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Switchability of multimodal optical phases in a leaky and nonlinear quantum cavity
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In the present report, the question of U(1) symmetry breaking in a system of atoms and electromagnetic
fields, interacting inside a leaky cavity, filled with a nonlinear medium, is addressed. In particular, the Z2 discrete
symmetry of the system and the emergence of optical phases are fully discussed. For the nonlinearity of a general
order, with an electromagnetic field of any number of modes, conditions under which the resulting field-field
interactions destroy the U(1) (and Z2) symmetry are determined. We then apply the theory to the case of a
collection of two-level atoms and three electromagnetic modes. Taking one of the fields as a classically adjustable
pumping one, it is demonstrated that the quantized field-field coupling profoundly depends upon the pump field
strength. The presence of two competing phenomena, namely, the cavity photonic dissipation and nonlinearity,
is shown to lead the system towards steady behavior. The steady-state solutions to the atomic population and
field quadratures exhibit the normal and superradiant phases, depending on the strengths of pumping field and
atom-field couplings. The conditions for the stability of such steady-state solutions are also discussed in detail.
A notable result of the present article is that by adjusting the parameters involved in the system one can switch
from the normal to electric and/or magnetic superradiant phases.
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I. INTRODUCTION

Since the early seventies, when the notion of quantum op-
tical phases (QOP) was first introduced [1–3], it has gradually
attracted much attention, both theoretically [4–10] and exper-
imentally [11–16]. In its primitive description, QOP refers to
the trivial (TP) (normal) and superradiant (SP) phases that
exist in a system of many atoms (Dicke states) and quantized
electromagnetic (QEM) fields (photons). To be more specific,
the trivial phase is defined as a steady state of the system
in which all atoms occupy the ground state, while the fields
are in the vacuum state [17–19]. On the other hand, in the
superradiant phase the atoms raise to exited states along with
the QEM fields being in some combination of nonvanishing
occupational states [18–20]. It is, moreover, well understood
that a transition from the trivial phase to superradiant phase
in such systems is possible by adjusting the parameters de-
scribing the specifications of the particular system. That is to
say, one can in principle break the U(1), as well as discrete
Z2, symmetry of the noninteracting subsystems (atoms and
fields), causing a transition from the trivial phase to the su-
perradiant one. It is emphasized that the emergence of QOPs
is due to the destruction of discrete Z2 symmetry, which may
remain intact in spite of the breakage of U(1) symmetry. The
resulting separation of the corresponding two-fold degenerate
states then gives rise to QOPs. The breakage of U(1), as is well
known [21–24], strongly depends upon the form of interaction
that couples the subsystems. In what follows, we investigate
the U(1) in general and, particularly, the Z2 symmetry in
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the system of atoms/photons, placed in a cavity of nonlinear
susceptibility of arbitrary orders.

In the simplest form, the atom-photon interaction is as-
sumed to take place in vacuum, via the field-dipole (atomic)
interaction. To this end, under the customarily used rotating-
wave-approximation, the total Hamiltonian is known [25,26]
to possess such a symmetry. The inclusion of the counter-
rotating terms has been demonstrated to destroy the U(1)
symmetry [20,27], while retaining the Z2 [a subgroup of U(1)]
symmetry [28–30]. These conclusions, however, strongly de-
pends on the atom-field coupling strength. This point comes
about from the fact that, in general, the system’s quantum
states (and eigenvalues) make abrupt changes from one to
another, at some critical value of the atom-field coupling
[31–34]. It is worth mentioning that the occurrence of the
two optical phases and, thereby, transitions between them,
closely resembles the topological phases in solid state physics
[35–39]. Although the above description nicely explains the
occurrence of optical phases in the atom-field systems, for
more generality and applicability, two more points are taken
into account in the present paper. Firstly, the quantum cavity is
unavoidably leaky: as the cavity walls are not perfectly reflec-
tive, the photons dissipate into the surroundings. Accordingly,
appropriate operators, which are responsible for such dissipa-
tions [40–43], should be included in the dynamical equations
[44–47]. Moreover, when the atom-field interactions take
place in a susceptible surrounding, electrical properties of the
latter may be used as a controlling mechanism. Therefore
the second point of importance in our treatment of atom-
field interaction is the inclusion of nonlinear properties of
the medium. Although the connection between the U(1) sym-
metry of the system of atom-field and dissipation is by now
well established [17,22,48], to the best of our knowledge,
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consideration of the effects of the lowest order of nonlinear-
ity has been reported [24,49–51]. To this end, a part of the
present paper is devoted to a thorough investigation of how an
arbitrary degree of the nonlinearity affects the OPT. Moreover,
if some of the interacting EM fields are supplied from out side
of the cavity, then the pumping fields and the cavity leakage
form two competing mechanisms which can, in principle, lead
to steady solutions [52] for the system. This would occur
when the two mechanisms balance each other [53]. It is then
feasible to unambiguously observe the phenomenon of OPT
in such an atom-field system. To this end, we may mention
that the steady solutions for the two optical phases have been
employed to write (read) quantum data onto (from) superra-
diant phase, while the trivial phase has been used for data
storage, with more efficiency relative to conventional means
[54]. Moreover, the existence of such steady solutions, trivial
or superradiant states, have paved the road to the development
of ultra-narrow-linewidth superradiant lasers [55,56]. Other
possible applications of optical phases and transition between
them can be found in Refs. [57–59].

