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We provide an in-depth discussion of a theoretical framework recently introduced [Lindel et al., Phys. Rev. A
102, 041701(R) (2020)] which is capable of predicting the electromagnetic field emerging from a nonlinear
crystal through which a coherent laser pulse is shone. This framework is based on macroscopic quantum
electrodynamics and includes dispersion and absorption effects inside the crystal and allows for arbitrary optical
environments through the classical Green’s tensor. We introduce a diagrammatic approach with which the
nonlinear processes contributing to the electric field operator up to certain orders in the perturbation series can be
represented in a convenient way. Applying this framework to the setup of electro-optic sampling experiments of
the polaritonic quantum vacuum, we derive analytical results for the electro-optic sampling between distinct
spatiotemporal regions. Also, we discuss different approximations and the parameter ranges in which they
apply including angled or diverging beams, thermal fluctuations, as well as (linear) absorption effects upon
the polaritonic quantum vacuum. Finally, we compare these theoretical results to experimental data.
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I. INTRODUCTION

According to quantum mechanics, two canonically con-
jugate variables cannot be measured simultaneously with
arbitrary precision [1]. This seemingly technical statement has
far-reaching consequences, one of the most fascinating being
that the ground state of quantum electrodynamics (QED) is
endowed with a rich structure: electromagnetic fluctuations
persist even in empty space. Since these so called vacuum
fluctuations interact with matter just as any other electro-
magnetic field does, indirect evidence for their existence is
found in a variety of contexts. For example, the spontaneous
emission of an atom can be described as an interaction with
fluctuating vacuum fields [2,3], just as the Casimir force [4],
Lamb shift [5], and resonant energy transfer [6] can be seen
as originating from the existence of ground-state fluctuations.

As always in electrodynamics, the relation between fields
and charges is reciprocal—above we described the quantum
fluctuations of the electromagnetic field affecting atoms or
macroscopic objects, but one can also take the opposite point
of view, finding that the structure of the fluctuating quantum
ground state is modified by the presence of matter. In other
words, the interaction of light and matter also leads to a new
ground state of the composite light-matter system. This more
structured ground state consisting of the coupled system of
light and matter is usually referred to as the polaritonic or
medium-assisted ground state. The matter-induced changes in
the quantum ground state can again be accessed indirectly
by, e.g., measuring the spontaneous decay rate of an atom in
close proximity to a macroscopic body [7] or by measuring
Casimir–Polder forces [8].

*Corresponding author: Frieder.lindel@physik.uni-freiburg.de

Recently, a new route to detecting the quantum vacuum
has been realized [9,10] by means of electro-optic sampling
[11,12]. The idea is based on the fact that two electric fields
inside nonlinear media can effectively interact—a conclusion
which also holds for the quantum vacuum fluctuations since
these interact with matter in the same way as any other
type of field. Hence, an ultrashort laser pulse propagating
through a nonlinear crystal interacts with the quantum vacuum
via the nonlinear medium, which leads to a change in the
polarization of the probe pulse emerging from the crystal.
Analyzing this polarization change, one can obtain infor-
mation about the polaritonic ground state. Upon using two
laser pulses instead of one, one is further able to access field
correlations of the electromagnetic quantum vacuum between
distinct spatio-temporal regions as recently demonstrated in
Ref. [10].

Interactions and mixing of electromagnetic fields which
involve the quantum vacuum are also familiar from other
phenomena of nonlinear quantum optics, for example spon-
taneous parametric down-conversion [13] or photonic Bose–
Einstein condensation [14]. Given the different nonlinear
processes which include the quantum vacuum as a key ac-
tor, a theory of nonlinear optics which includes the full
medium-assisted quantum vacuum is needed. In particular,
given that both ulrashort laser pulses and vacuum fluctuations
are broadband, this theory has to account for dispersion and,
as required by the Kramers–Kronig relations, absorption of
all materials involved. We have recently developed such a
theory in order to find the output statistics of electro-optic
sampling experiments (see Fig. 1), showing how theses ex-
periments can be used to reveal different characteristics of
the medium-assisted quantum vacuum [18] such as longi-
tudinal and transverse fluctuating fields. In this theory, the
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FIG. 1. Schematic illustration of the working principle of
electro-optic sampling experiments: A linearly polarized short laser
pulse (blue) propagates through a nonlinear crystal. Inside the
crystal, the pulse mixes with the quantum fluctuations of the elec-
tromagnetic field leading to a new, differently polarized contribution
to the field (green). Since, this new contribution carries information
about the quantum vacuum the latter can be accessed by analyzing
the field emerging from the crystal.

