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Type-I spontaneous parametric down-converted biphotons can be described approximately by a double-
Gaussian wave function in configuration space. Using an effective propagator in the Fresnel approximation,
the time evolution and transversal spreading of the two-particle biphoton wave function allow us to evaluate the
Sorkin parameter κ , which results from nonclassical path contributions of the kink type and loops to double-
and triple-slit interferometry. This simple unidimensional model for the evaluation of κ predicts that kinked
nonclassical paths may lead to κ ≈ 10−5 for degenerate biphotons. We show that such a model reproduces
well the Sorkin parameter for matter waves found in more involved approaches in the literature. Moreover,
we establish a hierarchy of approximations based on the shape of the nonclassical paths for matter waves and
compare their size with leading relativistic corrections to the propagator.
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I. INTRODUCTION

For over 200 years, Young’s interference experiment has
been crucial in probing nature’s wave-particle duality. Inter-
ference phenomena allowed us to set strong arguments in
favor of the wave nature of light [1], helped us understand the
crystalline structure of materials [2], and showed that even
large molecules, such as C60, can behave like waves [3,4]
in benchtop experiments. Remarkably, interference has made
it possible to verify the physical reality of the electromag-
netic potentials [5,6], rule out the existence of a luminiferous
aether [7], and detect gravitational waves at the Laser Interfer-
ometer Gravitational-Wave Observatory, in what is arguably
the most precise scientific experiment in human history [8].

The most typical Young’s experiment setup consists of a
source, an opaque surface with two slits, and a screen at
which the signal is detected. The Born rule states that if a
quantum object is represented by a wave function ψ (�x, t ),
than the probability density of detecting it at position �x and
time t is given by the absolute square of the wave function [9].
In this away, when the standard superposition principle is
applied in a double-slit experiment, it has been common to
consider that the wave function at the screen is a superposition
of two amplitudes: one corresponding to the particle going
through the upper slit and the other through the lower slit;
these are usually called classical trajectories. However, we
run into trouble as the full problem (propagation through two
simultaneously open slits) is not equivalent to the sum of those
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two possibilities (a single open slit at a time)—these con-
figurations do not possess the same boundary conditions. Of
course, the problem is well posed. The probability amplitude
for a particle to be at a space-time point (�xB, tB) given that it
started at (�xA, tA) is given by the Feynman path integral

〈xB|xA〉 =
∫

D[x] e
i
h̄ S[x], (1)

where S[x] is the classical action, subjected to the constraints
x(tA) = �xA and x(tB) = �xB [10]. For a potential representing a
multislit barrier, this is an overwhelmingly difficult problem
even if treated numerically [11]. This poses an interesting and
fundamental question: Can we test the validity of Born’s rule
and the superposition principle in multislit diffraction with
light or matter waves? For this purpose, one needs to consider
leading nonclassical (exotic or subleading) trajectories that
contribute to (1) in a Young-type experiment. Yabuki [12]
exploited the contributions from such nonclassical paths to
the interference pattern in a double-slit experiment using both
loops and kinks as shown in Fig. 1.

For massive particles, two- and three-dimensional models
were implemented using a modified effective free particle
propagator to account for the exotic paths. The effect of
nonclassical trajectories on the experiment’s outcome is quan-
tified by the Sorkin parameter κ , originally introduced in
Ref. [13]. In a multislit experiment, if ψA,B,C represents the
wave function at the detector for a particle emerging from slits
A, B,C, the probability of detection at the screen is given by
Born’s rule:

PA = |ψA|2, PAB = PA + PB + 2Re(ψ∗
AψB),

PABC = PAB + PBC + PAC − PA − PB − PC . (2)

Notice that for three or more slits, one always has a sum of
terms denoting the interference of pairs of wave functions. A
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(a) (b)

FIG. 1. Lowest-order single-particle nonclassical trajectories.
(a) are referred to as kinks and (b) as loops.

possible contribution from higher order terms is measured by

ε = PABC − PAB − PBC − PAC + PA + PB + PC, κ ≡ ε/Imax,

(3)

in which the Sorkin parameter, here, has been normalized with
respect to the intensity at the central maximum Imax in the
interference pattern as defined in Ref. [14].

In Ref. [15], the validity of Born’s rule was verified through
the experimental observation of exotic (looped) trajectories
for the light by directly measuring their contribution to the
formation of optical interference fringes in a triple slit. Such
exotic paths were enhanced with electromagnetic fields in the
vicinity of the slits. The authors have verified that nonclassical
paths were related to the near-field component of the photon’s
wave function. Thus, by controlling the strength and spatial
distributions of the near fields around the slits, they claimed
that the probability of looped trajectories were increased,
leading to κ ≈ |0.25| for x-polarized heralded photons of
wavelength 810 nm produced by degenerate down conversion
in such a way that there was only one photon at a time in
the experimental setup. The geometry involved a triple slit
with height h = 100 μm, slit width w = 200 nm, and interslit
separation d = 4.6 μm. Conversely, κ is almost zero when
no enhancement was performed. By measuring each term in
Eqs. (3), U. Sinha et al. [16] performed a three-slit experiment
using different photon sources such as an attenuated laser
source down to ≈200 f W and heralded single photons pro-
duced via spontaneous parametric down conversion (SPDC)
of wavelength 810 nm. The typical sizes in their triple-slit
apparatus were h = 300 μm, w = 30 μm, and d = 100 μm.
They determined a bound on the accuracy of Born’s rule,
namely, that third-order interference was less than 10−2 of
the expected second-order contributions given by Born’s rule.
Moreover, semianalytic and numerical methods were used in
estimates for the Sorkin factor κ . For instance, in Ref. [14],
an energy space propagator was used for both photons and
electrons,

K ( �r1, �r2) = k

2π i

eik| �r1− �r2|

| �r1 − �r2| , (4)

which satisfies the Helmholtz equation away from
�r1 = �r2 and the Fresnel-Huygens principle K ( �r1, �r3) =∫

d �r2 K ( �r1, �r2)K ( �r2, �r3) for �r2 integrated over a plane between

�r1 and �r3 perpendicular to �r1 − �r3. Such transitivity property
is essential to write such a propagator in a path integral
form [11]

K ( �r1, �r2) =
∫

D[�x(s)] exp[ik
∫

ds],

where D[�x(s)] is the functional integration over the paths �x(s)
connecting �r1 and �r2. Thus, nonclassical path contributions to
κ are numerically estimated in a triple-slit setup in the far-field
(Fraunhofer) regime. In the thin-slit approximation, for inci-
dent photons of wavelength λ = 810 nm, w = 30 μm, and
d = 100 μm, distance between source and slits and slits and
detector equal to 18 cm, they found κ ≈ 10−6, whereas for
electrons of λ = 50 pm, w = 62 nm, d = 272 nm, source-slit
separation 30.5 cm and slit-screen distance 24 cm, κ was
estimated as ≈10−9. Within their model, they were able to
verify that keeping other experimental parameters fixed, κ

increases with an increase in λ, arriving at κ ≈ 10−3 for the
microwave regime and macroscopic distances such as w =
1.2 m and d = 4 m. Later, an analytical description for the
Sorkin parameter was derived and allowed for testing the role
played by geometrical parameters on its determination [17].
In that work, the authors obtain good agreement with the
results of Ref. [14] as well as with sophisticated and enduring
numerical finite-difference time-domain (FDTD) solutions of
Maxwell’s equations for realistic models of three-slit devices
presented in Ref. [18]. In their analytical description for
κ using (3) and the propagator (4), successive approxima-
tions were possible assuming thin-slit and Fraunhofer limits
(namely, source-slit and slit-screen distances much greater
than any other length scale). Moreover, in the Fresnel regime
where such approximations are not valid, a C++ code using
Riemannian integration was used in Ref. [17]. They have
tested their code for the same parameters used for the photons
in Ref. [14] with a slit height h = 300 μm. Starting with a
slit-screen separation of D = 20 cm which yields |κ| ≈ 6 ×
10−7, the value of |κ| seems to increase as D diminishes,
reaching a sudden peak at D ≈ 1.3 cm which the authors
attribute to a breakdown of the paraxial approximation in the
extreme near-field regime. Another interesting breakthrough
from the experimental viewpoint was reported in Ref. [19].
Using a triple-slot experiment in the microwave domain, the
authors obtained a nonzero κ using a pyramidal horn antenna
as a source of electromagnetic waves of λ = 5 cm which
reached 10-cm-wide slots and interslot distance 13 cm. In
addition, baffles were introduced inside the slits, allowing
for studying a hierarchy of subleading paths contributing
to κ .

Experiments testing the superposition principle to set
bounds for the validity of Born’s rule using massive par-
ticle multipath interferences were performed in Ref. [20].
Cotter et al. used a source of molecules with M = 515 amu
and Broglie wavelength λdB = 2.5 ↔ 5.0 pm. The diffraction
mask was composed by single, double, and triple slits of
width w = 80 nm with periodicities d = 100 nm and d =
200 nm for the double and d = 100 nm for the triple slit.
In their experiment, a different definition of κ was used,
namely, the normalization in Eqs. (3) was taken with respect
to the total number of molecules detected for a given Broglie
wavelength leading to |κ| � 10−2. Likewise, metastable
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helium atoms were used in Ref. [21]. They have relied on
a large number of counting statistics (1.7 × 106 counts in
total) to obtain four diffraction patterns with a diffraction
mask similar to Ref. [20] with w = 84.5 nm, d = 136.5 nm,
and h = 1.6 mm. The mask was placed at ≈60 mm from the
collimation device and 800 mm from the detection screen.
Therefore, with that experiment, a new bound to Born’s rule
using massive particle multipath diffraction was established
at |κ| � 2.9 × 10−5.