The remaining part of the present section serves us to
describe the problem under investigation and the organization
of the paper. To this end, Sec. II is devoted to the description
of the system, along with the definition of U(1) generator
and symmetry. We cover the latter point when the atom-
field (multimodal) system is described by the linear Dicke
model (LDM) [60], as well as the linear Tavis-Cummings
model (LTCM), which is the LDM within the rotating-wave-
approximation [61,62]. The U(1) symmetry is then addressed
when the models include field-field interactions, arising from
the nonlinearity of the medium, NLDM and NLTCM, re-
spectively. To pursue this aim, we develop the field-field
interaction to any order of nonlinearity in this section also.
As an important result, it is demonstrated that one can adjust
the nature of interacting fields to admit any desired field-field
interactions into the formulation. The fact that the whole pro-
cess occurs in a leaky cavity, however, is ignored in Sec. II.
We then apply the formulation developed in Sec. II to the
case of a system consisting of two-level atoms interacting
with three-mode fields. This forms a part of Sec. III. In this
section, the dynamical equations for the seven operators of
the system (four field quadratures and three atomic operators)
are calculated. The steady-state solutions of the dynamical
equations, along with their stability is covered in Sec. IV. To
this end, we supply contour diagrams for Sz which distinctly
show the occurrence of trivial and superradiant optical phases.
Graphs of the field quadratures, as functions of the couplings
involved, presented in Sec. IV then reveals how one can select
the couplings to make a transition between the two optical
phases. Needless to say that the physical reasons behind the
results of each section are also discussed in detail. Finally, we
conclude the paper by highlighting our results in Sec. V.

II. HAMILTONIAN, SYMMETRY CONSIDERATION
OF NONLINEAR TAVIS-CUMMINGS MODEL

In this section, we first present a brief discussion on the
symmetry properties of the LDM, as well as the LTCM,
followed by a full scrutiny of a multimode field-field inter-
action caused by the nonlinearity of the medium. The latter

then leads to the nonlinear version of TCM, NLTCM. These
two parts shall appear in the following subsections. Before
attending to the main object, however, we recall that for a
system of A number of atoms interacting with an N-mode
electromagnetic field, the U(1) symmetry is generated by the
operator, C = ∑N

α=1 a†
αaα + Sz + A/2. Here, aα (a†

α) denotes
the field annihilation (creation) operator for the αth mode
and Sz (= ∑A

j=1 S j
z ) is the z component of the collective

atomic pseudospin operator. When the unitary operator, U =
exp(−iCφ) is applied, we easily find [63]

U † f (a, a†, S−, S+)U = eiCφ f (a, a†, S−, S+)e−iCφ

= f (e−iφa, eiφa†, e−iφS−, eiφS+),
(1)

where S± denotes collective atomic ladder operators. The
notations we employ in this paper shall be further discussed in
the first subsection. In the following two sections, we repeat-
edly use Eq. (1) to investigate symmetry properties of linear,
as well as nonlinear models of atom-field interactions. At this
point, it is reminded that when the total system, described by
the Hamiltonian H, is invariant under U(1) symmetry, i.e.,
if U †HU = H holds, then the eigenvalues of C becomes a
constant of motion, with an infinite-fold degeneracy.

A. Symmetry properties of LDM and LTCM

The behavior of a system consisting of two-level atoms,
immersed in a linear isotropic medium, and a multimodal
electromagnetic field is governed by the LDM Hamiltonian,

H = Ha + H f + Ha f , (2)

where the collective free atomic Hamiltonian is (h̄ = 1), Ha =
�

∑A
j=1(1/2)σ ( j)

z , with � denoting the atomic transition fre-

quency and σ
( j)
β (β = x, y, z) stands for the βth component

of Pauli matrices for jth atom. The linear part of the field
Hamiltonian, H f , reads H f = 1/2

