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Collective spontaneous emission of two entangled atoms near an oscillating mirror
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We consider the cooperative spontaneous emission of a system of two identical atoms interacting with the
electromagnetic field in the vacuum state and in the presence of an oscillating mirror. We assume that the
two atoms, one in the ground state and the other in the excited state, are prepared in a correlated (symmetric
or antisymmetric) Bell-type state. We also suppose that the perfectly reflecting plate oscillates adiabatically,
with the field modes satisfying the boundary conditions at the mirror surface at any given instant, so that the
time dependence of the interaction Hamiltonian is entirely enclosed in the instantaneous atom-wall distance.
Using time-dependent perturbation theory, we investigate the spectrum of the radiation emitted by the two-atom
system, showing how the oscillation of the boundary modifies the features of the emitted spectrum, which
exhibits two lateral peaks not present in the case of a static boundary. We also evaluate the transition rate to
the collective ground state of the two-atom system in both cases of the superradiant (symmetric) and subradiant
(antisymmetric) state. We show that it is modulated in time and that the presence of the oscillating mirror can
enhance or inhibit the decay rate compared to the case of atoms in vacuum space or near a static boundary. Our
results thus suggest that a dynamical (i.e., time-modulated) environment can offer further possibilities to control
and manipulate radiative processes of atoms or molecules nearby, such as the cooperative decay, and strongly
indicate a similar possibility for other radiative processes, for example, the resonance interaction and the energy
transfer between atoms or molecules.

DOI: 10.1103/PhysRevA.103.033710

I. INTRODUCTION

Quantum electrodynamics predicts that an excited atom,
interacting with the quantum electromagnetic field in the
vacuum state, spontaneously decays to its ground state by
emitting a photon. The emission probability for unit time is
found to be

A = 4

3

ω3
eg|μeg|2
h̄c3

, (1)

where μeg is the matrix element of the atomic dipole moment
operator between the atomic excited and ground states and
ωeg is the transition frequency between the two atomic levels
[1]. This result can be generalized to the case of N atoms
incoherently coupled to the quantum electromagnetic field: In
this case, the N atoms decay independently, and the intensity
of the emitted radiation is proportional to N . Dicke [2] showed
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that this conclusion is not valid in general: When N identical
atoms are confined within a volume V � λ3, where λ is the
wavelength of emitted radiation, the assumption of uncorre-
lated emitters is no longer valid and a closer reconsideration
of the problem is necessary. It was shown that an ensemble
of atoms coherently coupled to the quantum electromagnetic
field acts as a single quantum emitter, with a decay rate equal
to NA and an intensity of the emitted radiation proportional
to N2 [3,4]. This enhanced single-photon emission is known
as superradiance and its physical origin is in the correlation
(symmetric state) between the atomic dipoles, leading to a
constructive interference in the emission of radiation.

The counterpart of superradiance is the so-called sub-
radiance [2,5] that occurs when the ensemble of atoms is
prepared in a correlated antisymmetric state. In this case, a
suppression of the emission intensity occurs and the decay
is totally inhibited. Contrarily to superradiance, subradiance
arises from anticorrelations between the atomic dipoles, lead-
ing to a destructive interference in the emission of radiation.
While superradiant states are affected by decoherence, subra-
diant states are free-decoherence robust states and for these
reasons they are considered promising for realization of high-
performance quantum processors in quantum information
technologies [6]. Superradiance and subradiance have been
investigated in a variety of systems, including atoms [7,8],
trapped ions [9], and quantum dots [10] coupled to various
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environments, such as cavities [11,12], waveguides [13,14],
and photonic crystals [15].

Recently, the influence of a perfect reflector on the coop-
erative spontaneous emission process of two atoms located
nearby was discussed [16]. In addition, the effect of a surface
or a structured environment, or of an external static electric
field on other radiative processes, such as dispersion or reso-
nance interactions between atoms, was studied [17–23]. Most
of these studies are concerned with a static environment. In
this paper, we consider a different and more general situation;
specifically, we discuss the influence of a dynamical (i.e.,
time-dependent) environment on the cooperative emission of
two correlated identical atoms located nearby.

Generally speaking, a dynamical environment can be real-
ized by changing periodically the magnetodielectric proper-
ties of the material or by a mechanical motion of macroscopic
objects, such as a reflecting mirror or the cavity walls. These
systems, for example, vibrating cavities or oscillating mir-
rors, have been extensively explored in connection with the
dynamical Casimir and Casimir-Polder effect [24–27]. Also,
dynamical cavities have been simulated in circuit QED [28].

Recent investigations have shown that the presence of a
dynamical environment can give additional possibilities (not
present in the case of a static environment) to manipulate and
control radiative properties of atoms or molecules coupled
to a quantum field. For example, the spontaneous emission
of an excited atom located near a perfectly reflecting plate
that oscillates adiabatically has been discussed [29,30] and
it has been shown that the motion of the mirror significantly
affects the atomic decay rate, as well as the spectrum of
the emitted radiation, exhibiting the presence of two lateral
and almost symmetrical peaks not present in the case of a
static boundary [29]. Similar results were also obtained in
the case of an excited atom embedded in a dynamical pho-
tonic crystal, when its transition frequency is close to the
photonic band edge of the photonic crystal [31]. Here the
presence of a time-modulated photonic band gap gives rise
to two lateral peaks in the spectrum of radiation emitted.
These lateral peaks are asymmetric due to the rapidly varying
local density of states at the edge of the gap. Furthermore,
the time-dependent resonance interaction between atoms and
the dynamical Casimir-Polder interaction between atoms or
between an atom and a mirror have been investigated during
the dynamical self-dressing process of the system, starting
from a nonequilibrium configuration; it has been shown that
forces usually attractive can become repulsive in nonequi-
librium situations [32–38]. These results show the striking
potentialities of time-dependent environments and nonequi-
librium configurations for manipulating a variety of radiative
processes.

