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Radiation eigenmodes of Dicke superradiance
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We calculate the field eigenmodes of the superradiant emission from an ensemble of N two-level atoms and
confirm the results of other authors that Dicke superradiant emission is restricted to a small number of modes,
with more than 90% of the photons emitted in a single dominant mode. While numerical techniques are effective
due to the symmetry of the problem, we develop also an analytical method to approximate the modes in the limit
of a large number of emitters.
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I. INTRODUCTION

Superradiance is a phenomenon that occurs in ensembles
of excited quantum systems coupled to a common bosonic
bath, for example, a cloud of atoms undergoing spontaneous
emission. The atomic dynamics of such a system, restricted to
spatial separations well below the wavelength of the emitted
radiation, were studied by Dicke in his original article [1].
The intensity of the outgoing radiation can be deduced by the
rate of change of the energy contained in the atomic system.
Unlike single-atom exponential decay, the maximal intensity
in superradiance is not at t = 0 when there is the largest
excitation of the atoms, but rather when approximately half
of the atoms are excited. A finite time after initial maximal
excitation of the atoms a short burst of radiation is emitted
with a peak intensity growing as N2, rather than the expected
N for independently emitting atoms.

Superradiance is relevant to new laser mechanisms [2,3],
matter-wave collective dynamics [4], quantum memories
[5–7], quantum computers [8,9], and quantum metrology
[10]. Since Dicke’s work theoretical research in superradiance
[11–13] has been extended to account, e.g., for more complex
atomic structures and finite sample sizes, and experimental
signatures of superradiance have been observed in a wide va-
riety of physical systems including radio [14] and microwave
[15] frequency fields, quantum dots [16,17], and coupling
of quantum emitters to waveguides and complex photonic
structures [18–21]. Nonclassicality and spatial and temporal
correlations have been ascribed as hallmarks of superradiance
[22], while superradiance has also been a concern in echo
experiments, where complete inversion of the emitter excita-
tion is used to refocus phase inhomogeneities [6,7]. In larger
samples, the complementary collective effect of subradiance
has also been analyzed for single and multiple excitations
[19,23].

The essential properties of superradiance can be observed
in the simplified model used by Dicke, in which the atoms are
contained in an infinitesimal volume and modeled as simple
two-level quantum systems (TLSs). The symmetry of this
model under the permutation of atoms constrains the Hilbert

space to be effectively (N + 1) dimensional instead of 2N

dimensional and permits analytical approximations [24,25]
as well as numerical approaches which are not applicable in
general.

The primary focus of early studies of superradiance was
on the time-dependent intensity profile and the statistical
properties of the emitted intensity signal. Glauber and Haake
[26–28] used the simple linear relation between the field op-
erators and the atomic dipole operators (see, e.g., Ref. [29]) to
calculate first and higher moments of the intensity emitted by
an extended ensemble of two-level emitters. They also showed
that a semiclassical stochastic model with individual superra-
diant pulses is able to quantitatively reproduce the intensity
fluctuations. Each of these pulses describes a coherent state
occupying the specified temporal mode as defined by Titualer
and Glauber [30]. While the stochastic pulses may attain a vast
number of shapes, the Karhunen-Loeve theorem ensures that
the two-time correlation function of the stochastic amplitude
signal can be compactly expressed as an expansion over a
discrete set of modes, 〈E∗(t )E (t ′)〉 = ∑

i niv
∗
i (t )vi(t ′).

Agarwal, in turn, applied the quantum regression theorem
to calculate the temporal correlation function of the emit-
ted field amplitude [25] and he obtained approximate results
which were in agreement with the results by Haake and
Glauber. Reference [25] summarizes the early works by De-
giorgio, Haake, and Glauber and illuminates the similarities
and differences between semiclassical, weak noise approxi-
mations and the deterministic master equation approach.

