †] =
∑

n

rnen. (16)
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FIG. 2. The dynamic charging process of the QB. (a) Energy �E (t ), (b) ergotropy, and (c) efficiency RB(t ) as the function of gt . Other
parameters are N = 3, ωc = g = κ = ωa = 1, and J = 0.

It is easily proved that εB(t ) is always non-negative and
smaller than �E (t ). Therefore, we can define the following
efficiency RB(t ) as the percentage of εB(t ) among the total
charging energy �E (t ):

RB(t ) = εB(t )

�E (t )
. (17)

Using the energy �E , we can judge the charging energy
of the QB. The ergotropy could judge εb is the useful energy
releasing for the useful work of the QB. Furthermore, the
efficiency RB describes the useful energy release efficiency of
the QB. This paper focuses on �E , εb, and RB during the QB
charging process.

III. THE CHARGING PROPERTY OF THE QB

This section will discuss the charging properties of the
QB with or without the hopping interaction. We will first
discuss the QB’s dynamic and find the maximum energy and
the ergotropy during the charging process. Then discuss the
quantum phase transition induced by the hopping interaction.
Finally, we also discuss how the quantum phase influences the
charging properties of the QB.

A. Charging without hopping interaction

The ground state of the QB in this case is

|g〉B = |0〉⊗N , (18)

where |0〉 is the ground state of a single spin. The ground-state
energy EG of the QB without the hopping interaction is zero.

The dynamics of the coherent and thermal charging pro-
cesses are determined by Eqs. (8) and (9), respectively (see
Fig. 2). Figure 2 illustrates the QB’s dynamic charging process
with the two charging approaches. In our QB charging model,
ωa decides the system’s total energy. Meanwhile, ωa and ωc

must be equal to ensure the maximum energy transfer. The
parameter g will mainly influence the charging time. The
relative value of the parameters κ will mainly influence the
steady-state QB’s energy and ergotropy. In all calculations,
we take ωa as a dimensionless parameter and let ωa = 1.
For simplicity other parameters are taken as ωc = g = κ =
ωa = 1. Owing to the decay loss, the strong and weak driving
strengths differ during the charging process. To compare these
two strengths, we set f = 2 (nB = 2) and f = 0.2 (nB = 0.2).

The strong and weak driving strengths are just compared to
the relative value with κ . As shown in panels (a) and (b)
of Fig. 2, the energy �E (t ) and ergotropy εB(t ) of the QB
were gradually stabilized. Under both coherent and thermal
chargings, the energy and ergotropy of the QB increased with
driving strength, but the coherent charging oscillates during
the charging. The steady-state energy at infinite time was the
maximum charging energy. However, the ergotropy of the
QB was maximized within the oscillatory period, indicating
that the oscillations boosted the efficiency of the coherently
charged QB at the beginning. In contrast, both the energy and
the ergotropy of the thermally charged QB were maximized
at steady state after infinite time. Besides, the QB efficiency
in the thermal charging large driving strength will also cor-
respond to a significant efficiency opposite to the thermal
charging.

We could also find a nonzero ergotropy during the charging
process for the thermal charging. This result differs from
those of previous works on simple-spin systems in which the
ergotropy εB is always zero [24]. A nonzero ergotropy can be
obtained by increasing the spin number of the QB with the
thermal charging as shown in Fig. 3. We verified the thermal
charging of a single-spin (N = 1) QB always induces a zero
ergotropy as reported in previous research [24]. However,
thermal charging of a finite-length chain (N � 2) QB in-
duces a nonzero ergotropy. Under strong charging conditions,
the energy, ergotropy, and efficiency increase with the spin
numbers increase. However, under weak charging conditions,
the QB’s energy and ergotropy both decrease with increasing
chain length.

Above, we explained that thermal charging can induce
nonzero ergotropy. If the QB exists in the thermal-state ρB =
ρ th

B = e−βHB

z , where z = tr[e−βHB ], it is easily verified that the
ergotropy is always zero. The thermal-state density matrix ρ th

B
and the Hamiltonian representation of the energy, respectively,
are given by

ρ th
B = 1

z

⎛
⎝

e−βe1 0 · · · 0
0 e−βe1 · · · 0
0 0 · · · e−βen

⎞
⎠,

HB =
⎛
⎝

e1 0 · · · 0
0 e2 · · · 0
0 0 · · · en

⎞
⎠. (19)
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FIG. 3. The QB steady-state energy, ergotropy, and the energy release rate for the different number of spins. (a) QB energy �E (∞),
(b) ergotropy εB(∞), and (c) efficiency RB(∞). The other parameters are the same as in Fig. 2.