In this paper, we consider two identical atoms, one in
the ground state and the other in the excited state, prepared
in a correlated Bell-type state (symmetric or antisymmetric),
while the electromagnetic field is in its vacuum state. In the
Dicke model, these states are the well-known superradiant
and subradiant states, respectively [2]. We assume that the
two atoms are located near a perfectly reflecting mirror that
oscillates adiabatically along a prescribed trajectory and we
investigate the effects of the mirror’s motion on the coop-
erative spontaneous decay, the spectrum emitted by the two

quantum emitters, and their decay rate. We suppose that the
reflecting plate oscillates adiabatically along a sinusoidal tra-
jectory. Under these assumptions, the field mode functions,
satisfying the boundary conditions at the mirror surface at any
time, are time dependent. Using time-dependent perturbation
theory, we investigate the spectrum of the emitted radiation
and the cooperative decay rate of the two-atom system. We
show that the adiabatic motion of the mirror modifies the
physical features of the spectrum of the radiation emitted. In
particular, we find the presence of two symmetric side peaks
in the spectrum, not present in the case of a static mirror,
and separated by the central peak by the mirror’s oscillation
frequency. We also evaluate the transition rate to the collec-
tive ground state of the two-atom system, in both cases of
the superradiant (symmetric) and subradiant (antisymmetric)
states, and show that it depends on the interatomic separation
and the time-dependent atom-plate distances. We also find that
the motion of the mirror can cause a significant enhancement
or suppression of superradiance of the two quantum emitters,
depending on the specific configuration of the system, with re-
spect to the cases of a mirror at rest or atoms in the unbounded
space. These results show how a dynamical environment can
influence the physical features of the superradiant and sub-
radiant emission by the two correlated atoms, which can be
enhanced or inhibited compared to the case of atoms in the
vacuum space or near a static boundary. In general, this further
confirms that a dynamical (i.e., time-modulated) environment
can offer possibilities to control, manipulate, and also activate
or inhibit radiative processes of atoms and molecules nearby,
such as the cooperative spontaneous emission by two corre-
lated atoms. It suggests that also other radiative processes,
such as the resonance interaction and the energy transfer
between atoms or molecules, can be tailored by exploiting a
dynamical environment.

The paper is organized as follows. In Sec. II we introduce
our system and investigate the spectrum of the radiation emit-
ted by the two-atom system and discuss its main physical
features (some technical points of our model are in the Ap-
pendix). In Sec. III we investigate the collective decay rate
of the two quantum emitters in the presence of the oscillating
mirror. Section IV is devoted to our concluding remarks.

II. SPECTRUM OF THE RADIATION EMITTED BY TWO
ENTANGLED ATOMS NEAR AN OSCILLATING MIRROR

Let us consider two atoms, labeled as A and B, located
in the half space z > 0 near an infinite perfectly conducting
plate, modeled as two-level systems with atomic transition
frequency ω0 and interacting with the electromagnetic field in
the vacuum state. We suppose that the mirror oscillates with an
angular frequency ωp, along the z direction with the trajectory
a(t ) = a sin(ωpt ), where a is the oscillation amplitude of the
plate around its average position z = 0.

Let us suppose that the two identical two-level atoms are
initially prepared in a symmetric or antisymmetric entangled
state, i.e.,

|φ〉± = 1√
2

(|eA, gB〉 ± |gA, eB〉), (2)
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FIG. 1. Sketch of the system. Two atoms, modeled as two-level
systems with transition frequency ω0, are placed in front of an
oscillating mirror. The atomic dipole moment of each atom can be
oriented parallel or perpendicular to the oscillating reflecting plate.

and that the quantum field is in its vacuum state. Thus, the
initial state of the system at time t = 0 is

|i〉± = |φ〉±|vac〉. (3)

The sign ± in (2) refers to the symmetric or antisymmetric
state, respectively, |vac〉 is the vacuum state of the electromag-
netic field, and |eA (B)〉 (|gA (B)〉) indicates the excited (ground)
state of atom A (B). In the states (2) the excitation is delo-
calized between the two atoms. In the Dicke model, these
states are the so-called superradiant and subradiant states,
respectively. They can be realized experimentally with actual
techniques [39,40]. Symmetric (antisymmetric) states are also
at the origin of the resonant interaction energy, which is a
second-order interaction between correlated atoms [41].

Our physical system is displayed in Fig. 1. We assume
that the oscillation frequency ωp of the plate is much smaller
than the atomic transition frequency ω0 of both atoms and of
the inverse of the time taken by the photon emitted by one of
the two atoms to reach the other atom after reflection on the
mirror [ωp � c/rA, c/rB, c/(rA + rB), where rA (B) is the aver-
age atom-plate distance of each atom from the mirror]. Under
these assumptions, we can neglect real photons emission by
the dynamical Casimir effect and investigate the collective
spontaneous emission by the two correlated atoms in the
adiabatic approximation. These assumptions are fully verified
by typical values of the relevant parameters of the system,
for example, ωp ∼ 109 s−1, ω0 ∼ 1015 s−1, and an atom-plate
average distance of the order of 10−6 m, achievable in the
laboratory. We stress that such a system is experimentally
feasible, using a dynamical mirror, which is a slab of semicon-
ductor material whose dielectric properties are modulated in
time for simulating the oscillating mirror [25,27], and keeping
the atoms at a fixed position by exploiting atomic trapping
techniques [42].