The Karhunen-Loeve expansion also applies for the char-
acterization of nonclassical states of the quantized field, where
it allows a modal expansion of the first-order coherence func-
tion of the time-dependent quantized field operators, evaluated
in the Heisenberg picture. Note that the modes identified serve
as classical wave-packet solutions on which the quantized
field is expanded with appropriate annihilation and creation
operators. For a recent review article on the early works on the
expansion of quantized fields on physically motivated sets of
temporal modes, we refer to Ref. [31] (see also Refs. [32,33]).
Raymer et al. [34] used this description to provide a few-mode
expansion of the quantum fluctuations in stimulated Raman
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scattering, and by numerical solution of the quantum regres-
sion theorem, Law and Lee obtained similar expansions for
the superradiant emission signal [35]. By a complementary
approach, Perarnau et al. have recently obtained very similar
mode functions and occupation numbers and emphasized their
crucial relevance in quantum metrology [36].

Precise knowledge of the outgoing modes is particularly
relevant to applications in quantum information and quantum
metrology protocols that often rely on single-mode assump-
tions. In this article we employ the master equation and the
quantum regression theorem, that we can solve numerically
for small N , while for large N we apply an approximation
to determine the field amplitude correlation function and
subsequently identify the most populated field modes. Our ap-
proximation differs in various ways from the approach applied
by Agarwal, but we obtain a very similar correlation function
as reported in Ref. [25]. We confirm the results found in
Refs. [35,36] that, in the large-N limit, the majority (> 90%)
of outgoing photons are contained in a single mode, and the
remaining ∼10% are mostly contained in a small number of
other modes.

The article is organized as follows: In Sec. II we define
the model of the atomic system and we present the master
equation for the system density matrix. We show how to derive
the outgoing electric field modes from the atomic dynamics
and we numerically solve those dynamics to find the modes
for N = 60 emitters. In Sec. III we develop an approximate
analytic solution to the differential equations presented in
Sec. II, and use it to find a closed-form approximation for
the atomic two-time correlation function and the emitted field
intensity. We diagonalize the correlation function numerically
for moderate N and by an analytical approach for large N to
find the most populated field modes. Section IV contains our
conclusions, and in the Appendix we present details of the
analytic approximation to find the most occupied outgoing
field modes.

II. ATOMIC SYSTEM

Consider an ensemble of N two-level systems with energy
difference h̄ω between the ground and excited states, and
suppose that the length of the entire sample, in each dimen-
sion, is much less than the wavelength of light associated
with the transition frequency ω. We assume that the TLSs do
not interact with each other directly but are coupled to the
quantized electromagnetic field, taken to be a bosonic bath at
zero temperature. We consider an initial state where all TLSs
are excited. The permutation symmetry of the system con-
strains the dynamics to a Hilbert space of dimension N + 1,
corresponding to each possible total number of excitations,
m, shared by the ensemble. We will study the properties of
the outgoing electromagnetic field through use of the master
equation and the quantum regression theorem.

A. Dicke dynamics

By application of the Born-Markov approximation to the
Schrödinger equation for the atoms and electromagnetic field
in free space [37], we eliminate the bosonic bath degrees of
freedom and obtain a master equation for the reduced density

matrix of the emitters,

ρ̇ = �(−{J+J−, ρ}+ + J−ρJ+), (1)

where � is the spontaneous emission rate for a single emitter
and energy shifts due to the interaction with the bath are
neglected, or incorporated in the definition of the transition
frequency ω. In Eq. (1), J+ and J− are the collective raising
and lowering operators,

J± =
N∑
i1

J±
i , (2)

where J+(−)
i is the raising (lowering) operator for the ith

dipole emitter.
The master equation (1) applies for very compact samples

of emitters and for larger samples where the emitters are lo-
cated at the field antinodes of a cavity standing wave, such that
they all couple to the cavity field mode with the same strength
g. If the cavity field is damped with the rate κ , this leads
to the Purcell effect where the emitters undergo collective
superradiant emission described by Eq. (1) with � = 2g2/κ