∫
(εE2 + μ0H2)dv =∑N

α=1 ωαa†
αaα , where the multimodality of the electromag-

netic field has been taken into account (N is the number
of modes). At this point, it is reminded that the system’s
Hilbert space is spanned by |k, A > ⊗|n1 > ⊗|n2 > · · · ⊗
|nN >≡ |D, f >, where Ha|k, A >= (�/2)(k − A/2)|k, A >

and a†
αaα|nα >= nα|nα >. The states |k, A > (Dicke states)

describe an atomic state in which k number (out of A atoms) of
atoms is excited. As a straight forward application of Eq. (1)
shows, Ha + H f inhabits the U(1) symmetry for each φ. As-
suming that the fields are all polarized along the x axis, the
atom-field interaction, in the electric-dipole approximation,
reads

Ha f = Sx√
A

N∑
α=1

λα (aα + a†
α ), (3)

where Sβ = (1/2)
∑A

j=1 σ
( j)
β (β = x, y, z) indicates an atomic

collective operator and λα , that depends upon atomic dipole
moments, denotes the atom-field coupling strengths. As it
is well established [20] and can be readily verified through
an application of Eq. (1), the inclusion of Ha f in the linear
part of the Hamiltonian breaks the U(1) symmetry while the
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inhabitant Z2 symmetry of the system remains intact. On
the other hand, the Hamiltonian of Eq. (3), in the rotating
wave approximation (LTCM),

∑N
α=1

λα√
A

(S+aα + S−a†
α ), with

the atomic ladder operators S± = Sx ± iSy, preserves the U(1)
symmetry [64]. The linear Hamiltonian of Eq. (2), Therefore
it is invariant under a U(1) transformation, in this approxima-
tion. Since the eigenstates of the LTCM Hamiltonian, |E >, is
a linear combinations of |D, f > and |D − 1, f + 1 >, in the
degenerate subspace of the operator C, then a particular com-
bination, |E >, and e−iCφ|E > are degenerate for all values of
the continuous variable φ, an infinite-fold degeneracy.

B. Symmetry properties of nonlinear field-field interaction

The field-field Hamiltonian, arising from nonlinear pro-
cesses in the medium may readily be calculated from Hf f =∑

s H(s), where H(s) = ∫ −→
E · −→

Ps
NLdv denotes the contribu-

tion of the sth order nonlinearity. It is emphasized that in the
foregoing expression,

−→
Ps

NL is the sth order nonlinear polar-
ization of the medium. Assuming that the nonlinear medium
is isotropic, the sth-order field-field interaction Hamiltonian
becomes

H(s) = 1

2

∫
V

χ (s)Es+1dv, (4)

where E = ∑N
α=1 Eα , is the total field. The fact that the

components in the total field are commutative, along with a
multinomial expansion, may be employed to arrive at(

N∑
α=1

Eα

)s+1

=
∑
{pα}

(s + 1)!∏N
α=1 pα!

N∏
α=1

(Eα )pα . (5)

The set of integers in Eq. (5), {pα} is such that
∑N

α=1 pα =
s + 1 for each mode. When the quantized form of the electric
field,

Eα =
√

ωα

2εV

(
uαaα + u∗

αa†
α

)
α = 1, 2, . . . , N, (6)

with uαs representing the orthonormal solutions of the
Helmholtz equation, is explicitly used in Eq. (5) and the result
is substituted in Eq. (4) one finds

H(s) = (s + 1)!
∑
{pα}

{[ pα
2 ]}∑

{mα=0}

{pα−2mα}∑
{lα=0}

λpα mα lα

×
N∏

α=1

Cpα mα lα a†lα

α a
pα−2mα−lα

α , (7)

where [pα/2] denotes the floor integer of pα/2,

λpα mα lα =
∫

dv
χ (s)

2

N∏
α=1

upα−lα−mα

α u∗lα+mα

α (8)

and

Cpα mα lα =
(

ωα

2εV

)pα/2

2mα mα!lα!(pα − 2mα − lα )!
. (9)

Needless to say that in deriving Eq. (7), the commutation
relation between the operators belonging to each mode has

been employed repeatedly. In spite of the look of Eq. (7),
moreover, H(s) is indeed Hermitian. The reason for this con-
clusion of course lies in the summations over the sets, {pα},
{mα}, and {lα}. It is also worth mentioning that analytical
evaluation of Eq. (8) is formidably nontrivial, simply because
each integral involves multiplications of the uαs. In order to
shed light on the physical significance of λpα mα lα , we assume
that each mode of the total field is a plane wave. In that case,
the integrals become the definition of delta functions:

λpα mα lα = χ (s)

2

∫
ei

−→
K ·−→r dv = χ (s)

2
δ(

−→
K )V, (10)

where
−→
K = ∑N

α=1 (pα − 2mα − 2lα )
−→
kα , with

−→
kα specifying

each mode, defines the field total momentum. We observe
that by appropriately selecting the orientation of the field
components one can control the combination of field operators
appearing in Eq. (7). As a concrete example, we set pα =
s + 1, mα = 0 and lα = 0 or s + 1, for any mode, the con-
tribution to H(s) reads