Here, the energy eigenvalues are in ascending order, and
the diagonal elements of the thermal-state density matrix
are in descending order. Thus, the mean thermal-state en-
ergy is EB = tr[HBρ th] = ∑

n rnen [equaling the right hand of
Eq. (13)], meaning that the ergotropy of a thermal state is
always zero. When the ergotropy is nonzero, the density of the
QB is reduced, and the thermal state is not attained. In this sce-
nario (Fig. 4), the steady-state density matrix ρB and system
density-matrix ρ of the QB differ from their corresponding
density matrices ρ th

B and ρ th in the thermal state. As thermal
driving is coupled only to photons within a β-temperature
thermal bath, the total photon-spin system cannot be purified
into the thermal state. The reduced density-matrix ρB also
cannot exist in the thermal state. Thus, the ergotropy of a
nonsingle-spin QB can be nonzero under thermal charging
conditions.

FIG. 4. Steady-state density matrices in the energy representa-
tion: Panels (a) and (b) show the steady-state densities of the whole
system and the reduced density matrix of the QB under thermal
charging, respectively. Panels (c) and (d) show the thermal-state
density matrices of the whole system and the QB, respectively. Other
parameters are N = 3 and nB = 2.

It is worth noting that, different from the classical cycli-
cally operating device situation and the case in Ref. [35]
which Lindblad’s master equations are sometimes incompat-
ible with thermodynamic consistency. In our QB charging
protocol, the thermal charging from the thermal bath cannot
bring the steady state of the QB into the thermal state, which
means that it cannot bring the QB system to thermal equilib-
rium. Besides, in our QB charging model, the initial state is
a pure state, i.e., tr[ρ2

B(0)] ≡ 1. However, for the spin number
N � 2 with the QB in the thermal charging, it will gradually
decrease, i.e., tr[ρ2

B(t > 0)] < 1. Therefore, our QB extracts
work from a thermal bath at the cost of spoiling the spin
purity.

B. Charging with hopping interaction

In the previous subsection, we discussed the coherent and
thermal charging processes of the QB without the hopping
interaction. We here consider a spin-chain QB with nearest-
neighbor interacting strength J in the QB. The initial state of
the QB determines the energy ground state of the interacting
spin chain.

When considering the hopping interaction, the charging
dynamics of the QB are shown in Fig. 5. The charging
dynamics of the QB is largely unaffected by the hopping
interaction. But the hopping interaction increased the time
in which the QB receives its maximum energy and increases
the energy of the QB under coherent and thermal charging
conditions. However, the hopping interaction decreases the
ergotropy of the QB. Weak charging reduces the efficiency
of both coherent and thermal charging. Meanwhile, the hop-
ping interaction does not remove the oscillations from the
coherent charging phase. Whether considering the hopping in-
teraction or not, the difference between coherent and thermal
charging is only the energy oscillations during the charging
process.

To further discuss the influence of the hopping interaction,
we calculate the steady-state energy and the ergotropy of the
QB at different hopping interactions as shown in Fig. 6. At
J = 0, the energy and ergotropy are remarkably changed by
the interaction term, which breaks the symmetry of the QB.
A nondifferentiable point appeases at J = 1/

√
2. Before this

point, the QB energy is a nearly constant function of hopping
interaction, but thereafter, it significantly increases with the
hopping interaction.
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FIG. 5. The QB dynamic charging process with considering the hopping interaction. (a) Energy �E (t ), (b) ergotropy εB(t ), and (c) effi-
ciency RB as the function of gt . Other parameters are N = 3 and J = 1.

We then calculate the steady-state energy and ergotropy of
a thermally charged QB with different spin numbers (N =
3–5) shown in panels (a)–(c), respectively, of Fig. 7. The
energy versus the hopping interaction of the QB develops an
external nondifferentiable point at large spin numbers, but the
energy and ergotropy of the QB exhibit similar growth trends
at small and large spin numbers. Whereas the energy does not
significantly increase before the first nondifferentiable point,
but the ergotropy was a continuously increasing function of
hopping interaction.

We calculate the energy spectra to further discuss the non-
differentiable points in the QB’s energy and ergotropy. The
results for N = 3–5 are shown in panels (d)–(f) of Fig. 7,
respectively. Each nondifferentiable point of the energy cor-
respond to a crossing of the ground-energy state. Before the
first ground-state energy crossing, the ground-state energy is
always zero. After the first crossing point, the ground-state
energy was gradually decreased by splitting of the energy
bands. From Eq. (12), we find that the decreasing ground-state
energy due to band splitting increases the energy by increasing
the hopping interaction

The different energy behaviors of the QB’s energy around
the first nondifferentiable point manifest a QPT. To further
discuss the QPT, we introduce the order parameter. One
common order parameter is the mean magnetic-field Mz,
given by

Mz = 〈Sz〉g

N
. (20)

Here we define another order parameter ξz as

ξz =
〈
S2

z

〉
g

N2
, (21)

where 〈· · · 〉g represents the average on the ground state and
the total spin operator is Sz = ∑N

i=1 σ i
z . We consider only the

ground-state’s ordering parameter because both the nondiffer-
entiable points of the energy and ergotropy correspond to the
ground-state energy crossing.