A simplified analytical model to evaluate the Sorkin pa-
rameter for matter waves was constructed in Refs. [22,23,25].
The authors consider a physical setup in which the quantum
effects manifest chiefly in the transversal direction, say x̂,
alongside the slit widths and perpendicular to the momentum
�p = pzẑ of the particles emitted by the source. This turns out
to be a good approximation in the limit where �pz 
 pz,
allowing for treating the motion in the z direction as classi-
cal since pz is sharply defined [4]. The multislit interference
pattern at the screen along the x direction is obtained ana-
lytically through explicit integration using Gaussian-shaped
apertures. To assess the time spent by the particle during
the interslit evolution of exotic paths, the authors exploit the
momentum uncertainty in the x direction which is roughly
ε ≡ md/(�px ). In Ref. [22], it was verified for electron waves
that the Gouy phase difference |δμG| is due to phases of
nonclassical path contributions. Thus, |δμG| serves as a signal
and measure of nonclassical paths which led to κ ≈ 10−8 in
a triple-slit construction in accordance with Ref. [14]. Using
the same unidimensional model, a double-slit setup using two-
level atoms and QED cavities positioned at the slit apertures
was constructed in Ref. [23]. The purpose was to account for
the contribution of exotic trajectories only in the interference
pattern via which-way information about the atoms. In this
sense, in Ref. [24] it was shown that nonclassical paths yield
different interference patterns using one and two which-way
detectors in a double-slit experiment with light waves. This
gedanken experiment was claimed to provide a new parameter
(different from κ) to test Born’s rule, considering exotic paths
as displayed in Fig. 1(a) and the propagator 4 in the Fraun-
hofer and stationary phase approximation. Finally, in another
contribution [25] that employs the unidimensional model, a
two-slit experiment was modeled with cold neutrons using the
following parameters: mn = 1.67 × 10−27 kg, d = 125 μm,
w = 7 μm, source-slit distance zT = 5.0 m, slit-screen dis-
tance zτ = 5.0 m, λdB = 2 nm, interslit propagation time ε =
19.6 ms, leading to κ ≈ 10−5. Their analysis also allows for
studying the behavior of κ with zτ (Fresnel regime). More-
over, the authors showed that the Sorkin parameter can be
related to the visibility and axial phases (such as the Gouy
phase) and thus they could be used as alternative quantifiers
for exotic paths.

In this contribution, we employ the one-dimensional model
constructed in Refs. [22,23,25] to evaluate the Sorkin pa-
rameter. We address some questions related to the level of
approximations involved in the analysis of kinked and looped
nonclassical paths for both matter and light particles using
double- and triple-slit constructions. The main advantage of
this simplified model is that it is completely analytical and
reproduces the order of magnitude of Sorkin parameters com-
puted with more sophisticated approaches. Furthermore, we

show that our approach can be extended to the effective bipho-
ton wave function in the configuration space which describes
twin photons produced by type-I SPDC (SPDC-I) [26]. Be-
cause the signal of nonclassical paths in the interference
pattern is a relatively tiny effect, we assess the contribution
of relativistic effects in the interference pattern to compare
with exotic path contributions. Simple analytical methods are
useful as they provide hints for experimentalists to detect such
small effects.

This paper is organized as follows. In Sec. II, we out-
line from first principles the approximations involved in the
construction of biphoton wave functions as well as the en-
tanglement measures and parameters encoded in a double
Gaussian approximation. We also derive an effective propaga-
tor which describes the time evolution of the wave packets and
interference in the transversal direction. Section III presents
a consistency check of the framework in which it is verified
that two entangled particles of wavelength λ can behave as
a biphoton of wavelength λ/2. The Sorkin parameter κ in
a double- and triple-slit setup is defined in Sec. IV, where
we also compute the leading order contributions to κ for a
biphoton produced via type-I SPDC. Moreover, within our
framework, we compute the leading order contributions of
nonclassical paths for matter waves (electron) and show that
they are in agreement with more involved numerical and
analytical methods in the literature. We finish that section
by establishing a hierarchy of nonclassical paths (kinks and
loops) that contribute to κ and compare their magnitude to
relativistic corrections to the propagators. In Sec. V, we draw
our final remarks and conclusions and we leave the bulky
formulas to the Appendices.

II. SPDC-I BIPHOTON WAVE FUNCTION

A first quantized theory of a photon is in principle not
achievable because the photon is a massless relativistic quan-
tum particle and thus is intrinsically described within (second
quantized) quantum field theoretical formalism. Due to gauge
symmetry, the appropriate degree of freedom is the electro-
magnetic potential Aμ. This fact does not prevent us from (a)
describing the low intensity limit of a double-slit experiment
with light within wave mechanics, (b) defining an approxi-
mate position eigenstate for a photon, nor (c) investigating a
quantum-mechanical description of optical beams [27]. One
plausible approach from Oppenheimer [28] is based on an
extension of the Weyl equation for massless neutrinos by
replacing the Pauli vector with an angular momentum operator
for spin-1 particles. A nice review can be found in Ref. [29].
The resulting six-component bispinors have positive and neg-
ative frequencies and can be interpreted as energy wave
functions of photons and antiphotons, respectively. Moreover,
a Lorentz invariant measure for the scalar product can be
defined as well as an approximate position state. However,
the propagator and time-dependent correlations within this ap-
proach is a tricky problem mainly due to the fact that photons
are nonlocalizable. In Ref. [30], a modification in the Fourier
transform to define the photon wave function was proposed.
Whichever effective model one uses to describe a photon, it is
important to take into account the process which generates
it. In Ref. [31] was presented a wave function description
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FIG. 2. Type-I SPDC process. An uniaxial crystal of optical axis
z′. Ordinary rays have polarization in a direction perpendicular to
the plane zz′. Extraordinary rays have polarization on the plane zz′

and experiences a refractive index ne(θ ) that depends on the angle θ

between the optical axis and the longitudinal direction z [26].

of a photon in Young’s double-slit experiment in which the
photon source is a single excited atom (see also Ref. [32]).
Moreover, in Ref. [33], a second quantized version of the
Bialynicki-Birula-Sipe photon wave function [34] formalism
was extended to include the interaction between photons
and continuous (nonabsorptive) media. As an application, the
quantum state of the twin photons generated by SPDC was
derived. That being said, an effective wave-function treatment
of photon states is possible and tools from Schroedinger wave
mechanics may provide insights on various aspects of quan-
tum light.

SPDC occurs when a nonlinear and usually birefringent
crystal is hit by an incoming photon at (pump) frequency ωp

which in turn is converted into two new outgoing photons of
frequencies ωs (signal) and ωi (idler) with ωp = ωi + ωs and
�kp = �ki + �ks. The polarization properties of the photon pair
define the resulting spatial distribution and serve to character-
ize the SPDC phenomenon. A type-I SPDC process happens
when the polarization of the outgoing photons is parallel to
each other and orthogonal to the polarization of the incom-
ing photon. The spatial distribution of the emerging photons
forms a cone that is aligned with the pump beam propagation
with the apex at the crystal (Fig. 2). The state of a down-
converted photon pair may be constructed based on some
reasonable simplifying assumptions [26,35–37], such as that
the crystal dimensions are large as compared to typical photon
wavelengths, the crystal nonlinear susceptibility tensor is a
slowly varying function of the frequencies, the pump field is
a narrow band around ωp, and that its field amplitude does
not vary significantly as it travels across the crystal. We can
therefore write

|〉SPDC ≈ C0|01, 02〉 + C1

∫
�k1 �k2

√
ω1ω2�(�k1, �k2)

× â†
�k1

â†
�k2

|01, 02〉, (5)

where 1, 2 are signal/idler photon indices, C0,1 are normaliza-
tion constants,

∫
�ki

≡ ∫
d3�ki/(2π )3 and

�(�k1, �k2) = N δ(ω1 + ω2 − ωp)δ2(�q1 + �q2 − �qp)

× sinc

(
�kzLz

2

)
Ẽ (�q1 + �q2). (6)

In the equation above, N is a normalization constant, �kz ≡
k1z + k2z − kpz, �qi are the momenta in the transversal direc-
tion, namely, �k = (�kT , �kL ) ≡ (�q, kzẑ), and Lz is the crystal
thickness.