∑N
α=1 δ((s + 1)kα )(as+1 + a†s+1 ) which

vanishes identically. Consequently, in the field-field Hamilto-
nian, Eq. (7), operators of each free mode (those which do not
mix different modes) are absent. Such points become more
clear where we consider an specific example involving a three-
mode field. Moreover, when the transformation of Eq. (1) is
applied to H(s), its form is preserved except for the λpα mα lα s
of Eq. (10), which now reads

λ̃
(s)
pα mα lα

= λ
(s)
pα mα lα

eiφ
∑N

α=1 (pα−2mα−2lα ). (11)

It is evident that the exponent in Eq. (11) determines the
symmetry of the participating field-field interactions. To be

more specific, the condition
∑N

α=1 (pα − 2mα − 2lα )
−→
kα = 0

generates the particular interacting fields, while the condition∑N
α=1 (pα − 2mα − 2lα ) = 0 imposes the invariance of field-

field interaction. As we mentioned earlier, the set of pαs must
satisfy

∑N
α=1 pα = s + 1, from which the invariance condition

becomes
∑N

α=1 (mα + lα ) = (s + 1)/2. Since mαs and lαs are
integers, we deduce that the U(1), as well as Z2, symmetry
always breaks down for even order of nonlinearity. For odd or-
der of nonlinearity, however, we may or may not have the U(1)
symmetry, depending upon the orientation of the interacting
quantized fields. The general points about the symmetry prop-
erties of a system of atom-field as presented here becomes
more tangible in the next section where we consider second
order of nonlinearity and a three-mode electromagnetic field.

III. DYNAMICAL DESCRIPTION OF THREE-MODE
FIELDS AND TWO-LEVEL ATOMS IN A MEDIUM OF

SECOND-ORDER SUSCEPTIBILITY

In the following, we consider the dynamical behavior of
three interacting modes (α = 1, 2, 3) and Dicke atoms, in
a medium with second order nonlinear susceptibility χ (2).
Moreover, we assume that one of the modes is a control-
lable classical field (k3, for instance), while one other (k2,

for instance) plays the role of a signal. The classical field is
also assumed to be way far from resonance with the atoms,
so that its interaction with atoms may be neglected. If we
again suppose that the fields propagate along the z axis and
set k1 + k2 = k3, the contribution to the field-field interaction
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in the Hamiltonian of Eq. (7) consists of only two terms cor-
responding to the sets, pα = 1, mα = 0, (α = 1, 2, 3), along
with l1 = l2 = 0, l3 = 1 or l1 = l2 = 1, l3 = 0. Hence, H f f

reduces to

H f f = G(a1a2a†
3 + a†

1a†
2a3) (12)

in which G = 6( ω1ω2ω3
8ε1ε2ε3V )1/2. As the third mode is a classical

field pump, one has to substitute Epe−i(2ωpt ) (Epei(2ωpt )) for a3

(a†
3) in Eq. (12). Here, Ep and ωp denote the classical (pump)

field amplitude and frequency, respectively. We then find

H f f = GEp
(
a1a2ei(2ωpt ) + a†

1a†
2e−i(2ωpt )

)
. (13)

To remove the time-dependent exponentials, it is customary to
apply the unitary transformation, e−iCωpt , to the total Hamil-
tonian, Eq. (2) along with the nonlinear field-field interaction
of Eq. (12). The resulting time-independent total Hamiltonian
then reads (here on we denote the field coupling as, g = GEp),

H =
2∑

α=1

�αa†
αaα + �Sz +

2∑
α=1

λα√
A

(
S+aα + S−a†

α

)
+ g

(
a1a2 + a†

1a†
2

)
, (14)

where the rotating-wave approximation has been explicitly
used. It is evident that an application of Eq. (1) to the above
Hamiltonian breaks the U(1) symmetry while preserving the
Z2 one. In the present work, we assume that the ensem-
ble formed by atoms and photons dissipate through a cavity
damping only. We thus represent the dissipation Liouvillian
operator (to be presented soon) which acts solely on pho-
tonic states. In the system of bimodal photons and two-level
atoms, the corresponding operator space is spanned by four
photonic and three atomic operators, along with the rele-
vant identity. We take the photonic operators to be the field
quadratures, Qα = (1/

√
2)(a†

α + aα ) and Pα = (i/
√

2)(a†
α −

aα ) (α = 1, 2), while for the atomic subspace Sβ (β = x, y, z)
are chosen. As can be straightforwardly shown, however, S2 =
S2

x + S2
y + S2

z (the total pseudospin) commutes with the total
Hamiltonian of Eq. (14) so that it is a constant of motion. The
atomic unknown operators then reduce to two.