description of the polaritonic quantum vacuum is provided by
macroscopic QED in dispersing and absorbing media [15,16],
which can be equivalently obtained by canonically quantising
classical electrodynamics in media by Fano diagonalization
of appropriate collections of coupled oscillators [17], or by
taking a phenomenological approach [15,16], constrained by
consistency with the fluctuation-dissipation theorem, the com-
mutation relations of QED, and classical electrodynamics in
the appropriate limit.

Here, in Sec. II, we firstly extend the discussion of the
theoretical framework provided in Ref. [18] which is capable
of predicting the electric field operator behind a nonlinear
crystal through which a coherent laser pulse is propagated
accounting for absorption, dispersion, general nonlinear me-
dia an arbitrary optical environments via the Green’s tensor.
This especially includes a new diagrammatic representation
which can be used as a convenient tool to apply this theoretical
framework to different setups and geometries in which the
nonlinear interaction of the polaritonic ground state with a
coherent laser field is considered. We demonstrate the utility
of this diagrammatic approach by using it to rederive the
detector statistics of electro-optic sampling experiments of the
quantum vacuum in Sec. III.

Secondly, using the formulas derived in Sec. III as a start-
ing point we provide in Sec. IV a wide range of results for
the detector statistics of electro-optic sampling experiments
of the quantum vacuum at different levels of approximation.
These extend those derived in Ref. [18] by including effects of
beam divergence, simplifying analytical expressions for corre-
lation measurements between distinct spatio-temporal regions
using two laser pulses as in Ref. [10] as well as considering
effects arising from non-parallel laser pulses. The variously
approximated results are finally compared to the experimental
data taken from Ref. [10]. The wide applicability of differ-
ent approximated results and the discussion of the parameter
ranges in which they apply as discussed in this paper offer a
toolbox for analysis of future experiments accessing different
characteristics of the quantum vacuum with high precision.

FIG. 2. Illustration of our theoretical framework. A coherent
pump pulse is incident on a nonlinear crystal in arbitrary environ-
ment. Inside the crystal the pump pulse can mix with the vacuum
fluctuations via nonlinear processes as indicated by the arrows.

II. WAVE PROPAGATION THROUGH NONLINEAR MEDIA

In this section we recapitulate the theoretical formalism
developed in Ref. [18] for predicting the quantized electric
field behind a nonlinear crystal through which a coherent laser
pulse propagates (see Fig. 2 for the general setup under con-
sideration). This framework includes absorption, dispersion
and additional macroscopic bodies surrounding the nonlinear
crystal, meaning the full medium-assisted ground state is in-
corporated as described by macroscopic QED. We first review
some basics of macroscopic QED in Sec. II A before applying
it to propagation of a laser pulse through a non-linear crystal
in Sec. II B. In Sec. II C, a new diagrammatic representation of
this result is introduced which will turn out to be a convenient
way to deal with the in principle vast number of terms con-
tributing to the operator for the electric field emerging from
the crystal. This diagrammatic representation is applied to the
setup of electro-optic sampling in Sec. III, but can be used
in a wider context where light propagation through nonlinear
absorptive media is considered.