[38].
From the definition of the single raising and lowering oper-

ators, we obtain their action on the symmetric states |m〉 with
m excited emitters [1,11],

J− |m〉 =
√

m(N − m + 1) |m − 1〉 ,

J+ |m − 1〉 =
√

m(N − m + 1) |m〉 . (3)

The population of the state with m excitations decays with
the rate �m = �m(N − m + 1), and Eq. (1) yields the coupled
equations for the density matrix elements,

ρ̇mm′ = − 1
2 (�m + �m′ )ρmm′ +

√
�m+1�m′+1ρm+1,m′+1. (4)

With the initial condition ρ(0)NN = 1 while all other elements
vanish, ρ(t ) will only develop nonzero values along the diag-
onal, and we get a closed set of equations for the diagonal
elements πm = ρmm:

π̇m = −�mπm + �m+1πm+1. (5)

B. The emitted field

The quantized electromagnetic field emitted by the excited
atoms can be expressed in the Heisenberg picture in terms of
the incoming vacuum field operators and the dipole operators
of the atoms [29]. This permits evaluation of mean fields
and intensities. We are interested in the two-time correlation
function

〈E−(t ′)E+(t )〉, (6)

where E−(+)(t ) engages the creation (annihilation) operator of
the field at the location of detection. Also for the calculation
of the field correlation function, we can express the field
operators in terms of the atomic dipole raising and lowering
operators, i.e., 〈E−(t ′)E+(t )〉 ∝ �〈J+(t ′)J−(t )〉. The propor-
tionality sign applies if only part of the signal is recorded, but
for the compact sample, the emission occurs into an angular
dipole mode, and for the emission mediated by a single cavity
mode, the emitted field occupies a single transverse mode, and
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our aim in the following is to identify the temporal, i.e., radial
or longitudinal, dependence of the most occupied modes.

Like in the case of classical noisy fields, these modes can
be identified by the Karhunen-Loeve expansion,

�〈J+(t ′)J−(t )〉 =
∑

i

nivi(t
′)∗vi(t ), (7)

where ni denotes the expectation value of the number of pho-
tons of each mode vi(t ). If we know the correlation function
on a discrete time grid, expansion (7) is analogous to the
eigenvalue decomposition of a finite matrix while the con-
tinuous case follows by Mercer’s theorem [39]. We note that
in contrast to the determination of steady-state fluorescence
spectra which only depend, by the Fourier transform, on the
time difference in the temporal correlation functions [29,40],
our mode expansion is obtained for a transient phenomenon,
and the dependence of the correlation function on two time
arguments is crucial to determine the modes.

The two-time correlation function can be evaluated by the
master equation and the quantum regression theorem [37].
For t < t ′, we must first evaluate ρ(t ) by solving the master
equation (1) until time t . We then multiply the operator J− on
ρ(t ) and treat the resulting matrix as the initial state for further
evolution by the same equation (1) until time t ′. Finally we
multiply by J+ and evaluate the trace.

In practice, we thus solve the linear set of equations (5)
until time t . Inserting the values of πm(t ) as diagonal elements
in a matrix and multiplying with the operator J− yields a
matrix with the only nonvanishing elements along the subdi-
agonal. We denote the m, m′ = m + 1 element of this matrix
by ξm, and by the quantum regression theorem, we obtain the
N coupled equations,

ξ̇m = − 1
2 (�m + �m+1)ξm +

√
�m+1�m+2ξm+1, (8)

from Eq. (1).
Equations (8) have to be solved from t until t ′

with the initial condition ξm(t ) = √
�(J−ρ(t ))m,m+1 =√

�
√

(m + 1)(N − m)πm(t ). After the evolution of Eqs. (8)
from t to t ′, noting that they represent the nonvanishing lower
diagonal elements of a matrix, the multiplication of this
matrix by