In addition, as in the Fresnel (paraxial) approximation
|�q|2 
 |�k|2, it is possible to express kz in terms of the trans-
verse components �q [26,36] to yield

�(�qi, �qs) = NS sinc(b2|�qi − �qs|2)e−|�qi+�qs|2/σ 2
⊥ . (7)

In (7), b2 ≡ Lz

4kep
, kep ≡ ne(θ )ωp/c, Ns is the normalization

and we assumed that the transverse pump momentum profile
is Gaussian Ẽ (�qi + �qs) = Ñ e−|�qi+�qs|2/σ 2

⊥ , which is nothing but
a statement of the uncertainty in transverse momentum con-
servation. The �qi − �qs argument in the sinc function expresses
energy and (longitudinal) momentum conservation. Notice
that �(�qi, �qs) is not separable into factors depending on �qi

and �qs and therefore it is entangled (not factorable).
In Ref. [38], it was shown that the degree of entangle-

ment is governed by the product σ⊥b. High entanglement is
achieved when either σ⊥b � 1 or σ⊥b 
 1, the minimum
occurring for σ⊥b ≈ 1. Moreover, the sinc representation of
the biphoton wave function is more entangled than its Gaus-
sian approximation, which we shall discuss below, for the
same values of σ⊥b. Moreover, this biphoton wave func-
tion is approximately separable [35] (subject to the paraxial
approximation) into a product of functions, one dependent
on only x coordinates and the other dependent on only y
coordinates). That is because for small values of x and y,
sinc(x + y) ∼ sinc(x)sinc(y). In the paraxial approximation,
the transverse momenta are much smaller than the pump mo-
mentum, and so the arguments of the sinc functions are very
small (≈10−3) [35]. Thus, writing the y component qi y, qs y

simply as qi, qs yields

�S (qi, qs) = ÑS sinc(b2(qi − qs)2)e−(qi+qs )2/σ 2
⊥ . (8)

To study the spatial transversal correlations of the biphotons,
we need to Fourier transform the wave function into coordi-
nate space. Following Refs. [35,36,38–42], the sinc function
may be approximated by a Gaussian

�G(qi, qs) = ÑGe−b2(qi−qs )2
e−(qi+qs )2/σ 2

⊥ , (9)

whose Fourier transform is

G(y−, y+) = 1√
2πσ−σ+

e
− y2−

4σ2− e
− y2+

4σ2+ , (10)

where σ− ≡ b/
√

2, σ+ ≡ √
2σ⊥ and y± ≡ (yi±ys )√

2
. Also, we

have normalized G so
∫∫

dy− dy+|G|2 = 1. We shall adopt
the double-Gaussian approximation for simplicity as it makes
both transverse position and momentum statistics easy to cal-
culate besides fitting well experimental data [43]. Moreover,
as we shall see, the double-Gaussian wave function is easy to
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propagate in time within the paraxial regime (the same regime
used in the approximations of our biphoton state).

Consistent with the approximations that led to the down-
converted biphoton wave function, under the conditions of
validity of the Fresnel approximation, the diffraction and
interference of a wave traveling in the z direction can be
described in terms of its spreading in time of the wave-packet
transversal (x, y) section [44]. For Broglie waves of massive
particles, the wave-packet spreading is due to the dispersion
relation ωk = h̄k2/(2m) and the free evolution is given by the
Fourier transform

ψ (�r, t ) =
∫

d3k e(i�k�r−iωkt ) ψ̃ (�k, 0), (11)

where ψ̃ (�k, 0) is the Fourier transform of the initial condition.
As for a biphoton wave traveling in the z direction, due to
the fact that the sinc function factorizes in the transversal
(x, y) directions for typical experimental parameters, we may
disregard the x direction. In the case of a multislit diffraction,
we could consider such waves impinging on a screen with slits
along the x axis and study the spreading along the y axis. Thus,
assuming symmetry along the x axis, we may disregard the x
coordinate and write [44]

(y, z, t ) = ψ (y, z)e−iω0t , (12)

in which ψ satisfies the Helmholtz equation �ψ = −k2
0ψ and

ω0 = ck0. Taking the one-dimensional Fourier transform,

ψ (y, z) = 1√
2π

∫
ψ̃ (ky, z)eikyy dky, (13)

and using that ψ (y, z) satisfies the Helmholtz equation, we
get, for progressive waves in the z direction,

ψ̃ (ky, z) = ψ̃ (ky, 0)ei
√

k2
0−k2

y z, (14)

which, in the Fresnel approximation
√

k2
0 − k2

y ≈ k0 −
k2

y /(2k0), gives [44]

ψ (y, z) = eik0z k0√
2π iz

∫
ei k0

2z (y−y′ )2
ψ (y′, 0). (15)

By identifying ψ (y, t = 0) ≡ ψ (y, z = 0), we have
|ψ (y, t )|2 ≡ |ψ (y, z)|2 provided z = ct . Therefore, we arrive
at the nonrelativisticlike propagator,

G(y, t ; y′, t ′) =
√

m̃

2π ih̄(t − t ′)
ei m̃(y−y′ )2

2h̄(t−t ′ ) , (16)

where m̃ ≡ k0 h̄
c and we have dropped out a global phase factor

e−i m̃c2

h̄ (t−t ′ ) which is immaterial. The propagator (16) was used
in Ref. [41] in a double-slit experiment to demonstrate that
a degenerate biphoton of wavelength λ produced via SPDC
can behave as a single quanton of wavelength λ

2 as seen
in Ref. [39]. It was also employed in Ref. [26] to study a
continuous-variable Bell violation for type I-SPDC biphotons.
Finally, we write the free propagation of a biphoton SPDC
wave function as

(yi, ys, t ) =
∫∫

dy′
i dy′

s G(yi, t ; y′
i, 0)G(ys, t ; y′

s, 0)

×(y′
i, y′

s, 0). (17)

To make contact with the notation in the literature, let us
redefine the biphoton coordinates such that

yi ≡ x1, ys ≡ x2, σ− ≡ σ/
√

2, and σ+ ≡ �/
√

2,

and therefore

ψ0(x1, x2) = 1√
πσ�

e− (x1−x2 )2

4σ2 e− (x1+x2 )2

4�2 , (18)

as well as new relative coordinates r = (x1 + x2)/2 and q =
(x1 − x2)/2, so

ψ0(r, q) = 1√
πσ�

e− q2

σ2 e− r2

�2 . (19)

Accordingly, after a time t , the evolved state in the {r, q}
variables becomes, using (17)

ψ (r, q, t ) = C exp

[ −q2

σ 2 + iλct
2π

]
exp

[ −r2

�2 + iλct
2π

]
, (20)

in which

C = 1√
π

[
σ + i

(
λct
2π

)
1
σ

][
� + i

(
λct
2π

)
1
�

] . (21)

To characterize the entanglement of the transverse canon-
ical coordinates xi and pi for the biphotons, we follow
Refs. [45–47]. The degree of entanglement can be quantified
in the double Gaussian approximation in terms of the neg-
ativity of the partially transposed density matrix. The Duan
criterion [48] is a sufficient criterion for nonseparability for a
pair of EPR-type wave functions for continuous variables. For
the wave function (20), it yields that the system is separable if
σ = �. Also, the Peres-Horodecki criterion [49] states that
a Gaussian state is separable if and only if the minimum
value of the symplectic spectrum of the partial transpose of
the covariance matrix is greater than 1/2, which leads to a
measure of the entanglement E of the Gaussian state (20)

E = log10

(
�

σ

)
≡ EN , (22)

that coincides with the expression for the logarithmic negativ-
ity EN [45] that establishes that the greater �/σ , the larger
the negativity and hence the larger the entanglement. Another
useful quantity is the degree of spatial correlation (Pearson r
value),

ρx = 〈x1x2〉 − 〈x1〉〈x2〉
σx1σx2

, (23)

which ranges from −1 to +1, where σx1,2 is the standard devia-
tion of x1,2. ρx is zero if the two photons are uncorrelated, and
ρx → +1 if they are spatially closely correlated (bunched)
and ρx → −1 if they are spatially closely anticorrelated (an-
tibunched). For the biphoton state described in (20), we get

ρx(t ) = (�2 − σ 2)

(�2 + σ 2)

[
1 − (

λct
2πσ�

)2][
1 + (

λct
2πσ�

)2] . (24)

Accordingly, it is possible to write the degree of spatial cor-
relation ρ(t ) as a function of the logarithmic negativity EN
and time t—a few plots of ρ(EN , t ) are shown in Fig. 3.
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FIG. 3. Behavior of the degree of spatial correlation as a function
of t (in picoseconds) for different values of logarithmic negativity
EN . One observes that for EN ∼ 3, the initial value of ρ(t ) saturates
at 1 and barely decreases for t = 4 ps, which is the typical time it
takes for the photons to reach the slits. For lower values of EN , the
decrease can be appreciable. We have used σ = 11.4 × 10−3 mm,
c = 0.3 mm/ps, and λ = 7.02 × 10−4 mm.