We write the Hamiltonian of our system in the Coulomb
gauge and in the multipolar coupling scheme, within the

dipole approximation [41,43–45]

H = h̄ω0
(
SA

z + SB
z

) +
∑
k j

h̄ωka†
k jak j + HI , (4)

where Sz = 1
2 (|e〉〈e| − |g〉〈g|) is the pseudospin atomic oper-

ator, ak j (a†
k j) is the bosonic annihilation (creation) operator

for photons with wave vector k and polarization j, and HI is
the interaction Hamiltonian, given by

HI = −(SA
+ + SA

−)μeg
A · E(rA) − (SB

+ + SB
−)μeg

B · E(rB). (5)

Here S+ = |e〉〈g| and S− = |g〉〈e| are atomic pseudospin
operators and μ

eg
A (B) = 〈eA (B)|μ̂A (B)|gA (B)〉 are the matrix el-

ements, assumed real, of the atomic dipole moment operator
μ̂A (B) of atom A (B) between its excited and ground state. In
addition, E(rA (B) ) is the electric field operator at the atomic
position rA (B); it includes a time dependence as a consequence
of the motion of the conducting wall, as discussed in detail in
the Appendix.

The orientation of the atomic dipole moment is determined
by the specific atomic states |e〉 and |g〉 taken in our two-level
model. For example, if the excited state is one of the three
degenerate states with n = 2, l = 1, and m = 0,±1 of the
hydrogen atom and the ground state is the state with n = 1,
l = 0, and m = 0 (n is the principal quantum number, l the
orbital quantum number, and m the magnetic quantum num-
ber), then the excited state with m = 0 gives a dipole matrix
element along z (perpendicular to the wall), while specific
linear combinations of the states with m = 1 and m = −1 give
a dipole along x or y, which is parallel to the wall.

In general, the presence of time-dependent boundary
conditions leads to the introduction of new creation and
annihilation field operators, related to the old ones by a Bo-
goliubov transformation [24], and to time-dependent mode
functions, satisfying the appropriate time-dependent bound-
ary conditions. However, in the present case of adiabatic
motion of the mirror as defined above, the field operators
instantaneously follow the mirror’s motion and the creation
and annihilation operators are the same as in the static-wall
case; also, we can set the usual boundary conditions for the
electromagnetic field in the reference frame where the wall
is instantaneously at rest and then return to the laboratory
frame by the appropriate time-dependent space translation.
Thus, the field annihilation and creation operators remain the
same as in the static case and the mirror’s motion is entirely in-
cluded in the field modes (ωpa/c � 1). The expression for the
field operator appearing in (5), with the adiabatically moving
mirror, as well as the instantaneous field modes and relevant
expressions for the sum over polarizations are discussed in the
Appendix.

Thus, the time dependence of the interaction Hamiltonian
will be made explicit in the mode functions only (see the
Appendix), while, as mentioned, the field annihilation and
creation operators are the same as in the static case; in other
words, in our adiabatic approximation, the atoms locally in-
teract with the vacuum field fluctuations that instantaneously
follow the motion of the mirror. In general, in dealing with
our system, we can adopt two different points of view: with
respect to the laboratory frame, where both atoms are at rest
and the plate oscillates along a prescribed trajectory, or in
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the reference frame comoving with the mirror. In this paper,
we will adopt the laboratory frame. Taking into account our
hypothesis of adiabatic motion of the mirror, the field vacuum
state in our initial state (3), at t = 0, is that relative to the
instantaneous position of the mirror at that time and it is in-
dependent of its previous motion (in fact, nonadiabatic effects
such as photon emission by the dynamical Casimir effect or
atomic excitation by the dynamical Casimir-Polder effect [27]
are negligible in our hypothesis). Mathematically, it is defined
by ak j |vac〉 = 0, where the annihilation operator ak j does not
depend on time, because all time dependence relative to the
wall’s motion is embedded in the field modes.

Using the interaction Hamiltonian (5), a straightfor-
ward application of first-order time-dependent perturbations
theory yields the transition amplitude from the initial en-

tangled state (3) to the state |gA, eB, 1k, j〉 [both atoms in
their ground state and one photon emitted in the mode
(k, j)],

c(k j, t ) =
√

πck

h̄V

∫ t

0
dt ′ei(ωk−ω0 )t ′

× [
μ

eg
A · E(rA, t ′) ± μ

eg
B · E(rB, t ′)

]
, (6)

where the ± sign refers to the superradiant or subradiant state
of Eq. (2). The probability that the system, initially prepared
in the correlated state (3), decays at time t to the collective
atomic ground state, emitting a photon with wave vector k
and polarization j, is then given by

|c(k j, t )|2 = πck

h̄V

∫ t

0

∫ t

0
dt ′dt ′′{μeg

A · fk j (rA, t ′)μeg
A · fk j (rA, t ′′) + μ

eg
B · fk j (rB, t ′)μeg

B · fk j (rB, t ′′)

± [
μ

eg
A · fk j (rA, t ′)μeg

B · fk j (rB, t ′′) + μ
eg
A · fk j (rA, t ′′)μeg

B · fk j (rB, t ′)
]}

ei(ωk−ω0 )(t ′′−t ′ ). (7)

The first two terms on the right-hand side of Eq. (7) are related
to the probability that each atom independently decays by
emitting a photon; on the contrary, the contribution inside the
square brackets is an interference term and it is responsible
for the superradiant or subradiant behavior of the two-atom
system.