√
�J+ leads to a diagonal matrix with elements

cm(t, t ′) ≡ √
�

√
(m + 1)(N − m)ξm(t ′). The trace of that

matrix, c(t, t ′) ≡ ∑
m cm(t, t ′), yields the desired correlation

function (6).
We note that the absence of initial coherences in the system

restricts the density matrix to its diagonal elements for all
times, while the more general case requires propagation of
the full density matrix as in Ref. [35]. The application of
the lowering operator on the density matrix populates off-
diagonal elements of a matrix, which is further propagated
by the same master equation in Ref. [35], but again we do not
have recourse to the propagation of a full matrix but only a
vector of elements.

Numerical evaluation of c(t, t ′) is possible for quite large
values of N due to the simple initial condition and the special
properties of the time evolution, ensuring that the states and
operators can be represented by vectors of length N + 1 and
N instead of full matrices of size N + 1 × N + 1. Represent-
ing c(t, t ′) on a two-dimensional (2D) temporal grid, i.e., as

FIG. 1. The normalized field modes occupied by superradiant
emission by 60 atoms. The horizontal axis denotes time in units of
�−1, and the different modes are labeled by their occupations, which
to numerical error sum to 60. The modes are found by solution of the
master equation and use of the quantum regression theorem, followed
by a numerical diagonalization of the two-time correlation function.

a matrix, it can be directly diagonalized to yield the field
eigenmodes. The first few modes vi(t ) are plotted in Fig. 1
for N = 60. The shape of the modes (in suitably scaled units)
does not change appreciably for larger values of N , and an
approximately constant fraction, n1 = 90.2%, of the emitted
quanta are found in the dominant mode for all N > 60.

III. ANALYTICAL APPROXIMATION

In this section, we make a series of approximations to
obtain analytic expressions for the field correlation function
and the superradiant field modes emitted by a large number of
atoms, N . In the large-N limit, we can simplify some expres-
sions by setting �m 
 �m+1 
 �m(N − m) in which case the
off-diagonal elements ξm in Eqs. (8) solve the same equations
as the diagonal density matrix elements πm,

ξ̇m ≈ −�mξm + �m+1ξm+1. (9)

We also treat m as a continuous variable and the variation of
different functions of m by continuous derivatives. When we
approximate m as a continuous variable running from zero to
N , both πm and ξm can be treated as functions of time and the
continuous argument m on the domain (0, N ). This may not be
a good ansatz for the initial value of m = N , but for now we
think of the initial condition π (t = 0, m) as a smooth function
that peaks sharply near m = N .

Approximating differences between discrete elements by a
first-order partial derivative expansion

h(m + 1) − h(m) 
 ∂

∂m
h(m) × 1 (10)

the dynamical equations (5) and (9) for g = π or ξ can be
written as

ġ(t, m) = ∂

∂m
(�(m)g(t, m)). (11)
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This equation is of first order in both t and m and is solved by
the method of characteristics, equivalent to the ansatz

g(t, m) = f (T (m) + Nt )
�(m)

, (12)

where �(m) ≡ �m and

T (m) = N
∫ m

0

1

�(m′)
dm′ = 1

�
ln

(
m

N − m

)
, (13)

and the function f is uniquely determined by the initial con-
dition,

π (0, m) = f (T (m))
�(m)

. (14)

Using Eq. (12), we obtain the time-evolved state by a scaling
factor and a shift of the argument,

π (t, m) = f (T (m) + Nt )/�(m) = �(m′)
�(m)

π (0, m′), (15)

where m′ is found by solving the equation T (m) + Nt =
T (m′). At this point, the emitted field intensity can be
calculated as a weighted sum (integral) of decay rates,∫

π (t, m)�(m)dm, but it will also follow from our correlation
function analysis [see Eqs. (24) and (25)].