When in the cavity there is a damping, the dissipation
may be expressed as an operator, D(yi ) = ∑

j κ j (2LjyiL
†
j −

LjL
†
j yi − yiL jL

†
j ) so that the quantum mechanical Langvin

equation of motion reads, ẏ j = i[H, y j] + D(y j ). Here, yi

represents a system’s dynamical variable which is under a
damping generated by the operators Li. Choosing yi = ρ and
Lj = aα , the density operator evolves in time as

ρ̇ = i[ρ,H] +
∑

α=1,2

κα (2aαρa†
α − aαa†

αρ − a†
αaαρ), (15)

In the derivation of Eq. (15) (and hereafter), we neglect the
atomic dampings. Moreover, letting yi = Qα or yi = Pα along
with Lj = a†

α , the equations of motion for the field quadratures
are obtained as

Q̇α = �αPα −
√

2λαSy − καQα − gPβ �=α, (16a)

Ṗα = −�αQα −
√

2λαSx − καPα − gQβ �=α. (16b)

Although we may include atomic damping by the selection,
yi = Sx,y,z and Li = S+ in the following two equations this

effect is neglected. The undamped, but coupled, equations of
motion for the atomic operators then become,

Ṡx = −�Sy −
√

2(λ1P1 + λ2P2)Sz, (17a)

Ṡy = �Sx −
√

2(λ1Q1 + λ2Q2)Sz. (17b)

Needless to say that in deriving Eqs. (16) and (17) the total
Hamiltonian of Eq. (14) has been employed. For future use,
where the stability of steady solutions is discussed, we also
state that

Ṡz = (λ1P1 + λ2P2)Sx + (λ1Q1 + λ2Q2)Sy. (18)

It is worth noting that dynamics of field operators [Eqs. (16)]
are indeed linear, while those for atomic operators [Eqs. (17)]
are nonlinear. In the next section we first solve the set of
Eqs. (15)–(17), in the steady state, then discuss the stability
of the resulting solutions.

IV. STEADY-STATE SOLUTIONS OF THE DYNAMICAL
EQUATIONS

When we substitute the steady values for the dynamical
variables (denoted by an over-head ∼) in the right hand side
of Eqs. (16) and (17), the resulting equations should vanish
identically. Using the steady equations (algebraic) for S̃x(y),

S̃x = 2
λ1Q̃1 + λ2Q̃2

�
S̃z, (19a)

S̃y = −2
λ1P̃1 + λ2P̃2

�
S̃z, (19b)

and conservation of S2 = ∑3
i=1 S2

i , one can eliminate S̃x(y)

from the field equations and obtain

ηαP̃α − καQ̃α − ξ−P̃β �=α = 0, (20a)

−ηαQ̃α − καP̃α − ξ+Q̃β �=α = 0, (20b)

where ξ± = g ± 2λ1λ2S̃z/�, ηα = �α + 2λ2
α S̃z/�. From

Eqs. (20), it is obvious that the trivial steady solutions to the
equations for the field quadratures are, P̃α = Q̃α = 0. Equa-
tions (19) then show that the trivial state of the system is
described by no photons (of any kind) and either upper or
lower atomic state (S̃x = S̃y = 0). The trivial values, S̃z =
±1/2 arise from the initial condition, which we take as the
fields being in their corresponding vacuum states and the
atoms fill the ground state. As it is shown in a moment,
these trivial solutions describe the optical normal phase of
the system. Arranging the field quadratures in a column ma-
trix, [Q̃1, P̃1, Q̃2, P̃2]T , Eqs. (20) can be cast into a matrix
equation. For non trivial solutions to the field quadratures,
Therefore the determinant of the coefficient matrix must van-
ish, ∣∣∣∣∣∣∣

κ1 −η1 0 ξ−
η1 κ1 ξ+ 0
0 ξ− κ2 −η2

ξ+ 0 η2 κ2

∣∣∣∣∣∣∣ = 0. (21)

Through the definitions of ηα and ξα , Eq. (21) provides an
equation for the only unknown S̃z. Solving this equation,
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one finds

S̃z = �

2A
(−B ±

√
B2 − AC), (22)

where the real parameters A, B, and C, are defined as

A = (κ1λ
2
2 + κ2λ

2
1)2 + (�1λ

2
2 + �2λ

2
1)2 − 4g2λ2

1λ
2
2,

(23a)

B = κ2
2 �1λ

2
1 + κ2

1 �2λ
2
2 + (

�1λ
2
2 + �2λ

2
1

)(
�1�2 − g2

)
,

(23b)

C = (�1�2 + κ1κ2 − g2)2 + (�1κ2 − �2κ1)2. (23c)