From Eq. (7) we can obtain the frequency spectrum of the
radiation emitted by the two atoms, which is the emission
probability for unit frequency, by taking the sum over polar-
ization and the integration over the directions of k as

P(ωk, t ) = V

(2π )3

ωk
2

c3

∫
d�

∑
j

|c(k j, t )|2, (8)

where V is the quantization volume and � the solid angle.
The integration over the directions of k that we will explicitly
perform in the following is on the full 4π solid angle, because
our field modes, given in the Appendix, allow positive and
negative values of the components of k.

We perform the sum over polarizations j = 1, 2, using the
relation (A8) given in the Appendix, which extends to our
adiabatic dynamical case the expression obtained in [46] for
the static case. For convenience, we report here this relation∫

d�
∑

j

[fk j (ru, t ′)]�[fk j (rv, t ′′)]m

→
∫

d� Re{(δ�m − k̂�k̂m)eik·(ru−rv )

− σ�p(δpm − k̂pk̂m)eik·(ru (t ′ )−σrv (t ′′ ))}, (9)

where Re indicates the real part.
We stress that the relation (9) is valid only in our adiabatic

approximation in the laboratory frame, i.e. when the electro-
magnetic field operators instantaneously follow the motion of
the plate. The first term in (9) is a free-space contribution
and it is time independent because the two atoms are fixed in

space. On the contrary, the second term takes into account the
presence of the oscillating mirror through the reflection matrix
σ = diag(1, 1,−1) introduced in (A7) and in our adiabatic
approximation depends on the instantaneous time-dependent
atom-mirror and atom-image distances (see the presence of
the σ reflection matrix).

The second term in Eq. (9) can be written as

eik·[ru (t ′ )−σrv (t ′′ )] = eik·R̄uv−ik·a[sin(ωpt ′ )+sin(ωpt ′′ )], (10)

where R̄uv = ru − σrv . For a single atom, say, A, u = v = A
and R̄A = rA − σrA represents the distance of atom A from its
image through the mirror; on the other hand, R̄AB = rA − σrB

is the distance of one atom (say, A) from the image of the
other atom (say, B). For small oscillation amplitudes such that
a � RA (B), R̄A (B), R̄AB, we can perform a series expansion of
the exponential function in (10) in powers of a, obtaining

eik·[ru (t ′ )−σrv (t ′′ )]


 eik·R̄uv {1 − i(k · n̂)a[sin(ωpt ′) + sin(ωpt ′′)]

− 1
2 (k · n̂)2a2[sin(ωpt ′) + sin(ωpt ′′)]2 + · · · }, (11)

where n̂ = (0, 0, 1) is the unit vector orthogonal to the os-
cillating plate. We can now substitute the relations (11) and
(9) into (7) and integrate over time. Taking into account only
terms up to the second order in the oscillation amplitude a,
after some algebra we get

∫
d�

∑
j

|c(k j, t )|2 
 gA(ωk, t ) + gB(ωk, t )

± gAB(ωk, t ), (12)
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where

gA (B)(ωk, t ) = πck

h̄V

(
μ

eg
A (B)

)
�

(
μ

eg
A (B)

)
m

Re
∫

d�

[
(δ�m − k̂�k̂m)h0(ωk − ω0, t ) − σ�p(δpm − k̂pk̂m)eik·R̄A (B)

×
(

h0(ωk − ω0, t ) − i(k · n̂)ah1(ωk − ω0, ωp, t ) − (k · n̂)2 a2

2
[h2(ωk − ω0, ωp, t ) + h3(ωk − ω0, ωp, t )]

)]

(13)

are the single-atom contributions (Re indicates the real part) and

gAB(ωk, t ) = 4πck

h̄V

(
μ

eg
A

)
�

(
μ

eg
B

)
mRe

∫
d�

[
(δ�m − k̂�k̂m)eik·RAB h0(ωk − ω0, t ) − σ�p(δpm − k̂pk̂m)eik·R̄AB

×
(

h0(ωk − ω0, t ) − i(k · n̂)a h1(ωk − ω0, ωp, t ) − (k · n̂)2 a2

2
[h2(ωk − ω0, ωp, t ) + h3(ωk − ω0, ωp, t )]

)]

(14)

is the interference term, yielding the cooperative effects. In the expressions (13) and (14), we have introduced the functions

h0(ωk − ω0, t ) = sin2(ωk − ω0)t/2

[(ωk − ω0)/2]2
, (15)

h1(ωk − ω0, ωp, t ) = sin ωpt/2
sin(ωk − ω0)t/2

(ωk − ω0)/2

(
sin(ωk − ω0 + ωp)t/2

(ωk − ω0 + ωp)/2
+ sin(ωk − ω0 − ωp)t/2

(ωk − ω0 − ωp)/2

)
, (16)

h2(ωk − ω0, ωp, t ) = sin2(ωk − ω0 + ωp)t/2

(ωk − ω0 + ωp)2/2
+ sin2(ωk − ω0 − ωp)t/2

(ωk − ω0 − ωp)2/2
− cos(ωpt )

× sin(ωk − ω0 + ωp)t/2 sin(ωk − ω0 − ωp)t/2

(ωk − ω0 + ωp)(ωk − ω0 − ωp)/4
, (17)

h3(ωk − ω0, ωp, t ) = sin2(ωk − ω0)t/2

[(ωk − ω0)/2]2
− 2 cos(ωpt )

sin(ωk − ω0)t/2

ωk − ω0

(
sin(ωk − ω0 + 2ωp)t/2

ωk − ω0 + 2ωp
+ sin(ωk − ω0 − 2ωp)t/2

ωk − ω0 − 2ωp

)
.