The calculated order parameters for N = 3–5 are presented
in panels (g)–(i) of Fig. 7, respectively. These discontinuous
points indicate a first-order QPT at this point. We have al-
ready found significant changes in the QB charging properties
after the first nondifferentiable point. Before the first nondif-
ferentiable point, the order parameter is Mz = −1, meaning
that each spin is in the spin-down state corresponding to the
ferromagnetic phase. After the first nondifferentiable point,
the ordering parameter Mz > −1 which means the ground
state is departed from the ferromagnetic phase. The ground-
state quantum phase significantly influences the charging of
the QB. In a noninteracting spin-chain QB, the ground state
of the QB is always spin down. Accordingly, the QB exists in
the ferromagnetic phase, which is unsuitable for more energy
storage.

IV. CHARGING TIME AND DISORDER

In the previous section, we discussed how hopping inter-
action influences the energy and ergotropy of the QB. We

FIG. 6. The QB steady energy and ergotropy for different hopping interactions. (a) Energy �E (∞), (b) ergotropy εB(∞), and (c) efficiency
RB(∞) as a function of J . Other parameters are the same as in Fig. 2.
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FIG. 7. (a)–(c) are the QB energy �E (∞) and ergotropy εB(∞) as a function of the hopping interaction for the spin numbers N = 3–5,
respectively. (d)–(f) are the respective energy spectra. (g)–(i) are the corresponding ordering parameters. Other parameters are the same as in
Fig. 4.

also observe that when the hopping interaction is nonzero,
the energy of the QB is enhanced after the first QPT point,
and the charging speed of the QB significantly increased.
This section investigates the influence of the hopping inter-
action on the charging speed, and the effects of on-site energy
disorder.

We here focus on the steady-state energy and ergotropy
of the QB during charging in an open quantum system.
Theoretically, the steady state is reached only after infinite
time. In reality, the charging process is ceased when the en-
ergy and ergotropy of the QB are sufficiently close to their
steady-state values. To judge the charging speed, we must,
therefore, define a charging time. We first define the charging
power as

PB(t ) = �E (t )

t
. (22)

The charging time τc then defines the time at which the charg-
ing power is maximized

τc = arg max
t

PB(t ). (23)

Figure 8 shows the charging times τc at different hopping
interactions. We observe that the charging time τc suddenly
increases after the phase-transition point. Before the phase-
transition point, the charging time gradually decreases with
increasing hopping interaction. After the QPT point, energy,
and ergotropy increase at the expense of increasing charging
time.

We now discuss the influence of disorder on the energy
and ergotropy of the QB. Here we consider only an on-site

environmental disorder in the free-energy term, which
changes the Hamiltonian of the QB as follows:

HB = ωa

N∑
i=1

(1 + δi )σ
i
+σ i

− + J
N−1∑
i=1

(σ i
+σ i+1

− + H.c.), (24)

where δi ∈ [−W/2,W/2] is the on-site disorder and W is the
disorder strength. To ensure accurate numerical calculations,
the result was computed 100 times and averaged to give the
result in Fig. 9. We can find that the disorders do not af-
fect the location of the QPT point. After the phase-transition

FIG. 8. The charging time τc as a function of the hopping inter-
action J . Other parameters are same as Fig. 2.
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FIG. 9. The steady-state energy and ergotropy of the QB influ-
enced by the on-site disorder W . These four figures correspond to
different charging strengths with (a) f = 0.2, (b) f = 2, (c) nB =
0.2, and (d) nB = 2. Other parameters are same as Fig. 2.

point, the energy and ergotropy of the QB still increase with
increasing hopping interaction as observed previously. The

on-site disorder slightly affected the stability of the energy.
However, the ergotropy is unstable in the on-site disorder. The
increased disorder strength enhances the energy of the QB.
The increased QB energy is similar in magnitude to the energy
transfer enhanced by the disorder [36–38], although a large
disorder would reduce the ergotropy.

V. CONCLUSION

We investigated QB charging in an open quantum system
with coherent and thermal chargings. Without the hopping
interaction, we found that for spin lengths N � 2, thermal
charging imparts a nonzero ergotropy to the QB at the cost
of spoiling the QB density-matrix purity. Under weak (strong)
charging conditions, increasing the spin length decreases (in-
creases) the ergotropy of the QB, respectively. In the system
with the hopping interaction, the QB energy increases with
charging time after the first ground-state energy crossing
point. The ground-state QPT also affects the energy of the
QB. Finally, we investigated the on-site disorders of the QB
and verified that disorder increases the energy but decreases
the ergotropy of the QB.
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