In arriving to Eqs. (23), the explicit forms of ηα and ξα

have been used. Since the four equations given in Eq. (20)
are not independent [because of Eq. (21)], we first solve for
P̃1, Q̃2, and P̃2 in terms of Q̃1, followed by casting Eqs. (19)
in terms of the latter, and substituting the results into S̃x

2 +
S̃y

2 + S̃z
2 = 1/4, one finds

Q̃1 = ± �

2S̃z

√
(1/4) − S̃z

2

(γ1 + γ2)2 + (λ1 + γ3)2 , (24)

where we have defined the real parameters:

γ1 = −λ1
ξ+ξ−κ2 − η2

2κ1 − κ1κ
2
2

η1η
2
2 + η1κ

2
2 − η2ξ−2 , (25a)

γ2 = −λ2
ξ+η1κ2 − η2κ1ξ

−

η1η
2
2 + η1κ

2
2 − η2ξ−2 , (25b)

γ3 = −λ2
ξ+η1η2 − ξ+ξ−2 + ξ−κ1κ2

η1η
2
2 + η1κ

2
2 − η2ξ−2 , (25c)

to simplify the expression. Needless to say that one can
express the γis in terms of A, B, C, and vice versa.
Following the forgoing prescription, we also find for the
field quadratures, P̃1 = (γ1/λ1)Q̃1, P̃2 = (γ2/λ2)Q̃1 and Q̃2 =
(γ3/λ2)Q̃1 along with, S̃x = (2/�)(λ1 + γ3)Q1Sz and S̃y =
(−2/�)(γ1 + γ2)Q1Sz for atomic operators. It is also worth
noting that when there is only one quantized field (say the
first field in our presentation) and a field pump, then a1 = a2,
κ1 = κ2, λ1 = λ2 and �1 = �2 = �. Under these circum-
stances our results, in particular Eq. (22), reduce exactly to
those reported in Ref. [24]. We emphasize at this point that
the emergence of two distinct solutions for Q̃1 is a profound
indication of Z2 symmetry breaking. Out of the two distinct
solutions for S̃z, however, only the upper sign give rise to
stable steady states. As it shall be shown, the upper (positive)
sign in the steady solution, S̃z, proves to be stable, we take
this sign in Eq. (22) hereafter. A discussion of the stability
of the corresponding steady-state solutions follows. To this
end, we write each equation of motion for the operators ρ,
Qα , Pα (α = 1, 2) and Sx,y,z in the concise form,

ẏi = fi(y1, y2, . . . , y7) i = 1, 2, . . . , 7, (26)

where yis denote any of the operators, as listed above. In this
manner, Eqs. (16)–(18) take the short-hand form, ẏi = f (y js),
i, j = 1, . . . , 7. To study the stability, it is assumed that the
solutions undergoes a small variation about the steady-state
solutions, ỹi, in the long run. Accordingly, we make a Taylor

expansion of long-run quantities, fi = fi(ỹk ) + ∑7
j=1 Ji jδy j ,

where, Ji j = ∂ fi

∂y j
|yk=ỹk for all ks. Writing δy j as a superposition

of time varying exponentials, δyi = ∑
ik Cikeαkt , one finds,∑7

j=1 (Ji j − αkδi j )Cjk = 0, from the corresponding equations
of motion (we recall that fi = fi(ỹk ) vanishes for all i and k).
It is then concluded that the nature of the eigenvalues, αk ,
of Ji j , determines the stability of the steady-state solutions.
It is obvious that these eigenvalues explicitly depend on ỹks,
which are themselves functions of the parameters (couplings,
frequencies, etc.) specifying the system. We thus arrive at
the conclusion that for specific combinations of such param-
eters, the real part of αks assume non positive values. When
this happens, the time-dependence of δyis vanish in the long
run, giving rise to stable steady-state solutions. It is straight
forward to show that the trivial solution corresponding to
S̃z = +1/2, as anticipated, under no circumstances is stable.