A. Macroscopic QED

In order to obtain the quantized electromagnetic field in
media, one could exploit microscopic models such as that
proposed by Huttner and Barnett [19]. This framework, how-
ever, relies on a specific material model under consideration.
Here, we use the more general framework of macroscopic
QED which can be obtained either phenomenologically (as
was done in the original work [20]) or from canonical quanti-
zation of classical macroscopic electrodynamics [17]. It relies
on the knowledge of the relative linear permittivity ε and
permeability μ of all materials involved, although in this
paper we restrict ourselves to materials which do not have a
magnetic response, i.e., μ = 1. Note, however, that this is only
for convenience and including magnetically responding media
is straightforward [16]. When quantising the electromagnetic
field in the presence of media one finds that its fundamental
excitations are those of a joint field–matter system—so called
polaritonic modes. In the following, we briefly recap the basic
construction of the electric field operator and the state space
as predicted by macroscopic QED, more detailed discussions
of which can be found in Refs. [15,16].
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The polaritonic modes can be seen as being generated by a
noise polarization P̂N, given by

P̂N(r, ω) = i

√
h̄ε0

π
Imε(r, ω)f̂ (r, ω). (1)

Here, f̂ (r, ω) and f̂†(r, ω) are the bosonic annihilation and
creation operators of the medium-assisted polaritonic modes
and throughout we have

X̂(r, t ) =
∫ ∞

0
dω X̂(r, ω)e−iωt + H.c. (2)

Introducing this noise polarization into Maxwell’s equations,
one obtains finds that P̂N acts as a source term in the following
inhomogeneous wave equation:

∇ × ∇ × Êvac(r, ω) − ω2

c2
ε(r, ω)Êvac(r, ω) = −μ0ω

2P̂N,

(3)

This can be solved by means of the classical Green’s tensor
G, such that one finds the ground state field operator in media

Êvac(r, ω) = i
ω2

c2

√
h̄ε0

π

∫
d3r′√Imε(r′, ω)

×G(r, r′, ω) · f̂ (r′, ω), (4)

where G is defined by

∇ × ∇ × G(r, r′, ω) − ω2

c2
ε(r, ω)G(r, r′, ω) = δ(r − r′)

(5)

and the boundary condition G(r, r′, ω) → 0 for |r − r′| →
∞. The Green’s function can be viewed as a propagator for
excitations of frequency ω emanating from a point-like dipole
source at position r′ to an observation point r. It is known
in closed form for different geometries such as e.g. planar
multilayer systems [21], cylindrical systems such as fibres
[22] or systems which are spherically symmetric [23], with
more complex geometries requiring approximation or numer-
ical methods.

In order to be able to calculate expectation values, we
construct the Hilbert space of the system as the Fock space
generated by the polaritonic creation and annihilation op-
erators. This polaritonic construction means that the states
(including the ground state) can be altered by the presence
of the media compared to their free space counterparts.

Since the polaritonic creation and annihilation operators
follow bosonic statistics, one finds as expected that the vac-
uum electric field operator vanishes on average, i.e., 〈Êvac〉 =
0. However, its two-point correlation function is in general
different from zero:

〈Ê(r, ω)Ê†(r′, ω′)〉 = h̄μ0

π
ω2δ(ω − ω′)

× [1 + 2nT(ω)]ImG[r, r′, ω], (6)

where nT(ω) is the average thermal photon number at tem-
perature T governed in thermal equilibrium by Bose–Einstein
statistics [24,25]

nT(ω) = 1

eh̄ω/(kBT ) − 1
, (7)

where kB is the Boltzmann constant. Note that nT van-
ishes as T → 0, so that the two terms in the factor 1 +
2nT(ω) in Eq. (6) represent vacuum and thermal fluctuations,
respectively.

Equations (4) and (6) describe the statistics of quantized
electromagnetic field fluctuations in media, their polaritonic
nature accounting for the fields generated by the fluctuations
of the charges in the medium. Note that the two-point correla-
tion function (6) finds importance in many different physical
processes (for a general overview see, e.g., Refs. [3,16])
including Casimir [4] and Casimir–Polder forces [8], spon-
taneous decay [2], the Purcell effect [7], and resonant energy
transfer [6,26].

B. Wave equation and perturbative solution

Our schematic picture of the system is shown in Fig. 2
where a laser pulse propagates through a non-linear crystal
of arbitrary shape as first discussed in Ref. [18]. To this end,
we introduce two additional sources into the wave equation
Eq. (3), so that it reads

∇ × ∇ × Ê(r, ω) − ω2

c2
ε(r, ω)Ê(r, ω)

= −μ0ω
2[P̂NL + Pp + P̂N]. (8)

The first of there is the nonlinear polarization P̂NL, which has
been added to account for the nonlinear response of the crystal
assumed to have the general form [27]

P̂NL(r, ω) =
∫ ∞

−∞
d�χ(2)(r, ω − �,�)

� Ê(r, ω − �)Ê(r,�). (9)

Here, χ(2) is the nonlinear susceptibility tensor of the electro-
optical crystal and we have defined a shorthand

[χ(2) � ÊÊ]i ≡
∑

jk

χ
(2)
i jk Ê j Êk .