At the time t we define ξ (t, m) = √
�(m)π (t, m) and we

use this as the initial condition for Eq. (11). The solution at
time t ′ is given as above: ξ (t ′, m) = �(m′ )

�(m) ξ (t, m′), where m′

is the solution of the equation, T (m) + Nt ′ = T (m′) + Nt .
Finally, we represent the action by

√
�J+(t ′) to obtain the

diagonal elements, c(m, t, t ′) = √
�(m)ξ (t ′, m).

For ease of notation, we define the rescaled time arguments
τ, τ ′ to represent N�t, N�t ′, and we use Eq. (13) and its

inverse m(T ) = N e�T

1+e�T as well as the expression �(T ) =
�N2 e�T

(1+e�T )2 for �(m) in terms of T (m). With these relations it
is possible to obtain the values of the arguments m′ in Eq. (15)
as function of t and in the similar expression for ξ (t, m) as
function of t ′ − t .

In order to determine the function f , we assume an initial
atomic density matrix with diagonal elements, leading to the
(unnormalized) continuous representation

ρmm(0) → π (0, m) = e−λ(N−m). (16)

The initial state is prepared with m = N , but we assume a
finite value of λ to compensate for the fact that the rate
�(m) in our continuous description vanishes and does not
yield the correct discrete decay rate when m = N . We find
that λ 
 0.96 yields good agreement between our analytical
solutions and the exact numerical simulations for finite N , as
well as with a simple mean-field approximation for large N .
Our results are not sensitive to small changes in λ and we set
λ to a fixed value of 0.96 throughout.

From the initial condition (16) we can deduce f via
Eq. (14),

f (T (m)) = �m(N − m)e−λ(N−m), (17)

and evaluating the different expression, we finally obtain

c(m, τ, τ ′) = f

(
1

�
ln

(
m

N − m

)
+ Nt ′

)
e(τ ′−τ )/2

N + m(eτ ′−τ − 1)

= e(3τ ′−τ )/2 �m(N − m)e−λN (N−m)/[N+m(eτ ′−1)]

[N+m(eτ ′−τ − 1)][N + m(eτ ′ − 1)]2
.

(18)

The remaining trace of the operator product is calculated by summing (integrating) this expression over m, and to this end,
we employ the substitution y = m/N to obtain the definite integral representation of the field correlation function,

〈J+(τ ′)J−(τ )〉 ∝ e(3τ ′−τ )/2
∫ 1

0

y(1 − y)e−λN (1−y)/[1+y(eτ ′ −1)]

[1 + y(eτ ′−τ − 1)][1 + y(eτ ′ − 1)]2
dy. (19)

Note that this expression is not normalized, but we can renormalize the final integrated intensity to the number of excited atoms,
N .

The maximum of the correlation function is near the diagonal τ = τ ′ and well separated from the origin τ = τ ′ = 0. Thus,
we can apply eτ ′ 
 eτ ′−τ and eτ ′ − 1 ≈ eτ ′

, and even 1 + yeτ ′ ≈ yeτ ′
, to simplify calculations. We have thus verified that the

approximation

〈J+(τ ′)J−(τ )〉 ∝ e−(τ ′−τ )/2
∫ 1

0

1 − y

y[1 + y(eτ ′−τ − 1)]
e−λNe−τ ′

(1−y)/ydy (20)

applies for large N . In terms of the well-studied exponential integrals,

ei(x) = −
∫ ∞

−x

e−t

t
dt, (21)

we obtain

〈J+(t ′)J−(t )〉 ∝ exp[λNe−τ ′ − τ ′]ei(−λNe−τ ′
) − exp[λNe−τ − τ ]ei(−λNe−τ )

sinh τ ′−τ
2

. (22)

Remarkably, a similar expression was obtained by Agarwal [25]. But instead of our parameter λ 
 0.96, describing an initial
exponential distribution, other approximations were applied leading to Eq. (22) without the parameter λ (corresponding to
λ = 1).
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Finally, the function ei(x) can be approximated by
ei(−x) ≈ −(1/2)e−x ln(1 + 2/x). This leads to an even sim-
pler expression for the correlation function:

〈J+(x′)J−(x)〉 =
√

xx′

x′ − x
(s(x′) − s(x)), (23)

where x = eτ , x′ = eτ ′
, and s(x) = ln(1 + βx)/x with β =

2/(λN ).
Equations (22) and (23) are the main results of this anal-

ysis, and in the following they will be used to identify the
most populated field eigenmodes. Note that they also yield ap-
proximate expressions for the intensity when t ′ = t (τ = τ ′)
where they can be evaluated by continuity of the expression
and l’Hôpital’s rule.

Equation (22) thus yields the analytic expression for the
intensity,

I (τ ) = I0e−τ (1 + eλNeτ

(1 + λNe−τ )ei(−λNe−τ )), (24)

while Eq. (23) yields the simpler expression

I (τ ) = I0

(
ln(1 + βeτ )

eτ
− β

1 + βeτ

)
. (25)

We can compare the solutions with both the exact numeri-
cal simulation for small N and with the mean-field theory
approximation for large N , which yields an intensity propor-
tional to sech2(N (t − tD)/2) where tD = ln(N )/(�N ) [41].
Our Eq. (24) is indistinguishable from the exact solution for
N > 100 while Eq. (25) matches the intensity profile well but
not perfectly.

Our expressions for the correlation function can both be
represented as matrices on a temporal grid and the modes can
be found by their numerical diagonalization. By N = 100,
the difference between our numerical diagonalization of the
analytical expression (22) and the exact eigenmodes is only
barely discernible by eye. If we use the approximation for
the exponential integral, leading to Eq. (23), there is still
reasonably good agreement, as can be seen in Fig. 2. The
normalized eigenvalues by our analytical treatment in Eq. (23)
[Eq. (22)] are found to be 0.905 (0.904), 0.083 (0.081), and
0.012 (0.012), for the three most populated modes.

The analytic expressions for the correlation functions can
be applied for values of N well beyond what is tractable
numerically by the master equation, and we can employ differ-
ent efficient methods to find the most populated eigenmodes
vi(t ) according to Eq. (7). As we only expect our analysis
to become more accurate for larger values of N , we have
demonstrated a universal property of the mode content of
superradiant emission in the Dicke model.

In the Appendix we derive a set of iterative first-order
differential equations to find the eigenmodes even more ef-
ficiently than by numerical diagonalization of the two-time
correlation function. The results are plotted in Fig. 3 for
N = 108. While the occupation numbers have shifted by a
few percent, the overall picture is the same; a large majority
but not all of the photons occupy the first mode, and each
successive mode contains significantly fewer photons than the
one before it.

FIG. 2. The first three eigenmodes for the exact numerical
model, which overlaps exactly with the analytic model (22), and the
approximate analytic model from Eq. (23), diagonalized numerically.
Time is in units of 1/�N and λ = 0.96 and the vertical axis has an
arbitrary scale (the zero line has been plotted in black). The exact
(approximate) eigenvalues for modes 1, 2, and 3, normalized such
that all eigenvalues sum to 1, are found to be 0.905 (0.904), 0.083
(0.081), and 0.012 (0.012), respectively.

IV. CONCLUSION

We have revisited the Dicke model of superradiance from
a small sample of two-level atoms coupled to the electro-
magnetic vacuum and initialized in the maximally excited
state. Using the master equation and quantum regression
theorem, we evaluated the two-time correlation function of
the field emitted by the atoms, and we found the dominant
modes of outgoing photons and their relative occupations.
Next, we derived excellent analytical approximations for the