Having discussed the conditions for the stability of the
optical phases and established the relation between ensem-
ble averages (steady solutions) of field quadratures, as well
as those of atomic operators, and S̃z, we now examine the
limitations physically imposed on the results. First, it is noted
that all steady values, in particular S̃z, should be real, since the
corresponding operators remain Hermitian at any time. For
S̃z to be real, one has the condition, B2 � AC. Secondly, the
reality of Q̃1 necessitates the condition that −1/2 � S̃z � 1/2,
consistent with what one expects for S̃z. The first condition
(simultaneously the second one) can be satisfied by adjusting
the parameters appearing in the equations of motion. When
for a set of adjustable parameters these two conditions are
satisfied, S̃z, along with all other relevant quantities, fall into
the superradiant phase. A collection of such data then defines
the so-called phase diagrams (= density profile of S̃z) of the
system. In Fig. 1, the phase diagram is plotted as a func-
tion of photon-photon and atom-photon couplings [g(Ep) and
λ = λ1 = (1/2)(or(1/3))λ2, respectively]. In this figure, all
the other parameters, namely, the dissipation constants and the
participating frequencies, are fixed. The colors (light to dark
blue, light to dark red; if gray-scaled: light gray to dark gray),
as the bars indicate, gives the values of S̃z for a set of g(Ep)
and λis. Moreover, the boundaries of stability regions are also
indicated by dashed lines (curves) in Fig. 1. Panel (a) of the
figure corresponds to λ1 = (1/2)λ2, while λ1 = (1/3)λ2 is the
subject of part (b). Although both parts can be extended to the
larger values of the two parameters, in order to avoid crowded-
ness, these extensions are omitted in Fig. 1. We just utter that
for larger values of g(Ep), more regions of superradiant phase
appear. These additional regions, as can be easily shown, do
not fall into the stability region. Meanwhile, for larger values
of λ, the steady solutions for Sz converges to zero (note the
upper bounds on the bars). From Fig. 1, it is also clear that,
for a range of the two couplings, one can reach a point in a
region where the superradiant optical phase occurs. If g(Ep)
and λi s are chosen outside this region, the system remains
in the trivial optical phase (blue region, dark gray if gray-
scaled). It is further noted that the stability region coincides
with that of superradiant phase in the present system, as has
been observed in similar cases [24]. For actual applications,
in the following, we outline some important points which can
be easily observed from Fig. 1. (i) For a specific atom-field
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FIG. 1. The system’s optical phase diagram. The blue (dark gray, if gray-scaled) region indicates the normal phase while the redish
(light gray, if gray-scaled) part corresponds to the superradiant phase. The diagram is drawn for � = 5 MHz, �1 = 6 MHz, �2 = 2MHz,
κ1 = 0.5 MHz, κ2 = 0.25 MHz, and λ = λ1 = (1/2)λ2 (a) and (1/3)λ2 (b).

system, there is boundaries within which the system exhibits
superradiant phase. The boundary widens as the relative atom-
field (quantized) coupling is reduced. (ii) The critical values
for the pump field strength reduces when such relative cou-
plings are small. For completeness, we also provide Fig. 2,
in which the behavior of S̃z, panel (a) as a function of g(Ep)
(λi fixed), and (part b) λi (g(Ep) fixed), respectively, is de-
picted. Panel (a) of Fig. 2 clearly demonstrates the lower and
the upper limits imposed on the photon-photon couplings for
which the superradiant phase occurs. It is also evident from
this part of Fig. 2 that as the atom-photon coupling increases,
the lower limit on g(Ep) shifts toward lower values. The upper
limit on g(Ep), however, remains the same for any value of
λ. From part (b) of Fig. 2 it is observed, as for S̃z, that as
the photon-photon coupling is increased, the lower limit of λ

moves toward the origin. That is to say, the superradiant phase
occurs at a lower value of atom-photon coupling. Moreover,

we call attention to the fact that when the non linearity of the
medium is neglected (i.e., the photon-photon coupling van-
ishes), the corresponding graph (blue one) in part (b) of Fig. 2
coincides with the horizontal axis (purple curve), indicating
that our atom-photon system remains in the trivial phase,
irrespective of atom-photon coupling [22]. Since the red curve
corresponds to a g(Ep) less than the critical photon-photon
coupling, one expects that the system would remain in the
normal phase. In part (b), the combination of blue and red
colors then coincide with the horizontal axis, indicated by
purple color. Since the behavior of photonic quadratures are
of much interest, in Fig. 3, we present such quantities as a
function of photon-photon coupling, for different values of
atom-field couplings.

An inspection of Fig. 3 reveals that there exists a dis-
continuity in all quadratures for large values of atom-field
couplings (λ > 1.3429 MHz, for the data used in generating
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FIG. 2. (a) S̃z vs the photon-photon coupling, for different values of atom-field couplings. (b) S̃z vs the atom-field coupling, for different
values of photon-photon coupling. The figure is drawn for � = 5 MHz, �1 = 6 MHz, �2 = 2 MHz, κ1 = 0.5 MHz, κ2 = 0.25 MHz, and
λ1 = λ = 1

2 λ2. The insets clearly identify, colored or otherwise, each curve.
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FIG. 3. Field quadratures versus g(Ep), for different values of λ = λ1 = 1
2 λ2. All other entries are the same as in the previous figures. The

insets clearly demonstrate the corresponding behavior at large values of field-field couplings. Identification of the curves is similar to Fig. 1.