The other source introduced in Eq. (8) is the coherent laser
pulse. This results in an electric field Ep which, in the vacuum
picture [28], causes the total field to take the form Ê = Êvac +
Ep. The field Ep is related to Pp via

Ep(r, ω) = −μ0ω
2

∫
d3r′ G(r, r′, ω) · Pp(r′, ω), (10)

see Appendix B for details. Note that Ep(r, ω) can represent
any number of spatially and temporally separated classical
laser pulses.

The wave Eq. (8) can formally be solved by a Lippmann–
Schwinger equation

Ê(r, ω) = −μ0ω
2

∫
d3r′G(r, r′, ω)

· [P̂NL(r′, ω) + Pp(r′, ω) + P̂N(r′, ω)] (11)

as can be seen by inserting Eq. (11) into Eq. (8). Upon recall-
ing the definition of Êvac in Eq. (4) one obtains from Eqs. (10)
and (11)

Ê(r, ω) = Ep(r, ω) + Êvac(r, ω)

−μ0ω
2

∫
VC

d3r′ G(r, r′, ω) · P̂NL(r′, ω). (12)

Here, VC is the volume of the crystal.
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FIG. 3. Diagrammatic representation of the perturbative approach: (a) the electric field emerging from the crystal is represented by an exact
vertex found on the left-hand side. Expanding the electric field in orders of χ (2) as in Eqs. (14) and (15), this exact vertex can be expanded
in to perturbative vertices. In terms of formulas, (a) reads Ê = Ê(0) + Ê(1) + Ê(2) + Ê(3) + . . . where only representative diagrams are shown
here. If a more detailed discussion is needed, one can specify the polarization of all fields involved as indicated in (b).

Equations (9) and (12) define a formal solution for Ê(r, ω),
but are infinitely recursive. To solve them, we follow Ref. [18]
where a Born series is used, which can be seen as a perturba-
tive expansion in the nonlinear susceptibility tensor χ(2) to the
desired order. To keep track of this order we introduce a scalar
perturbation parameter α via χ(2) → αχ(2), which will be set
to unity at the end of the calculation. We expand the fields in
orders of α,

Ê(r, ω) =
∞∑

i=0

αi Ê(i)(r, ω), (13)

which can then be inserted into Eq. (12). Comparing the terms
of order αi on the left and right-hand side of the resulting
expression, one finds for i = 0

Ê(0)(r, ω) = Êvac(r, ω) + Ep(r, ω), (14)

and for i > 0,

Ê(i)(r, ω) = −
i∑

j=1

μ0ω
2
∫

VC

d3r′ G(r, r′, ω)
∫ ∞

−∞
d�

× χ(2)(r′, ω−�,�)

� Ê(i− j)(r′,�)Ê( j−1)(r′, ω−�). (15)

Equations (14) and (15) describe the electric field operator
emerging from a nonlinear crystal through which a coherent
laser pulse with arbitrary profile propagates as dictated by
the Helmholtz equation and the polaritonic environment. In
particular, this result goes beyond the paraxial approximation.
Furthermore, the realistic material response and the electro-
magnetic properties of the environment can be taken into
account via the linear permittivity ε(r, ω) which enters the
Green’s tensor.

This approach can be used in a variety of contexts such
as spontaneous parametric down-conversion [29], generation
of subcycle squeezed light [30,31], or nonlinear effects in
dispersion forces such as the Casimir force [32]. To make
our theoretical formalism more amenable to these different

applications, we introduce a diagrammatic way to represent
the different terms in Eqs. (14) and (15) in the next section.
This diagrammatic approach will turn out to be a convenient
tool to understand and discuss their physical significance and
to keep track of the vast number of terms in Eq. (15).