(18)

These functions give the behavior of the emitted spectrum by
the two-atom system as a function of the mirror’s oscillation
frequency ωp and the atomic transition frequency ω0. They are
responsible for the qualitative features and changes (with re-
spect to the fixed-mirror case) of the spectrum of the radiation
emitted due to the motion of the boundary. In fact, inspection
of (15)–(18) clearly shows that, in addition to the usual central
peak at ωk = ω0 (present also in the case of a static mirror),
new lateral peaks at ωk = ω0 ± ωp appear in the spectrum
due to the presence of energy denominators as ωk − ω0 ± ωp

in Eqs. (16)–(18). These contributions are clearly related to
the motion of the mirror and vanish in the limit of a static
boundary, namely, when a and/or ωp vanish.

Substituting Eqs. (12)–(14) into (8) and separating the
terms according to the order of the plate’s oscillation am-
plitude a, some straightforward algebra finally yields the
expression of the emission spectrum in the form

P(ωk, t ) = P(0)(ωk, t ) + P(1)(ωk, t ) + P(2)(ωk, t ), (19)

where P(0)(ωk, t ) is the zeroth-order contribution, while
P(1)(ωk, t ) and P(2)(ωk, t ) give, respectively, the first- and
second-order (in the mirror’s oscillation amplitude a) modi-
fications to the spectrum consequent to the adiabatic motion
of the mirror. Such contributions are

P(0)(ωk, t ) = k3

2π h̄

B∑
u=A

(
μeg

u

)
�

(
μeg

u

)
m

[
2

3
δ�m − σ�pF R̄u

mp

sin kR̄u

k3R̄u

]
sin2(ωk − ω0)t/2

[(ωk − ω0)/2]2

±ck3

π h̄

(
μ

eg
A

)
�

(
μ

eg
B

)
m

[
F RAB

�m

sin kRAB

k3RAB
− σ�pF R̄AB

mp

sin kR̄AB

k3R̄AB

]
sin2(ωk − ω0)t/2

[(ωk − ω0)/2]2
, (20)

P(1)(ωk, t ) = k3

2π h̄
aσ�p

[ B∑
u=A

(
μeg

u

)
�

(
μeg

u

)
m(n̂ · ∇R̄u )F R̄u

mp

sin kR̄u

k3R̄u
± 2

(
μ

eg
A

)
�

(
μ

eg
B

)
m(n̂ · ∇R̄AB )F R̄AB

mp

sin kR̄AB

k3R̄AB

]
h1(ωk − ω0, ωp, t ),

(21)
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P(2)(ωk, t ) = − k3

2π h̄

a2

2
σ�p

[ B∑
u=A

(
μeg

u

)
�

(
μeg

u

)
m(n̂ · ∇R̄u )2F R̄u

mp

sin kR̄u

k3R̄u
± 2

(
μ

eg
A

)
�

(
μ

eg
B

)
m(n̂ · ∇R̄AB )2F R̄AB

mp

sin kR̄AB

k3R̄AB

]

× [h2(ωk − ω0, ωp, t ) + h3(ωk − ω0, ωp, t )]. (22)

Here

F r
�m = (−δ�m∇2 + ∇�∇m)r (23)

is a differential operator acting on variable r, RAB = |rA − rB|,
R̄A (B) = |rA (B) − σrA (B)|, and R̄AB = |rA − σrB|, with rA and
rB the positions of atoms A and B, respectively.

A comparison of these expressions with the analogous
quantity for the static-mirror case shows that the main dif-
ference is the presence of terms related to the oscillation
frequency of the mirror, specifically two new lateral peaks
in the spectrum at frequencies ωk = ω0 ± ωp. Their relative
intensities are of the order of a/R̄i [see Eq. (21)] and (a/R̄i )2

[see Eq. (22)] and give a qualitative change of the spectrum.
We wish to point out that secondary lateral peaks at frequency
ωk = ω0 ± 2ωp, stemming from second-order terms in the
expansion in a, are also present [as Eq. (18) shows]. They
represent, at the order considered, a sort of nonlinear effect;
however, within the range of validity of our approximations,
they give a quite small contribution to the overall spectrum.

Our expression for P(ωk, t ) is valid for a generic geometric
configuration of the two atoms with respect to the oscillating
plate. In order to get clear physical insight it is helpful to
analyze P(ωk, t ) in the specific case of atoms aligned along
the z axis (i.e., perpendicular to the mirror), for example,
when rA = (0, 0, z0

A) and rB = (0, 0, z0
B). Figure 2 shows the

spectrum (scaled with respect to the total emission proba-
bility) in the symmetric case and in the limit of long times,
as a function of the detuning ωk − ω0: The dashed red line
shows the dynamical case, while the solid green line shows
the static-mirror case. As the figure shows, the presence of
the dynamical mirror determines the two symmetric lateral
peaks shifted from the central peak by the modulation fre-
quency. These two lateral peaks are symmetric with respect
to the central peak because the photonic density of states is
essentially the same at the two frequencies. Analogous lateral
peaks were found for a single two-level atom located near an
oscillating mirror [29]. A similar result is obtained for dipole
moments aligned perpendicular to the mirror, as Fig. 3 shows.
Interestingly, although the image dipole of μ⊥ is still μ⊥ and
a constructive interference between the atomic dipoles and
their mirror images is expected, the intensity of the two lateral
peaks in the emitted spectrum is smaller than that obtained in
the case of dipole moments oriented parallel to the plate, as
shown in Fig. 4. This effect seems to suggest that the oscilla-
tion of the mirror can induce a sort of destructive interference
between the atomic dipoles and their images, oriented along
the z direction, parallel to the motion of the plate.

We have also considered the emitted spectrum by the
two-atom system at different times. The results obtained are
illustrated in Fig. 5 for two atoms prepared in a symmetric
superposition with dipole moments oriented parallel to the

oscillating mirror. The figure shows that the central and the
lateral peaks increase with time, as expected.