Transverse spatial correlations of biphotons produced via
SPDC in the double Gaussian approximation were studied
in Ref. [35]. At the sinc level, spatial correlations of bipho-
tons were seen to encompass Bell nonlocality in Ref. [26].
In Ref. [41], a double Gaussian approximation was used to
show a experimental verification [39,50] that two entangled
photons of wavelength λ can behave like a single quan-
ton of wavelength λ/2. Position-momentum Bell nonlocality
via a Clauser-Horne-Shimony-Holt inequality violation using
entangled biphotons has also been verified experimentally
in Ref. [51]. The entanglement of degenerate type-I SPDC
biphotons was studied using a spectral wave function beyond
double Gaussian approximation in Ref. [52],

Biphoton double-slit interference has been studied both
theoretically and experimentally in a series of articles: In
Ref. [53], it was reported a nonlocal interference between
SPDC biphotons measured in coincidence after passing
through double slits. Similarly, the interference pattern of
two indistinguishable photons sent to well-defined slits at an
identical time was analyzed in Ref. [54]. Their data were in
accordance with predictions based on standard quantum me-
chanics and in contrast with the deterministic Broglie-Bohm
model. The role of mode functions and which-slit informa-
tion in interference patterns of biphotons was experimentally
assessed in Ref. [55]. Moreover, Young’s double-slit interfer-
ence with two-color biphotons was performed in Ref. [56],
shedding further light on the interplay between interference
and which-path information as a result of the nonlocal nature
of two-photon entanglement.

III. BIPHOTON INTERFERENCE IN A DOUBLE SLIT

Considering only classical trajectories the biphoton state at
the screen, after passing through a double slit, can be written
under the assumptions that led to (16) as

ψ (x1, x2, T + τ ) =
∫

X
G(x1, T + τ ; x′′

1 , T )

×G(x2, T + τ ; x′′
2 , T )Fu,d (x′′

1 )Fu,d (x′′
2 )

×G(x′′
1 ,T ; x′

1, 0)G(x′′
2 ,T ; x′

2, 0)ψ0(x′
1, x′

2),

(25)

where the integrations from −∞ to +∞ are taken over {X } =
{x′

1, x′
2, x′′

1 , x′′
2 }. The functions F represent the Gaussian-

shaped windows [10], which crop the wave function at the
slits, and T (τ ) is the time interval between source and slits
(slits and screen). The window functions Fu,d (x′′

1 )Fu,d (x′′
2 ) read

Fu(xi ) ≡ e
− (xi−d/2)2

2β2 and Fd (xi ) ≡ e
− (xi+d/2)2

2β2 , (26)

where i = 1, 2, u(d ) stands for upper(lower)-slit, d is the
interslit center-to-center distance and β the slit width. The
integrals in Eq. (25) can be analytically computed to yield four
amplitudes,

ψi = Ai exp [Ci(r, q) + iαi(r, q)], (27)

with Ci(r, q) and αi(r, q) ∈ R and i = {uu, dd, ud, du} de-
note each of the biphoton possible paths through the upper or
lower slit. The coefficients Ci and αi have the general forms

Ci(r, q) = c1r2 + c2q2 + c3r + c4q + c5,

αi(r, q) = a1r2 + a2q2 + a3r + a4q + a5, (28)

whose coefficients ci and ai are listed in Appendix A. The
intensity at the screen is given by Born’s rule,

I (x1, x2) = |ψuu + ψud + ψdu + ψdd |2 = I (x2, x1), (29)

as we have considered biphotons such that λ1 = λ2 (degener-
ate case).

At this point, it is worthwhile to test our framework by
verifying that the diffraction of a wave packet of two entan-
gled photons, each of which of wavelength λ can display
an interference pattern of a single quanton of wavelength
λ/2 [39,41]. The values of � and σ are determined by the
experiment. Typically, σ = √

Lzλp/(6π ) ≈ 0.01 mm [35,51].
Choosing EN = 2 (and thus high spatial correlation, see
Fig. 3). For detection in coincidence x1 = x2 = x (or, equiva-
lently, r = x and q = 0), we get the solid blue line in Fig. 4.
To verify whether a photon of the pair behave as a single
particle, we may place one detector at the center of the slits
(x2 = 0) and let the other sweep the screen to obtain the
intensity depicted by the dotted line in Fig. 4. It is clear that the
intensity for both photons detected at the same point oscillate
with half the wavelength as compared with the single photon
interference. This is in agreement with Ref. [50] in the sense
that N particles of wavelength λ can behave like a single
particle, or quanton, of wavelength λ/N in an interference
experiment. For entangled biphotons, this has been verified
in Ref. [36]. Moreover, in Ref. [41], it was argued that this
effect can be verified in a nonlocal fashion as well. In our case,
the high degree of spatial correlation at the slits (T ≈ 4 ps)
turns the amplitudes ψud,du highly suppressed, namely, the
wave functions ψud,du can be removed from the total intensity
Eq. (29) with negligible effect (the fractional difference is
of order ∼10−15), which indicates the photons are likely to
go through the same slit. A similar analysis was performed
in Ref. [41], considering sharp slits and ignoring the middle
terms in (29) for high spatial correlation.

IV. SORKIN PARAMETER

Let us evaluate the Sorkin parameter due to the biphoton’s
nonclassical trajectories in double- and triple-slit setups. The
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FIG. 4. Two photons of wavelength λ behaving as a single pho-
ton of wavelength λ/2. We used the set of parameters λ = 7.02 ×
10−4 mm, EN = 2, σ = 11.4 × 10−3 mm, � = 10EN σ , β = 5 ×
10−3 mm, d = 0.1 mm, c = 0.3 mm/ps, t = 4 ps, and τ = 50 ps.
These parameter values do not differ considerably from the ones used
in Ref. [54].

Sorkin parameter can be defined as

κ = Itotal − Ic

Itotal(0)
. (30)

For a single-particle triple-slit setup, according to Born’s
rule, the probability of detection at the screen is given by

Itotal = IABC = |ψA + ψB + ψC + ψnc|2, (31)

where Ic = |ψA + ψB + ψC |2, ψi is for the wave function at
the screen when a particle passes through slit i, and ψnc

corresponds to any exotic, nonclassical trajectories.
For a biphoton double-slit setup, the total intensity is

Itotal = |ψuu + ψud + ψdu + ψdd + ψnc|2, (32)

while the classical contribution reads

Ic = |ψuu + ψud + ψdu + ψdd |2. (33)

Next we describe the nonclassical trajectories and rank them
according to their contribution to the Sorkin parameter.

A. Sorkin parameter for the biphoton: Double slit

In a two-slit interference experiment, we can have two
types of nonclassical trajectories, involving either kinks or
loops around the slits as in Fig. 1. For a two-particle wave
function, one may include several possibilities, namely, one
particle performing a nonclassical trajectory, while the other
does a classical one, or both particles performing nonclassical
paths. For the propagation between the slits, we employ the
propagator

Gε (xi, t + ε; x0, t ) =
√

1

iλcε
exp

[−π (xi − x0)2

iλcε

]
. (34)

An estimate for the interslit transit time ε is given by
ε = d/�vx, where �vx = �px/m̃, m̃ = k/h̄c [26]) and

FIG. 5. The four contributions due to single-particle kink tra-
jectories, when both photons go first through the same slit. These
drawings represent same-position coincidence detection.

�px = √〈p2
x〉 − 〈px〉2 is the momentum uncertainty orthog-

onal to the propagation direction [22,23,25]. In the averages
〈p2

x〉 and 〈px〉2, we use the normalized wave function, includ-
ing only classical trajectories, after the Gaussian-slit cropping.
The simplest leading order contributions to the Sorkin param-
eter arise when one photon executes a kink and the other takes
a classical trajectory, such as depicted in Figs. 5 and 6. Loop
contributions are less relevant by several orders of magnitude
(as one particle goes three times through the slits), and so
are the ones in which both particles perform nonclassical
trajectories.

The amplitude corresponding to photon 1 performing a
kink (source → upper slit → lower slit → screen) while
photon 2 takes a classical trajectory (source → upper slit →
screen), as depicted in Fig. 5(a1), is obtained as

ψnc(a1 ) =
∫

G(x1, T + ε + τ ; x′′′
1 , T + ε)Fd (x′′′

1 )

× Gε (x′′′
1 , T + ε; x′′

1 , T )Fu(x′′
1 )G(x2, T + τ ; x′′

2 , T )

× Fu(x′′
2 )G(x′′

1 , T ; x′
1, 0)G(x′′

2 , T ; x′
2, 0)ψ0(x′

1, x′
2),

(35)

where the integral is over all primed variables
{x′

1, x′
2, x′′

1 , x′′
2 , x′′′

1 }. Other possible nonclassical paths for
photons passing through the same slit are depicted in Fig. 5.
They add up to

nc(a) = ψnc(a1 ) + ψnc(a2 ) + ψnc(a3 ) + ψnc(a4 ), (36)
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FIG. 6. The four contributions due to single-particle kink tra-
jectories, when the photons go first through different slits. These
drawings represent same-position coincidence detection.

whereas in Fig. 6, the amplitudes for photons passing through
different slits result in

nc(b) = ψnc(b1 ) + ψnc(b2 ) + ψnc(b3 ) + ψnc(b4 ). (37)

The weight of the contribution from the sets a and b is ruled
by the degree of initial spatial correlation which, for the pa-
rameters specified in Fig. 3, is governed by EN or ultimately
by the ratio �/σ . A lengthy but straightforward calculation
for the analytical expressions of the contributions ψnc(ai ) and
ψnc(bi ), i = {1, 2, 3, 4}, can be easily computed using MAPLE