the figure). It is also evident that for g(Ep) ≈ 1.072 MHz, the
first quantized field vanishes for λ > 1.3429 MHz. At these
values, however, all the other quadratures assume non zero
values, accompanied by a reversal of polarization directions.
The vanishing of Q1 is due to the fact that the γ s in Eq. (25), a
combination of which appears in the denominator of Eq. (24),
approach infinity for the data used. However, the limits of
the other quadratures [see the lines immediately following

Eq. (25)] do exist and are equal to P̃1 ≈ ± �

2λS̃z

γ1

|γ1|
√

1
4 − S̃z,

Q̃2 ≈ ± �

2λS̃z

γ2

|γ2|
√

1
4 − S̃z and P̃2 ≈ ± �

2λS̃z

γ3

|γ3|
√

1
4 − S̃z. We,

moreover, note that for λ � 1.3429 MHz, the discontinuity
of the quadratures disappear. The discontinuity of the first
derivatives in all the quadratures persist, indicating that the
phase transformation in our case is second order [65]. It is
worthwhile to note that there exists sets of parameters for
which one or more quadratures vanish, thereby, suggesting
means of on-off switching of the quantized fields [66]. For
completion, we illustrate the behavior of field quadratures
versus λ = λ1 = 1

2λ2 for various values of g(Ep), in Fig. 4.

Although the physical points surrounding the optical phases
in the present system have already stated, Fig. 4 serves to
demonstrate the consistency of our treatment of the problem.

V. CONCLUSION

The present report is mainly concerned with the U(1), in
particular its subgroup Z2, symmetry of a system of a col-
lection of two-level atoms and photons, interacting inside a
cavity filled by a nonlinear medium. To this end, we present
a thorough discussion of the nonlinear field-field interaction
Hamiltonian, and its properties under the action of U(1) (or
Z2) transformation. It is emphasized that in treating this part,
the number of interacting fields, as well as the order of non-
linearity, is arbitrary, so that the results are quite general. We
then proceed to apply the theory to the particular case of one
classical field (pump field) and two quantized fields (signal
and idler fields), interacting with each other and the two-level
atoms. In this application of the theory, the second order
nonlinearity is assumed and field-field interaction Hamilto-
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FIG. 4. Field quadratures versus λ = λ1 = 1
2 λ2, for various g(Ep) s. All other entries are the same as in the previous figures. Identification

of the curves is similar to Fig. 1.

nian is explicitly constructed. Moreover, it is also presupposed
that the cavity in which the interaction occurs, is a leaky
one so that a proper Liouvillian photonic dissipation is taken
into consideration. Consequently, the steady-state solutions to
the seven dynamical variables, namely, field quadratures and
atomic pseudospins, within the rotating wave approximation,
are calculated and discussed. At this point, it is demonstrated
that the field-field coupling provides, through the magnitude
of the pump field, a mechanism for controlling the symmetries
of such dynamical variables. Along these lines, we show that
the present system of atom-field exhibits the optical normal
(trivial) and supperradiant phases. The occurrence of the two
optical phases, as we explicitly demonstrate, depends upon
the system’s parameters. Another point of interest is the sta-
bility of the steady-state solutions, which is also discussed
in detail. The connection between the stability and governing
parameters is also the subject of the present treaty. Although
a full discussion of the systems steady behavior is provided
in the body of the paper, in what follows we highlight the

more important points of our calculations. In attaining these
points all governing parameters (such as field dissipations,
field frequencies, etc.), except the atom-field and field-field
couplings, are fixed at the values given in the text.

(1) From the phase diagram on the steady values of atomic
population (S̃z) as a function of field-field (arising from non-
linearity of the medium) and atom-field couplings, the regions
of trivial and supper-radiant (as well as stability) phases are
distinguished. The boundaries of such regions are specified in
Fig. 1. We suffice it say that a change in the controllable pump
field can well induce an optical phase transition.

(2) The field-field nonlinearity provides a mechanism to
activate the superradiant phase for a vast variety of atomic
systems. That is, even if the atom-field coupling is weak, by
adjusting the pumping field, the system indeed makes such
phase transition (please see Figs. 1, 2 and 4).

(3) Since it is of more interest to study the behavior of
fields quadratures, we provide Fig. 3 in which these quan-
tities are illustrated as functions of field-field couplings, for
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a variety of atom-field couplings. A glance at this figure
reveals that one can choose a set of couplings for which the
first field is in the magnetic supper-radiant phase, while the
second one falls into electromagnetic supper-radiant phase.
This point introduces a mechanism for optical switching, from
normal to supper-radiant phase in which either electric or
magnetic field is present. It is also evident from Fig. 3 that
for a set of couplings, the system undergoes phase transitions
of the first order while for different sets it is of second order.

In view of the above points, the calculations in the present
paper shed lights on understanding the effect of nonlinearity
on the behavior of optical phases in atom-field systems.
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