FIG. 3. Single-mode fraction of the superradiant emission from
N atoms as a function of the integer number of initial excitations
(shown as a fraction of N). The results are found by numerical
solution of the master equation and the quantum regression theorem
and they show a rapid convergence to single-mode emission as the
initial state deviates from full excitation.
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correlation function, and the emitted intensity, the dominant
modes, and their relative occupations agreed well with the
exact numerical solutions. Our method employs the quantum
regression theorem to calculate two-time correlations in a
quite straightforward manner, as long as the Hamiltonian and
damping mechanisms do not induce coherences in the system.
It does not rely on first-order mean-field theory and symme-
try breaking, and while such approximate theory may often
constitute an excellent approximation to the exact physics, the
assumption of a single time-varying complex field amplitude
rules out the multimode character of the field that we aim to
explore. We note, however, that if the system is initialized
with a definite nonmaximal number of excitations, the ap-
proximate non-mean-field Eqs. (9) and (11) yield a correlation
function that factorizes and yields a single output mode (see
also Ref. [35] for an alternative argument). The exact discrete
master equation solution confirms that the results strongly
favor a single emission mode when the atoms are not fully
excited (see Fig. 3). That result, however, does not depend
crucially on the vanishing or not of the mean-field amplitude,
and very similar results would be obtained for the decay of,
e.g., a spin coherent state. In the few-excitation limit the
spin system is equivalent to a damped harmonic oscillator
(Holstein-Primakoff approximation) which emits into a single
mode irrespective of its initial quantum state of excitation.

The restriction of the density matrix to its diagonal el-
ements and the observation that also the matrix object
propagated by the quantum regression theorem is efficiently
represented by a vector of elements makes this problem
numerically tractable for large values of N . The further ap-
proximation of the number of excitations in the system by a
continuous variable, and the master equation by a first-order
differential equation in the large-N limit, permits use of the
method of characteristics and provides ready access to numer-
ical or analytical solutions. A vast family of similar problems
fulfills the same assumption and it is clear that systems
described, e.g., by Eq. (4), but with �m depending on m in a

different manner than in Eq. (3) (see, for example, Ref. [42])
may be treated by the same or similar methods as applied
here.
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APPENDIX: ELECTROMAGNETIC FIELD MODES

Remarkably, thanks to our lack of proper normalization
which would be a function of β, the following useful rela-
tionship follows from Eq. (23):

∂β〈J+(z′)J−(z)〉 =
√

zz′

(1 + z)(1 + z′)
, (A1)

where z = βx and z′ = βx′.
In terms of the z and z′ variables we can decompose the

correlation function

〈J+(z′)J−(z)〉 =
∑

i

λiwi(z)w∗
i (z′), (A2)

with values λi and functions wi(z) which are not orthogonal
and are therefore not uniquely determined by Eq. (A2). How-
ever, we will be able to extract a small set of such functions
and use them to construct the most populated orthogonal field
eigenmodes.

We will require that the λi do not depend on β, and that
the functions wi may not be normalized. From Eq. (A1), we
can infer that wi(z) = √

βui(z) for some ui(y) which does not
depend explicitly on β. Using this observation, along with
the fact that ∂βz = x, we take the derivative of the correlation
function with respect to β and obtain

√
zz′

(1 + z)(1 + z′)
=

∑
i

λi(ui(z)u∗
i (z′) + β(u′

i(z)xu∗
i (z′) + ui(z)u∗

i
′(z′)x′))

=
∑

i

λi(ui(z)u∗
i (z′) + zu∗

i
′(z)ui(z

′) + z′ui(z)u∗
i
′(z′)). (A3)

Rearranging the terms, this can be written as
√

zz′

(1 + z)(1 + z′)
=

∑
i

λi((ui(z) + zu′
i(z))(u∗

i (z′) + z′u∗
i
′(z′))

− zz′u′
i(z)u∗

i
′(z′)). (A4)

In our case the two-time correlation function is real, and
therefore ui, wi, and λi can also be chosen real, but we retain
the complex notation for the potential application to other
problems with complex correlation functions.