[57]:

ψnc(ai,bi )(x1, x2)

= Anc(ai,bi ) exp[Cnc(ai,bi )(x1, x2) + i αnc(ai )(x1, x2)],
(38)

where the coefficients Cnc(ai,bi )(x1, x2) and αnc(ai,bi )(x1, x2),
omitting the i index, have the general form

Cnc(a,b) ≡ c̄1x2
1 + c̄2x2

2 + c̄3x1x2 + c̄4x1 + c̄5x2 + c̄6,

αnc(a,b) ≡ ā1x2
1 + ā2x2

2 + ā3x1x2 + ā4x1 + ā5x2 + ā6, (39)

whose explicit expressions are found in Appendix B. We shall
vary the logarithmic negativity EN , which is related to ρx(t ),
to evaluate the Sorkin parameter κnc(a,b) due to the contribu-
tions given by ψnc(a,b) that can be written as

κnc(a,b) = Inc(a,b) − Ic

Inc(a,b)(0, 0)
, (40)

FIG. 7. Sorkin parameter κnc−a for different values of logarith-
mic negativity EN . We used the set of parameters: T = 4 ps, τ =
50 ps, σ = 11.4 μm, � = σ × 10EN , λ = 702 nm, d = 100 μm,
β = 5 μm. In these plots, we have set x2 = 0 and swept over x1.
Observe that for EN between 0.3 and 0.4 the Sorkin parameter
increases about two orders of magnitude if compared to EN ≈ 1.
The x1 coordinates are plotted in millimeters.

where

Inc(a,b)(x1, x2) = |ψuu + ψud + ψdu + ψdd + ψnc(a,b)|2. (41)

The intensity in Eq. (41) depends on x1 and x2, which means
that the Sorkin parameter will depend on the measurement
procedure. The coincidence measurements involving nonclas-
sical propagations takes a time interval ε from slit to slit
∼1 ps. The time resolution of current counters is of the order
of 102 ps [58], so the coincidence measurements are still
inside the detectors’ resolution. Our numerical analysis has
shown that the Sorkin parameter for coincidence measure-
ments such that x1 = x2 detection does not differ considerably
from, say, x2 = 0 and x1 = x on the screen. Therefore, we will
adopt the latter strategy. A few plots of κnc(a) for different
EN values can be found in Fig. 7. The Sorkin parameter is
a function of both x1 and x2, and we chose x1 = x2 in the
plots of Fig. 7. We remark that, in view of Eq. (30), the Sorkin
parameter assumes positive and negative values in the x1 − x2

plane, since its integral over it should be zero for normalized
intensities.
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FIG. 8. Double slit: The behavior of the maximum value of the
Sorkin parameter as a function of EN which shows that it has a
maximum value κ ≈ 10−5 for 0.3 � EN � 0.4 before stabilizing at
10−7 for EN > 1.

The Sorkin parameters shown in Fig. 7 have values that
are about one order of magnitude lower than the ones found
in Ref. [17] (in which a three-slit setup for single photons
was used) in the range EN � 1. Remarkably, in the range
EN = [0.2, 2], the Sorkin parameter increases by about two
orders of magnitude for 0.3 � EN � 0.4 (κ ≈ 10−5), in com-
parison to EN � 1. Qualitatively, large values of EN � 1 do
not mean a larger Sorkin parameter, since photons are unlikely
to separate in a nonclassical trajectory during the interslit
transit time due to their spatial correlation. There is, however,
an optimal region 0.3 � EN � 0.4 that yields an increase to
the Sorkin parameter because the nonclassical trajectories are
not as suppressed as for large negativities EN . On the other
hand, for EN � 0.2, we observed that the Sorkin parameter
becomes negligible since the biphotons are unlikely to diffract
through the same slit. Figure 8 shows the plot of log10(|κ|)
against EN for the double slit parameters specified in Fig. 7.

Moreover, the contributions from the trajectories in Fig. 6
to the Sorkin parameter κnc(b) are negligible compared to
κnc(a). This is a consequence of the short transit time between
the SPDC crystal and the slits, which favors biphotons going
first through the same slit. Accordingly, by increasing the tran-
sit time between source and slits, the contributions of types
κnc(a) and κnc(b) become comparable. Numerical evaluations
have shown that, by using the same set of parameters from
Fig. 7, EN = {2, 1, 0.5, 0.4, 0.3} one obtains, respectively,
κnc(b) ∼ {10−22, 10−22, 10−17, 10−15, 10−13}.

The spatial correlations as given by the Pearson’s value at
the slits, ρx(T ), do not determine by themselves the value of
the Sorkin parameter. The logarithmic negativity EN (σ,�),
which is constant up to the grating, is related to ρx(t ) through
Eq. (24). For the double-slit setup and the exotic paths of the
configuration κnc(a), we can study how the Sorkin parameter
varies with ρx(T ), T being the typical flight time from the
source to the grating. In Fig. 9, we plot the (logarithm of) κ

as a function of the Pearson’s value after choosing EN = 0.4.

FIG. 9. Double slit: The behavior of the maximum value of the
Sorkin parameter as a function of ρx . We used the set of parameters:
τ = 50 ps, σ = 11.4 μm, � = σ × 10EN , EN = 0.4, λ = 702 nm,
d = 100 μm, β = 5 μm.

We can see that the highest Sorkin parameter (≈10−4.8), is
achieved for ρx(T ) � 0.2.

Finally, one may construct other sets of nonclassical trajec-
tories as shown in Fig. 10. Their contributions to the Sorkin
parameter depends on the value of EN chosen. For a typical
value of the ratio �/σ ≈ 100 [51], yielding EN = 2, they are
at least about eight orders of magnitude below the dominant
contribution from the paths in Fig. 5. A reasonable rule of
thumb is the more slits the photons go through, the lower their
contribution.

FIG. 10. Other types of nonclassical contributions to the wave
function at the screen. Their contribution to the Sorkin parameter is
at least around eight orders of magnitude lower than the one arising
from paths in Fig. 5, for the same set of parameters used in Fig. 7
besides EN = 2. For this value of EN , the top left contribution is
dominant and yields a Sorkin parameter of about 10−15. The top-right
looped trajectory yields a Sorkin parameter of order 10−16 for the
same set of experimental values, placing looped trajectories in lower
relevance as compared to kinked ones.
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FIG. 11. Typical leading order contribution to nonclassical paths
of biphotons.

B. Sorkin parameter for the biphoton: Triple slit

To evaluate the Sorkin parameter for light waves without
any enhancement mechanism as in Ref. [15], triple-slit photon
interference was described in Ref. [14,17,18].

The typical leading order contributions to nonclassical
paths are depicted in Fig. 11. We adopt a set of parameters
similar to those chosen in Ref. [14] as shown in Fig. 12. In
addition, the value of κ is insensitive to whether coincidence
measurements performed at the same point x1 = x2 = x or one
detector is fixed at, say, x2 = 0, and x1 = x is an arbitrary
point at the detection screen. In this optimized setup, the
resulting Sorkin parameter is approximately 10−5. For EN =
2.0, the relevant nonclassical contributions come mainly from
biphotons that pass through the same slit (paths like those
on the left of Fig. 11). The Sorkin parameter is defined and
evaluated in a similar fashion as for the double-slit case:

κnc(x1, x2) = Inc(x1, x2) − Ic(x1, x2)

Inc(0, 0)
. (42)

Figure 12 illustrates the profile of the Sorkin parameter for
coincidence measurements for arbitrary x1 and x2.

Curiously, and unlike the double-slit case shown in the
previous section, the Sorkin parameter for coincidence mea-
surements in a biphoton triple-slit setup is not as sensitive to
the logarithmic negativity. There are no significant changes

FIG. 12. Sorkin parameter for biphoton three-slit interference.
We have adopted EN = 2.0, T ≈ 600 ps for which ρx (600 ps) =
0.026, σ = 11.4 μm, λ = 810 nm, β = 30 μm, d = 100 μm,
τ = T .

FIG. 13. Triple slit: Maximal Sorkin parameter for biphoton
three-slit interference as a function of EN . We have adopted T ≈
60 ps, σ = 11.4 μm, λ = 810 nm, β = 10 μm, d = 250 μm, τ =
270 ps.

in the order of magnitude for the set of parameters we have
chosen. However, for a different set of parameters as shown
in Fig. 13, it displays a similar behavior as the double-slit for
the maximum Sorkin parameter as a function of the negativity.
The maximum value of κ is still around 10−5 for EN = 0.5.

C. Sorkin parameter for a massive particle

1. Triple-slit setup

In this section, we will evaluate the Sorkin parameter for
electron waves in a three-slit setup just as in Ref. [14] to assess
the efficiency of our simplified model.

The effective propagator for a free particle of mass m
reads [10]

G(x, t ; x0, t0) =
√

m

2π ih̄(t − t0)
exp

[−m(x − x0)2

2ih̄(t − t0)

]
, (43)

which was employed in Refs. [22,23,25] to study Gouy
phases, matter wave interferometry, and exotic paths contri-
butions to the Sorkin parameter.

Consider kinklike trajectories such as the one shown in
Fig. 14 in which the slits are labeled A, B, and C.