Finally, we wish to stress that our results are in principle
detectable using current experimental techniques. For exam-
ple, for two hydrogen atoms and typical optical transitions, the
natural linewidth is of the order of ∼108 s−1; thus an oscilla-
tion frequency in the range ωp ∼ 109–1010 s−1, which can be
currently obtained by exploiting the technique of dynamical
mirrors [25,27], is sufficient to resolve the lateral lines in the
emitted spectrum.

III. COLLECTIVE SPONTANEOUS DECAY RATE
OF THE TWO-ATOM SYSTEM

We now evaluate the decay rate of the two-atom system to
the ground state. This is obtained by integrating P(ωk, t ) over
k and then taking its time derivative


(t ) = d

dt

∫ ∞

0
dωkP(ωk, t ). (24)

Since the functions h0(ωk − ω0, t ) and hi(ωk − ω0, ωp, t ) (i =
1, 2, 3) are strongly peaked at ωk ∼ ω0 and ωk ∼ ω0 ± ωp,
we can approximate the space-dependent functions in (20)–
(22) by their expressions in k0 (taking also into account that

FIG. 2. Spectrum (scaled with respect to the total emission prob-
ability) emitted by the two-atom system, prepared in the correlated
symmetric state, as a function of the detuning ωk − ω0, both in the
static case (solid green line) and in the dynamical case, with the two
lateral peaks (dashed red line). The atoms are aligned perpendicular
to the mirror, with dipole moments along the x axis (parallel to the
plate). The figure clearly shows that the presence of a dynamical
mirror produces two lateral peaks (dashed red line) shifted from
the central peak by the mirror’s modulation frequency. The inset
shows a close-up of the central peak in the two cases considered. The
parameters are chosen such that a = 2 × 10−7 m, z0

A = 10−6 m, z0
B =

1.1 × 10−6 m, ωp = 1.5 × 109 s−1, ω0 = 1015 s−1, t = 1.6 × 10−7 s,
μ ∼ 10−30 C m.
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FIG. 3. Spectrum (scaled with respect to the total emission prob-
ability) emitted by the two-atom system, prepared in the correlated
symmetric state, as a function of the detuning ωk − ω0, both in
the static case (solid green line) and in the dynamical case with
the two lateral peaks (dashed blue line). The dipole moments are
perpendicular to the plate (along the z axis). As before, the presence
of a dynamical mirror produces two lateral peaks (dashed blue line)
shifted from the central peak by the mirror’s modulation frequency.
The inset shows a close-up of the central peak in the two cases
considered (the two curves practically overlap each other). The nu-
merical values of the parameters are the same as in the plot in Fig. 2.

ωp � ck0) and then take them out of the integrals. Taking
into account only terms up to the first order in the expansion

FIG. 4. Comparison between the emitted spectra (scaled with
respect to the total emission probability) by the two-atom system,
when the dipole moments are aligned parallel (dashed red line) and
perpendicular (solid blue line) to the plate. The figure shows that
the lateral peaks in the emitted spectrum by dipole moments aligned
along the z axis are smaller than those obtained in the case of dipole
moments oriented parallel to the mirror (along the x axis). The inset
shows a close-up of the central peak in the two cases considered. The
numerical values of the parameters are the same as in Fig. 2.

(11) on the mirror’s oscillation amplitude, a straightforward
calculation gives


(t ) = 
A(t ) + 
B(t ) ± 
AB(t ), (25)

where


A (B)(t ) = k3
0

h̄

(
μ

eg
A (B)

)
�

(
μ

eg
A (B)

)
m

[
2

3
δ�m − σ�pF R̄A (B)

mp
sin k0R̄A (B)

k3
0 R̄A (B)

+ 2a sin(ωpt )σ�p(n̂ · ∇R̄A (B) )F R̄A (B)
mp

sin k0R̄A (B)

k3
0 R̄A (B)

]
, (26)


AB(t ) = 2k3
0

h̄

(
μ

eg
A

)
�

(
μ

eg
B

)
m

[
F RAB

�m

sin k0RAB

k3
0RAB

− σ�pF R̄AB
mp

sin k0R̄AB

k3
0 R̄AB

+ 2a sin(ωpt )σ�p(n̂ · ∇R̄AB )F R̄AB
mp

sin k0R̄AB

k3
0 R̄AB

]
. (27)

The expressions (25)–(27) are general, valid for a generic
configuration of the two atoms with respect to the plate, and
show oscillations of the decay rate with time, directly related
to the adiabatic motion of the mirror. In fact, the emission
rate of our system shows a term that oscillates in time by
following the mirror’s law of motion, of course. This is strictly

related to our hypothesis of adiabatic motion of the boundary.
In order to discuss in more detail this result, similarly to what
we did in the preceding section, we analyze the specific case
of atoms aligned along the z direction, i.e., perpendicular to
the reflecting plate. In this case of a perpendicular orientation
we obtain


A(t ) = k3
0

h̄

(
μ

eg
A

)
�

(
μ

eg
A

)
m

{
2

3
δ�m − σ�p

[
−(δpm − 3( ˆ̄RA)p( ˆ̄RA)m)

(
sin k0R̄A

k3
0 R̄3

A

− cos k0R̄A

k2
0 R̄2

A

)

+ (δpm − ( ˆ̄RA)p( ˆ̄RA)m)
sin k0R̄A

k0R̄A

]
+ 2a sin ωpt

R̄A
σ�p

[
(δpm − ( ˆ̄RA)p( ˆ̄RA)m) cos k0R̄A

− 2
(
δpm − 3( ˆ̄RA)p( ˆ̄RA)m

) sin k0R̄A

k0R̄A
+ 3(δpm − 5( ˆ̄RA)p( ˆ̄RA)m)