We can now see that the equality will be satisfied if√
λ1

(
u1(z) + zu′

1(z)
) = √

z/(1 + z),√
λizu′

i(z) =
√

λi+1(ui+1(z) + zu′
i+1(z)). (A5)

The left term in the sum with i = 1 gives the left-hand side of
the equation, and the right term in the sum for each i cancels
with the left term from the next i. If we truncate the sum at
some finite i then there will always be a remainder, but as
long as λi|ui|2 shrinks to zero as i grows, as we will find to be
the case, this remainder can be approximately ignored.

Let us define ui(z) = cigi(z) where the gi obey the simpler
relations

g1(z) + zg′
1(z) = √

z/(1 + z),

zg′
i(z) = gi+1(z) + zg′

i+1(z). (A6)

The λic2
i must all equal one another in order for the cancel-

lation of successive terms in the sum of the right-hand side
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of Eq. (A4) to be complete. Additionally, in order for the
left-hand side of Eq. (A4) to be generated by the term with
i = 1, λ1c2

1 must equal 1, and thus λic2
i = 1 for all i.

The differential equations (A6) can easily be integrated
iteratively up to some finite i, and therefore the wi(z) =√

β/λigi(z) can be identified.
While the functions identified indeed decompose the cor-

relation functions, they do not form an orthonormal basis,
when we consider them as functions of the time argument
wi(t ) := wi(z(t )). But they form a useful starting point to
identify the temporal eigenmodes. To that end we define the
temporal overlap of any two functions

〈w j,wi〉 =
∫ ∞

0
w∗

j (t )wi(t )dt (A7)

and we assume that a temporal mode ψ can be expanded
as

ψ =
∑

i

aiwi. (A8)

If ψ is a temporal eigenmode of the superradiant output field
with the photon occupation ν, it is an eigenfunction of an
integral equation with the correlation function as integration
kernel, ∫ ∞

0
〈J+(t ′)J−(t )〉ψ (t )dt = νψ (t ′). (A9)

That is,
∑

i

ai

∑
j

λ j

∫ ∞

0
w j (t

′)w∗
j (t )wi(t )dt

=
∑

j

w j (t
′)λ j

∑
i

ai〈w j,wi〉

= ν
∑

j

a jw j (t
′), (A10)

from which we can deduce that

νa j/λ j =
∑

i

ai〈w j,wi〉. (A11)

This is a generalized eigenvalue problem, A�a = νB�a with
Ai j = 〈wi,w j〉 and Bi j = δi jλ

−1
j . As after, e.g., the fifth eigen-

value, the occupations become much less than 0.01%, we may

FIG. 4. The first five eigenmodes of the two-time correlation
function, according to Eq. (23) with λ = 0.96 and N = 108 and
calculated via the process outlined in the Appendix. Time is in units
of ln(N )/�N along the horizontal axis, while the vertical variation
of the mode functions is shown in arbitrary units.

evaluate just a few functions wi and solve the corresponding
low-dimensional eigenvalue problem. This yields the different
eigenmodes vi and their photon number populations. Using
the method described above, we can plot the eigenmodes for
extremely large N . The results for N = 108 are displayed in
Fig. 4.

Associated with these modes we have normalized eigen-
values, representing the fraction of photons occupying that
modes, equal to 0.94, 0.053, 0.0060, 0.00092, and 0.000055.
This is qualitatively similar to the distribution of eigenvalues
in the more exact, small-N cases studied above. The differ-
ences can be ascribed to the approximation of the exponential
integral, as well as the different value of N . It is worth noting
that even though N has changed by six orders of magnitude
from the N = 100 case, the occupation of the dominant eigen-
modes has only changed by a few percent.

While we have found that the analytical expression (22) is
almost exact for large N , it is not straightforwardly evaluated
due to the combination of exponentially large and small argu-
ments. To make use of Eq. (22), one may thus have recourse
to some of the more elaborate approximate expressions for the
exponential integral (see, e.g., Ref. [43]).
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