A classical path amplitude contribution at the screen cor-
responding to, say, the particle going through the slit j reads

ψ j (x) =
∫

x′′,x′
G(x, T + τ ; x′′, T )Fj (x

′′)G(x′′, T ; x′, 0)ψ0(x′),

(44)
where

ψ0(x′) = 1√
σ0

√
π

exp

(
− x′2

2σ 2
0

)
(45)

is the initial Gaussian wave packet, in which the standard
deviation σ0 is related to the collimator size. The window
functions Fj (x′′) that modulate the slit apertures can be written
as

FA,C (x′′) = e
− (x′′∓d )2

2β2 and FB(x′′) = e
− (x′′ )2

2β2 . (46)
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FIG. 14. An example of kink-type nonclassical trajectory in a
three-slit Young experiment.

The nonclassical trajectory contributions are represented by
ψ jl , meaning the particle goes through slit j, then to slit l ,
then to the screen. They are evaluated as the following:

ψ jl (x) =
∫

x′′′,x′′,x′
G(x, T + δ + τ ; x′′′, T + δ)

× Fl (x
′′′)G(x′′′, T + δ; x′′, T )Fj (x

′′)

× G(x′′, T ; x′, 0)ψ0(x′), (47)

where the parameter δ corresponds to the inter-slit transit
time; for slits separated by d (2d), it evaluates to ε (2ε).
The parameter ε is evaluated using ε = d/�vx, where �vx =
�px/m, in which �px = √〈p2

x〉 − 〈px〉2 is the momentum
variance orthogonal to the propagation direction.

We evaluate the Sorkin parameter following Ref. [17], as
discussed in the Introduction. It reads

κ = �I

I0
, (48)

where, to first order in the path contributions,

�I ≈ 2�[ψ∗
A (ψBC + ψCB) + ψ∗

B (ψAC + ψCA)

+ ψ∗
C (ψAB + ψBA)], (49)

and I0 is the total intensity at the central peak. A plot of the
Sorkin parameter for the parameters used for electron waves
in Ref. [17] is found in Fig. 15. The order of magnitude
obtained with our effective description agrees with the one
obtained in Ref. [17], which validates our effective descrip-
tion.

2. Double-slit setup

It is instructive to rank the contributions to the Sorkin
parameter in our framework for the interference one massive
particle in a two-slit experiment arising from (a) nonclassical
kink paths, (b) nonclassical looped path trajectories, and (c)
relativistic corrections to the propagator. Because the contri-
butions from nonclassical paths are very small, it is natural

FIG. 15. The Sorkin parameter due to trajectories of type de-
picted in Fig. 14 in a three-slit setup. We have chosen to use
an electron with de Broglie wavelength 50 pm, d = 272 nm, β =
31 nm, and σ0 = 62 nm. The source-to-slit distance is 24 cm, and the
slits-to-screen one is 30.5 cm. The variable x is plotted in mm.

to ask how they compare to relativistic corrections, even for a
small average velocities of particles (as compared to the speed
of light) in the source beam.

Now let us proceed to rank the contributions of nonclas-
sical paths (kinks or loops) for a double-slit setup as well as
compare to relativistic corrections to the propagators. We shall
use matter waves for neutrons and electrons.

Relativistic corrections can be implemented via a simple
modification in the propagator as discussed in Ref. [59],

Grel(x, t ; x0, t0) = G(x, t ; x0, t0)

[
1 − 3(x − x0)2

4c2(tE − tE0 )2

+ m(x − x0)4

8h̄c2(tE − tE0 )3
+ O

(
1

c4

)]
, (50)

where G(x, t ; x0, t0) is given by Eq. (43) and tE stands for the
Euclidian time, that is, tE = it . Because the relativistic correc-
tions are small, we will use them on the classical trajectories
only. Hence, we have three distinct scenarios: (a) nonclassical
kink-type trajectories, (b) nonclassical looped trajectories, and
(c) relativistic corrections to the propagator.

The nonclassical kinklike trajectories are found in the same
way as in Eq. (47). The loop contribution corresponding to a
path such as in Fig. 1(b) is evaluated as

ψloop− jk (x) =
∫

G(x, T + 2ε + τ ; x′′′′, T + 2ε)Fj (x
′′′′)

× G(x′′′′, T + 2ε; x′′′, T + ε)Fk (x′′′)

× G(x′′′, T + ε; x′′, T )Fj (x
′′)

× G(x′′, T ; x′, 0)ψ0(x′), (51)

which should be read as the particle goes first through slit j,
then loops through slit k, and propagates from slit j to the
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FIG. 16. The Sorkin parameter due to three different contribu-
tions for a neutron going through a double slit. The neutron has
Broglie wavelength 2 nm, and the remaining parameters are d =
125 μm, β = 7 μm, σ0 = 7 μm, and t = τ = 26.4 ms. For these pa-
rameters, the interslit transit time ε is 18 ms. The variable x is plotted
in mm. In this case, it is clear that the Sorkin parameter is generated
mainly by kinklike trajectories, as the other contributions are about
four orders of magnitude lower.

screen. The integrals are carried out over all primed coordi-
nates {x′, x′′, x′′′, x′′′′}, and their analytical forms are shown in
Appendix C. The relativistic corrections, on the other hand,
are implemented by substituting the propagator in Eq. (44) by
its corrected version in Eq. (50).

The Sorkin parameter is evaluated as shown in Eq. (30).
Plots of the three scenarios are shown in Fig. 16, in
which the parameters referring to a neutron were taken
from Ref. [60]—the relativistic corrections were evaluated
numerically. Clearly, the kink trajectories contribute more
significantly, while the contributions from relativistic correc-

FIG. 17. The Sorkin parameter due to three different contribu-
tions for an electron going through a double slit. The electron has
Broglie wavelength 50 pm, and the other relevant parameters are d =
272 nm, β = 62/2 nm, σ0 = 62 nm, and the source-slit (slit-screen)
distance is 30.5 cm (24 cm). For these parameters, the interslit transit
time ε is 0.1 ns. The variable x is plotted in mm.

tions and looped trajectories are of comparable magnitude. In
Fig. 17, similar computations were carried out for an electron,
in which one can see this hierarchy is such that the kink con-
tributions are still the largest by about one order of magnitude
in comparison with looped path contributions, which compete
with the relativistic corrections.

V. CONCLUSIONS AND FINAL REMARKS

The study of nonclassical or exotic paths contributions
to interferometry of light and matter waves evolved along
endeavors to measure deviations from Born’s rule and the
superposition principle in interference experiments. While in
theory the answer is very simple, as encoded in the Feynman
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path integral formalism, the boundary conditions involved in
the computation of multislit diffractions with exotic paths
are overwhelmingly difficult and require sophisticated com-
putational resources. Moreover, for light waves, the absence
of a time-dependent formalism to calculate single-particle
diffraction and issues with photon localization begs for an
effective description of the problem. For example, under
the scalar wave approximation, the propagation of light is
described by the Helmholtz equation subjected to adequate
boundary conditions. Thus, an effective propagator that sat-
isfies the Fresnel-Huygens principle can be used to compute
nonclassical trajectories using numerical integration and re-
source intensive FDTD simulations. Orders of magnitude
predicted by theoretical predictions are valuable guides for
experimentalists and are worthexploring. Using an effective
double Gaussian approximation for describing type-I SPDC
biphotons and the Fresnel approximation to build an effective
propagator, we have computed the leading order contributions
for biphoton interference in double- and triple-slit setups. We
have obtained that the Sorkin parameter κ can be of order
10−5, which is one order of magnitude larger than typical pho-
ton experiments to determine κ . We have found that the spatial
correlations encoded in the double Gaussian parameters may
play a significant role in the double-slit setup. Moreover, we
have explicitly demonstrated that our simple mathematical
model, which can be evaluated using MAPLE, reproduces the
order of magnitude of the Sorkin parameter for matter waves,
such as the electron, for the same set of parameters used in
other simulations. Finally, we have addressed the question
about the hierarchy of contributing nonclassical paths to the
Sorkin parameter. We found that kink-shaped paths are of
course the leading contributions and that looped paths can
contribute with the same order of magnitude as relativistic
corrections to the propagator.
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APPENDIX A: BIPHOTON CLASSICAL WAVE-FUNCTION
CONSTANTS

The general form of a classical trajectory wave function at
the screen (see Sec. III) is

ψi = A exp [Ci(r, q) + iαi(r, q)], (A1)

with

C ≡ c1r2 + c2q2 + c3r + c4q + c5,

α ≡ a1r2 + a2q2 + a3r + a4q + a5. (A2)

Please note we have intentionally dropped the index i, the
reason for it will be clear below. The coefficients are given
by

c1 = −
(

4π2

λ2c2τ 2

)
Re

[
1

ω

]
, (A3)

c2 = −
(

4π2

λ2c2τ 2

)
Re

[
1

�

]
, (A4)

c3 = − π

λcτ

(
d1 + d2

β2

)
Im

[
1

ω

]
, (A5)

c4 = π

λcτ

(
d1 − d2

β2

)
Im

[
1

�

]
, (A6)

c5 = −
(
d2

1 + d2
2

)
8β2

− (d1 + d2)2

4β4
Re

[
1

4ω

]
(A7)