(
sin k0R̄A

k3
0 R̄3

A

− cos k0R̄A

k2
0 R̄2

A

)

− (δmz( ˆ̄RA)p + δpz( ˆ̄RA)m)

(
sin k0R̄A

k0R̄A
+ 3

cos k0R̄A

k2
0 R̄2

A

− 3
sin k0R̄A

k3
0 R̄3

A

)]}
, (28)


B(t ) = 
A(t ) with A → B, (29)
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AB(t ) = 2k3
0

h̄

(
μ

eg
A

)
�

(
μ

eg
B

)
m

{[
−(δ�m − 3(R̂AB)�(R̂AB)m)

(
sin k0RAB

k3
0R3

AB

− cos k0RAB

k2
0R2

AB

)

+ (δ�m − (R̂AB)�(R̂AB)m)
sin k0RAB

k0RAB

]
+ σ�p

[
(δpm − 3( ˆ̄RAB)p( ˆ̄RAB)m)

(
sin k0R̄AB

k3
0 R̄3

AB

− cos k0R̄AB

k2
0 R̄2

AB

)

− (δpm − ( ˆ̄RA)p( ˆ̄RAB)m)
sin k0R̄AB

k0R̄AB

]
+ 2a sin ωpt

R̄AB
σ�p

[
(δpm − ( ˆ̄RAB)p( ˆ̄RAB)m) cos k0R̄AB

− 2(δpm − 3( ˆ̄RAB)p( ˆ̄RAB)m)
sin k0R̄AB

k0R̄AB
+ 3(δpm − 5( ˆ̄RAB)p( ˆ̄RAB)m)

(
sin k0R̄AB

k3
0 R̄3

AB

− cos k0R̄AB

k2
0 R̄2

AB

)

− (δmz( ˆ̄RAB)p + δpz( ˆ̄RAB)m)

(
sin k0R̄AB

k0R̄AB
+ 3

cos k0R̄AB

k2
0 R̄2

AB

− 3
sin k0R̄AB

k3
0 R̄3

AB

)]}
. (30)

The expressions (28)–(30) show that the motion of the mir-
ror yields new time-dependent terms of the order of a/R̄A (B)

and a/R̄AB. We have neglected second-order terms in the
perturbative expansion; this approximation is valid for small
oscillation amplitudes with respect to other relevant length
scales in the system, that is, for a � R̄A (B), R̄AB and a �
k−1

0 . For example, for k0 ∼ 107 m−1, RA(B) ∼ 10−6 m, and
a = 10−8 m we have a/R̄A (B), a/R̄AB ∼ 10−1 and k0a ∼ 10−1

and we neglect the second-order term proportional to a2. The
conditions above are within reach of currently achievable ex-
perimental techniques.

Figure 6 shows the scaled [with respect to the Einstein
coefficient A, given in (1)] collective decay rate at different
times, as a function of the distance of atom B from the mirror’s
average position, when atom A is at a fixed position. The two
atoms are aligned orthogonal to the mirror and prepared in
the symmetric state. The dipole moments are parallel to the

FIG. 5. Comparison between the emitted spectra (scaled with
respect to the total emission probability) by the two-atom system, at
different times. The dipole moments are aligned parallel to the plate.
The lines refer to the emitted spectrum at times t = 10−8 s (dotted
green line), t = 3 × 10−8 s (dashed blue line), and t = 6 × 10−8 s
(solid red line). The figure shows that the central peak (see the inset
on the left) and the two lateral peaks (see the inset on the right) in
the spectrum increase with time, as expected. The numerical values
of the other parameters are the same as in Fig. 2.

mirror. The figure shows that the decay rate oscillates in time
and that, at a given time, in specific distance ranges it can be
increased (in the figure, see the solid red line, dashed blue
line, and dotted orange line) with respect to the static-mirror
case (dot-dashed green line); in other distance ranges, the
opposite occurs. Analogous results are obtained in the case of
atoms prepared in an antisymmetric configuration, as shown
in Fig. 7.

In conclusion, our results show that the spectrum of the
emitted radiation can be qualitatively changed by exploiting
the oscillation of the plate and that the collective sponta-
neous emission can be controlled (enhanced or suppressed)
by modulating in time the position of the mirror. This suggest
the possibility to control also other radiative processes by
modulated (time-dependent) environments, for example, the
resonance energy transfer between atoms or molecules.

FIG. 6. Plot of the collective decay rate for two atoms prepared
in the correlated symmetric state, at different times, as a function
of the distance of atom B from the mirror, when the atom A is kept
fixed (RA = zA = 1.25 × 10−6 m). The atoms are aligned along the
z direction, with dipole moments parallel to the mirror. The lines
refer to two atoms near the oscillating mirror, at times t = 2 × 10−7 s
(solid red line), t = 2.3 × 10−7 s (dashed line), and t = 2.4 × 10−7 s
(dotted line). The dot-dashed green line refers to two atoms in the
presence of a static mirror. We have also used a = 2 × 10−7 m, ωp =
1.5 × 109 s−1, and ω0 = 1015 s−1.
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FIG. 7. Plot of the collective decay rate for two atoms prepared
in the correlated antisymmetric state, at different times, as a function
of the distance of atom B from the mirror, when the atom A is kept
fixed (RA = zA = 1.25 × 10−6 m). The atoms are aligned along the
z direction, with dipole moments parallel to the mirror. The lines
refer to two atoms near the oscillating mirror, at times t = 2 × 10−7 s
(solid red line), t = 2.3 × 10−7 s (dashed blue line), and t = 2.4 ×
10−7 s (dotted orange line). The dot-dashed green line refers to two
atoms near a static mirror. The other relevant parameters are the same
as in Fig. 6.