+ (−d1 + d2)2

β4
Re

[
1

4�

]
, (A8)

a1 = 2π

λct
+

(
4π2

λ2c2τ 2

)
Im

[
1

ω

]
, (A9)

a2 = 2π

λct
+

(
4π2

λ2c2τ 2

)
Im

[
1

�

]
, (A10)

a3 = − π

λcτ

(d1 + d2)

β2
Re

[
1

ω

]
, (A11)

a4 = π

λcτ

(d1 − d2)

β2
Re

[
1

�

]
, (A12)

and a5 is given by

a5 = θ + ζ , (A13)

where

θ = − (d1 + d2)2

4β4
Im

[
1

4ω

]
+ (−d1 + d2)2

β4
Im

[
1

4�

]
,

(A14)

ζ = 1

2
arctan

(
Im[ω�]

Re[ω�]

)
, (A15)

in which

ω = 1

β2
+ 2π

Iλcτ
+ 1

�2 + I λct
2π�

, (A16)

� = 1

β2
+ 2π

Iλcτ
+ 1

σ 2 + I λct
2πσ

. (A17)

TABLE I. Choices of d1,2 corresponding to the biphoton’s four
classical trajectories.

i d1 d2

uu −d −d
dd d d
ud −d d
du d −d
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The amplitude, which is the same for all classical trajectories, is given by

A =
( π

λcτ

) 1√
π |ω||�||σ + iα/σ ||� + iα/�| , (A18)

where α = λct/2π .
Now that the coefficients were stated, the index i in Eq. (A1) will tell us which values of d1,2 one should take in Eqs. (A5)–(A7)

and (A11)–(A14). As i = {uu, dd, ud, du}, Table I displays the choices of d1,2 corresponding to each of the four classical
contributions.

In our numerical evaluations for the plots, since we are interested in the interference pattern, we have disregarded the factor√
m̃

2π ih̄(t−t ) in the propagator of Eq. (16).

APPENDIX B: BIPHOTON NONCLASSICAL WAVE-FUNCTION CONSTANTS

The general form of the nonclassical trajectory wave function at the screen (see Sec. IV A.) is given by

ψnc(ai,bi )(x1, x2) = Anc(ai,bi ) exp[Cnc(ai,bi )(x1, x2) + i αnc(ai )(x1, x2)],

(B1)

where the coefficients Cnc(ai,bi )(x1, x2) and αnc(ai,bi )(x1, x2), omitting the i index, have the general form

Cnc(a,b) ≡ c̄1x2
1 + c̄2x2

2 + c̄3x1x2 + c̄4x1 + c̄5x2 + c̄6, αnc(a,b) ≡ ā1x2
1 + ā2x2

2 + ā3x1x2 + ā4x1 + ā5x2 + ā6. (B2)

The coefficients are given by

c̄1 = −
(

π2

λ2c2τ 2

)
Re

[
1

χ1

]
, (B3)

c̄2 = −
( π

λcτ

)2
Re

[
1

χ2

]
+

(
π2�

2λ2c2τε

)2

Re

[
1

χ1χ
2
2 χ2

3

]
, (B4)

c̄3 = − π3

λ3c3τ 2ε
Im

[
1

χ1χ2χ3

]
, (B5)

c̄4 = π2d3

2λcτβ2
Im

[
1

χ1

]
− π2�

4λ2c2τβ2

(
d1

τ
+ d2

ε

)
Re

[
1

χ1χ2χ3

]
+ π2�2d1

8λ2c2τ 2β2
Re

[
1

χ1χ2χ
2
3

]
, (B6)

c̄5 = πd2

2λcτβ2
Im

[
1

χ2

]
− π3�2

8λ3c3τεβ2

(
d1

τ
+ d2

ε

)
Im

[
1

χ1χ
2
2 χ2

3

]
+ π3�3d1

16λ3c3τε2β2
Im

[
1

χ1χ
2
2 χ3

3

]
− π2d3

4λ2c2τεβ2
Re

[
1

χ1χ2χ3

]
,

(B7)

c̄6 = 1

8β2

(
d2

1 + d2
2 + d2

3

) + 1

16β4
Re

[
d2

1

χ3
+ d2

2

χ2
+ d2

3

χ1

]
+ π�d3

16λcβ4

(
d1

τ
+ d2

ε

)
Im

[
1

χ1χ2χ3

]
+ π2�3d1

64λ2c2εβ4

(
d1

τ
+ d2

ε

)
Re

[
1

χ1χ
2
2 χ3

3

]
− π2�2

64λ2c2β4

(
d1

τ
+ d2

ε

)2

Re

[
1

χ1χ
2
2 χ2

3

]
− πd1d3�

2

32λcεβ4
Im

[
1

χ1χ2χ
2
3

]
− π2d2

1 �4

4 · 64λ2c2ε2β4
Re

[
1

χ1χ
2
2 χ4

3

]
, (B8)

ā1 = π

λcτ
+

(
π2

λ2c2τ 2

)
Im

[
1

χ1

]
, (B9)

ā2 = π

λcτ
+

(
π2

λ2c2τ 2

)
Im

[
1

χ2

]
−

(
π2�

2λ2c2τε

)2

Im

[
1

χ1χ
2
2 χ2

3

]
, (B10)

ā3 = − π3

λ3c3τ 2ε
Re

[
1

χ1χ2χ3

]
, (B11)

ā4 = π2d3

2λcτβ2
Re

[
1

χ1

]
− π2�

4λ2c2τβ2

(
d1

τ
+ d2

ε

)
Im

[
1

χ1χ2χ3

]
− π2�2d1

8λ2c2τ 2β2
Im

[
1

χ1χ2χ
2
3

]
, (B12)

ā5 = πd2

2λcτβ2
Re

[
1

χ2

]
+ π3�2

8λ3c3τεβ2

(
d1

τ
+ d2

ε

)
Re

[
1

χ1χ
2
2 χ2

3

]
+ π3�3d1

16λ3c3τε2β2
Re

[
1

χ1χ
2
2 χ3

3

]
+ π2d3

4λ2c2τεβ2
Im

[
1

χ1χ2χ3

]
,

(B13)
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and ā6 = θ̄ + ζ̄

θ̄ = − 1

16β4
Im

[
d2

1

χ3
+ d2

2

χ2
+ d2

3

χ1

]
+ π�d3

16λcβ4

(
d1

τ
+ d2

ε

)
Re

[
1

χ1χ2χ3

]
− π2�3d1

64λ2c2εβ4

(
d1

τ
+ d2

ε

)
Im

[
1

χ1χ
2
2 χ3

3

]

+ π2�2

64λ2c2β4

(
d1

τ
+ d2

ε

)2

Im

[
1

χ1χ
2
2 χ2

3

]
− πd1d3�

2

32λcεβ4
Re

[
1

χ1χ2χ
2
3

]
+ π2d2

1 �4

4 · 64λ2c2ε2β4
Im

[
1

χ1χ
2
2 χ4

3

]
, (B14)

ζ̄ = −1

2
arctan

(
Re[χ1χ2χ3]

Im[χ1χ2χ3]

)
, (B15)

where

χ1 = 1

2β2
+ π

Iλcε
+ π

Iλcτ
+ π

λ2c2ε2χ3
+ π2�2

4λ2c2ε2χ2χ
2
3

, (B16)

χ2 = 1

2β2
+ π

Iλcτ
+ 1

�2 + I λct
2π

+ 1

σ 2 + I λct
2π

− �2

4χ3
, (B17)

χ3 = 1

2β2
+ π

Iλcε
+ 1

�2 + I λct
2π

+ 1

σ 2 + I λct
2π

, (B18)

where � = ( 1
�2+iI λct

2π

− 1
σ 2+I λct

2π

).

The amplitude is given by

Anc(a,b) = 1√
π |ω||�||σ + iα/σ ||�+ iα/�|

π3/2

λc
√

ετ |χ1χ2χ3|
,

(B19)

where α = λct/2π .
Now that the coefficients were stated, Table II will tell

us which values of d1,2,3 one should take in Eqs. (B6)–(B8)
and (B12)–(B14).

It is clear that ψnc(a2 ) and ψnc(a4 ) (ψnc(b2 ) and ψnc(b4 )),
are symmetric under particle exchange to ψnc(a1 ) and ψnc(a3 )

(ψnc(b1 ) and ψnc(b3 )), respectively, as shown in Figs. 5 and 6.
This means that to obtain ψnc(a2 ) and ψnc(a4 ) (ψnc(b2 ) and
ψnc(b4 )), we just have to interchange x1 and x2 in ψnc(a1 ) and
ψnc(a3 ) (ψnc(b1 ) and ψnc(b3 )), respectively.

APPENDIX C: WAVE-FUNCTION CONSTANTS FOR A
MASSIVE PARTICLE DIFFRACTING THROUGH A

DOUBLE SLIT

1. Classical path wave-function constants

Considering a double slit, which has its slits labeled A and
B, one can obtain the wave function related to the classical
propagation solving Eq. (44), with the slit function given by

FA,B = e
− (x′′∓d/2)2

2β2 . The wave function that describes the parti-
cle leaving the source, going through the upper slit (slit A) and

TABLE II. Choices of d1,2,3 corresponding to the biphoton’s ex-
otic trajectories.

ψnc d1 d2 d3

ψnc(a1 ) −d −d d
ψnc(a3 ) d d −d
ψnc(b1 ) −d d d
ψnc(b3 d −d −d

reaching the screen can be written as

ψA(x) = 1√
β
√

π
exp

[
− (x − DA/2)2

2B2
A

]

× exp

(
imx2

2h̄RA
− i�Ax + iθA + iμA

)
, (C1)

where

B2
A(t, τ ) =

(
1
β2 + 1

b2

)2 + m2

h̄2

(
1
τ

+ 1
r

)2(
m
h̄τ

)2( 1
β2 + 1

b2

) , (C2)

RA(t, τ ) = τ

(
1
β2 + 1

b2

)2 + m2

h̄2

(
1
τ

+ 1
r

)2(
1
β2 + 1

b2

) + (
t

σ0b2

)(
1
τ

+ 1
r

) , (C3)

DA(t, τ ) =
(
1 + τ

r

)(
1 + β2

b2

)d, (C4)

�A(t, τ ) = τσ 2
0 d

2τ0β2B2
A

, (C5)

θA(t, τ ) = md2
(

1
τ

+ 1
r

)
8h̄β4

[(
1
β2 + 1

b2

)2 + m2

h̄2

(
1
τ

+ 1
r

)2] , (C6)

μA(t, τ ) = −1

2
arctan

⎡⎣ t + τ
(
1 + σ 2

0
β2

)
τ0

(
1 − tτσ 2

0

τ 2
0 β2

)
⎤⎦, (C7)

b2(t ) = σ 2
0

[
1 +

( t

τ0

)2
]
, (C8)

and

r(t ) = t
[
1 +

(τ0

t

)2]
. (C9)

Here, the parameter B2
A(t, τ ) is the beam width for the

propagation through one slit, RA(t, τ ) is the radius of curva-
ture of the wavefronts for the propagation through one slit,
b(t ) is the beam width for the free propagation, and r(t ) is the
radius of curvature of the wavefronts for the free propagation.
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DA(t, τ ) is the separation between the wave packets produced
in the double slit. �A(t, τ )x is a phase which varies linearly
with the transverse coordinate. θA(t, τ ) and μA(t, τ ) are the
time-dependent phases and they are relevant only if the slits
have different widths. μA(t, τ ) is the Gouy phase for the

propagation through one slit. τ0 = mσ 2
0

h̄ is the characteristic
time for the aging of the initial state. The wave function for
the propagation going through slit B can be obtained replacing
d with −d in Eqs. (C4)–(C6).

2. Kink path wave-function constants

The wave function for a massive particle performing a the
kink (k) trajectory through a double slit can be computed by
solving the Eq. (47), with the slit function given by FA,B =
e
− (x′′∓d/2)2

2β2 . Considering the propagation that goes from slit A
(upper slit) to the slit B (lower slit), the corresponding wave
function can be written as

ψAB = Ak exp [Ck (x) + iαk (x)], (C10)

where

Ck ≡ c′
1x2 + c′

2x + c′
3,

αk ≡ a′
1x2 + a′

2x + a′
3,

(C11)

c′
1 = − m2

4h̄2τ 2
Re

[
1

�3

]
, (C12)

c′
2 = md

4h̄τβ2
Im

[
1

�3

]
− m2d

8h̄2τεβ2
Re

[
1

�2�3

]
, (C13)

c′
3 = − d2

4β2
+ d2

16β4
Re

[
1

�2

]
+ d2

16β4
Re

[
1

�3

]
+ d2

16h̄εβ4
Im

[
1

�2�3

]
− d2

64h̄2ε2β4
Im

[
1

�2
2�3

]
,

(C14)

a′
1 = m

2h̄τ
+ m2

4h̄2τ 2
Im

[
1

�3

]
, (C15)

a′
2 = md

4h̄τβ2
Re

[
1

�3

]
+ m2d

8h̄2τβ2
Im

[
1

�2�3

]
, (C16)

and a′
3 = θ ′ + μ, where

θ ′ = − d2

16β4
Im

[
1

�2

]
− d2

16β4
Im

[
1

�3

]
+ md2

16h̄εβ4
Re

[
1

�2�3

]
+ m2d2

64h̄2ε2β4
Im

[
1

�2
2�3

]
,

(C17)

μ′ = −1

2
arctan

(
Im[�1�2�3]

Re[�1�2�3]

)
, (C18)

in which

�1 = 1

2σ 2
0

+ Im

2h̄t
, (C19)

�2 = 1

2β2
+ Im

2h̄t
+ Im

2h̄ε
+ m2

4h̄2t2�1
, (C20)

�3 = 1

2β2
+ Im

2h̄ε
+ Im

2h̄τ
+ m2

4h̄2ε2�2
. (C21)

The amplitude is given by

Ak = 1√
σ0

√
π

( m

2h̄

)3/2 1√
tετ |�1�2�3|

. (C22)

The wave function ψBA for the propagation going through slit
B, then to slit A, can be obtained replacing d with −d in
Eqs. (C13) and (C16).

3. Loop path wave-function constants

After some manipulation, Eq. (51) gives the wave function that describes a loop propagation (l) through a double slit, with the

slit function given by FA,B = e
− (x′′∓d/2)2

2β2 . The state for a massive particle propagating first through slit A (upper slit), then loops
through slit B (lower), and propagates from slit A to the screen is given by

ψloop−AB = Al exp [Cl (x) + iαl (x)], (C23)

with

Cl ≡ c′′
1x2 + c′′

2x + c′′
3, αl ≡ a′′

1x2 + a′′
2x + a′′

3, (C24)

where

c′′
1 = − m2

4h̄2τ 2
Re

[
1

γ3

]
, (C25)

c′′
2 = − md

4β2 h̄τ
Im

[
1

γ3

]
+ m2d

16β2 h̄2τε
Re

[
1

γ2γ3

]
+ m3d

64β2 h̄3τε2
Im

[
1

γ1γ2γ3

]
, (C26)

c′′
3 = − 3d2

8β2
+ d2

16β4
Re

[
1

γ1

]
+ d2

16β4
Re

[
1

γ2

]
+ d2

16β4
Re

[
1

γ3

]
− m2d2

44β4h̄2ε2
Re

[
1

γ1γ2

]
+ m4d2

46β4h̄4ε2
Re

[
1

γ 2
1 γ 2

2 γ3

]
− m2d2

27β4h̄2ε2
Re

[
1

γ1γ2γ3

]
− md2

32β4h̄ε
Re

[
1

γ1γ2
+ 1

γ2γ3

]
− m2d2

44β4h̄2ε2
Re

[
1

γ 2
2 γ3

]
− m3d2

29β4h̄3ε3
Im

[
1

γ1γ
2
2 γ3

]
, (C27)
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a′′
1 = m

2h̄τ
+ m2

4h̄τ 2
Im

[
1

γ3

]
, (C28)

a′′
2 = − md

4β2 h̄τ
Re

[
1

γ3

]
+ m2d

16β2 h̄τε
Im

[
1

γ2γ3

]
+ m3d

64β2 h̄3τε2
Re

[
1

γ1γ2γ3

]
, (C29)

and a′′
3 = θ ′′ + μ′′, where

θ ′′
3 = − 3d2

8β2
− d2

16β4
Im

[
1

γ1

]
− d2

16β4
Im

[
1

γ2

]
+ d2

16β4
Im

[
1

γ3

]
+ m2d2

44β4h̄2ε2
Im

[
1

γ 2
1 γ2

]
− m4d2

46β4h̄4ε2
Im

[
1

γ 2
1 γ 2

2 γ3

]
+ m2d2

27β4h̄2ε2
Im

[
1

γ1γ2γ3

]
+ md2

32β4h̄ε
Re

[
1

γ1γ2
+ 1

γ2γ3

]
+ m2d2

44β4h̄2ε2
Im

[
1

γ 2
2 γ3

]
− m3d2

29β4h̄3ε3
Re

[
1

γ1γ
2
2 γ3

]
, (C30)

μ′′ = 1

2
arctan

(
Im[γ0γ1γ2γ3]

Re[γ0γ1γ2γ3]

)
, (C31)

where

γ0 = 1

2σ 2
0

+ Im

2h̄t
, (C32)

γ1 = 1

2β2
+ Im

2h̄t
+ Im

2h̄ε
+ m2

4h̄2t2γ0
, (C33)

γ2 = 1

2β2
+ Im

h̄ε
+ m2

4h̄2ε2γ1
, (C34)

γ3 = 1

2β2
+ Im

2h̄ε
+ Im

2h̄τ
+ m2

4h̄2ε2γ2
. (C35)

The amplitude is given by

Al = 1√
σ0

√
π

(
m2

4h̄2
√

tε2τ |γ0γ1γ2γ3|

)
. (C36)

The wave function ψloop−BA for the propagation going through slit B, then to slit A, can be obtained replacing d with −d in
Eqs. (C26) and (C29).
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