IV. CONCLUSION

In this paper, we have discussed the collective spontaneous
decay of a system of two identical two-level atoms prepared
in a correlated (symmetric or antisymmetric) Bell-type state
and located near an oscillating perfectly reflecting plate, in the
adiabatic regime. We have discussed in detail the effect of the
motion of the mirror on the spectrum of the radiation emitted
by the two atoms and their collective spontaneous decay rate.
We have shown that the motion of the mirror strongly affects
the features of the spectrum, which exhibits, in addition to the
usual peak at ω = ω0, two new lateral peaks separated from
the atomic transition frequency by the oscillation frequency
of the plate, similarly to previous results for the single-atom
decay [29]. We have also found that the decay rate to the
collective ground state is modulated in time and can be in-
creased or decreased, compared with the static-boundary case,
according to time and atom-wall distances, by exploiting the
oscillating boundary. Our results show that modulated envi-
ronments can provide additional possibilities, with respect to
fixed boundaries, to manipulate and tailor atomic radiative
processes such as the cooperative spontaneous emission. Also,
they strongly indicate a similar possibility for other relevant
radiative processes such as the energy transfer between two
atoms or the resonance interaction energy between correlated
atoms. Consideration of these physical systems is left for
future work.
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APPENDIX: FIELD OPERATORS AND MODES
WITH THE ADIABATICALLY MOVING MIRROR

For a static mirror located at z = 0, the electric field oper-
ator is given by

E(r) = i
∑
k j

√
2π h̄ck

V
fk j (r)(a†

k j − ak j ), (A1)

where ak j and a†
k j are annihilation and creation operators

obeying usual boson commutation relations and fk j (r) are the
mode functions satisfying the appropriate boundary condition
at the mirror’s surface. The annihilation and creation operators
in (A1) are time independent, because we are working in the
Schrödinger representation. We start by considering a cubic
cavity of side L with walls at x = ±L/2, y = ±L/2, z = 0,
and z = L. In this case, we have [29,46]

[fk j (r)]x =
√

8(êk j )x cos
[
kx

(
x + L

2

)]

× sin
[
ky

(
y + L

2

)]
sin [kzz], (A2)

[fk j (r)]y =
√

8(êk j )y sin
[
kx

(
x + L

2

)]

× cos
[
ky

(
y + L

2

)]
sin [kzz], (A3)

[fk j (r)]z =
√

8(êk j )z sin
[
kx

(
x + L

2

)]

× sin
[
ky

(
y + L

2

)]
cos [kzz], (A4)

where êk j ( j = 1, 2) are unit polarization vectors, assumed
real, satisfying êk j · êk j′ = δ j j′ and êk j · k = 0. In the limit
L → ∞, the case of a single mirror at z = 0 is recovered. The
field modes (A2)–(A4) are normalized as

∫
d3r fk j (r) · fk′ j′ (r) = V δkk′δ j j′ , (A5)

where V is the quantization volume.
The polarization sum can be conveniently done by exploit-

ing the relation [46]

∫
d�

∑
j

[fk j (r)]�[fk j (r′)]m

=
∫

d� Re{(δ�m − k̂�k̂m)eik·(r−r′ )

− σ�p(δpm − k̂pk̂m)eik·(r−σr′ )}, (A6)

where

σ =

⎛
⎜⎝

1 0 0

0 1 0

0 0 −1

⎞
⎟⎠ (A7)
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is the reflection matrix on the reflecting plate placed at z =
0. For the validity of the relation (A6) it is understood that
all other quantities present inside the angular integration are
invariant under the transformation k → −k.

We now extend the relations above to the time-dependent
case of an oscillating plate, under the adiabatic approxima-
tions defined in Sec. II. We choose the laboratory frame,
where the atoms are at rest and the mirror is moving. The
mirror is moving along the z direction with amplitude a and
angular frequency ωp, as discussed in Sec. II. We indicate
by fk j (r, t ) the instantaneous modes of the form (A2)–(A4),
relative to time t (they change according to the wall’s posi-
tion oscillating around z = 0), to be used in the electric field
operator (A1) for our dynamical case. The relation we use in
our calculations in Sec. II is (A6), appropriately generalized
to our (adiabatic) dynamical case. This is done by taking into
account that on the right-hand side, the quantity r − σr′ in the
second term is the distance between the point r and the image
of the point r′ reflected on the mirror; this is a time-dependent
quantity because the position of the mirror changes with time.
Thus we use the relation

∫
d�

∑
j

[fk j (ru, t ′)]�[fk j (rv, t ′′)]m

=
∫

d� Re{(δ�m − k̂�k̂m)eik·(ru−rv )

− σ�p(δpm − k̂pk̂m)eik·[ru (t ′ )−σrv (t ′′ )]} (A8)

(�, m, p = x, y, z). In (A8), ru (v) (u, v = A, B) is the position
vector of atom A or B, ru(t ) = ru − a sin(ωpt ) is the in-
stantaneous time-dependent atom-wall distance, and we have
defined the vector a = (0, 0, a).

The relations (A6) and (A8) are obtained in the limit L →
∞, where the case of a single mirror is recovered. For the
validity of (A8), the conditions mentioned after (A6) should
be verified, as well as our adiabatic approximation.

We wish to point out that we are not including a time de-
pendence of the eigenfrequencies ωk , as one could in principle
expect for a cavity with a time-dependent length, because at
the end we take the limit L → ∞, and in this limit the field
eigenfrequencies have a continuous and time-independent
spectrum.
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