C. Diagrammatic approach

A diagrammatic representation of the perturbative solution
of Eqs. (11) [given by (14) and (15)] can be found in Fig. 3.
The incoming fields, i.e., the laser and the vacuum field, can
either propagate freely through the crystal or interact with it,
forming a three point vertex and picking up a factor of χ

(2)
i jk for

incoming fields with polarization j, k and and outgoing field
with polarization i. The resulting field can subsequently form
a new three-point vertex in the same way. This can happen
multiple times, each new vertex representing an increase in the
order of perturbation theory. Note that conservation of energy
implies that the sum over all frequencies at each vertex equals
zero.

Each diagram in Fig. 3(a) represents a large number of dif-
ferent terms in the expansion, since every incoming line on the
right-hand side of Fig. 3(a) can represent any of the (possibly
multiple) laser pulses or the vacuum field. Furthermore, we
have not specified the directions into which the various fields
are polarized. In order to evaluate the series, we therefore label
each vertex and line with a polarization index and partition the
whole series into diagrams where the incoming line represents
the vacuum field, and those where it represents the probe
field, as shown in Fig. 3(b). We demonstrate the utility of this
diagrammatic approach in the following section in which we
apply it to the setup of electro-optic sampling.

III. ELECTRO-OPTIC SAMPLING

In this section, we apply the theoretical framework devel-
oped in the last section to the setup of electro-optic sampling
following the method introduced in Ref. [18]. Here, we extend
the discussion by including a diagrammatic description of
the calculation as well as finding a new relation revealing
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FIG. 4. Single-beam setup. Single-beam setup of electro-optic
sampling. One linearly polarized laser beam (blue) propagates
through a nonlinear crystal with linear refractive index n, nonlinear
susceptibility χ (2) and volume VC . The field emerging from the crys-
tal is analysed by ellipsometry consisting of a λ/4 plate, a Wollaston
prism and two balanced photodetectors. This is basic setup of electro-
optic sampling [11,12] which has been used this way in Ref. [9] to
measure the quantum vacuum.

how electro-optic sampling can retrieve the wave vector de-
pendence of the two-point correlation function, cf. Eqs. (35)
and (37). Also, we derive new equations for the signal as a
function the time delay and lateral shift between the two laser
beams of the two-beam setup which, surprisingly, only depend
on the single-beam filter function.

We begin in Sec. III A by considering the single-beam
setup as in Refs. [9,33], whereas in Sec. III B, we generalize
these results to the what we call the two-beam setup that was
realized in Ref. [10].

A. Single beam

We consider the basic experimental scheme depicted in
Fig. 4, which has been discussed by various previous authors
[9,33]. The laser pulse is linearly polarized in the y direction
and propagates in the z direction; its transverse profile can
be chosen arbitrarily. Furthermore, the nonlinear crystal is
chosen to be a zincblende-type material with symmetry group
4̄3m, whose lattice vectors are orientated in the following way:

[100] = 1√
2
(ez − ex ),

[010] = 1√
2
(ez + ex ),

[001] = ey,

where ei is a unit vector in the ith direction. In this config-
uration, the nonlinear polarization in the laboratory frame is
given by

P̂NL = 2χ (2)
[ − ÊyÊxex + ÊyÊzez + 1

2

(
Ê2

x − Ê2
z

)
ey

]
, (16)

where we have omitted the frequency and position ar-
guments for brevity, but emphasize that we allow χ (2)

to be a frequency-dependent, complex quantity. The field
emerging from the crystal is detected by an ellipsometry
scheme resulting in a differential photocount whose expec-
tation value m and variance �m can be found to be given

by [18,33]

m = 〈: Ŝ :〉, (17)

(�m)2 = N + 〈: Ŝ2 :〉 − 〈: Ŝ :〉2. (18)

Here, : · · · : denotes normal ordering and the electro-optic
sampling operator is given by

Ŝ = 4πε0c
∫ ∞

0
dω

n(ω)η(ω)

h̄ω

×
∫

d2r‖[iÊ†
y (r‖, ω)Êx(r‖, ω) + H.c.]. (19)

Here, η(ω) denotes the efficiency of the photomultipliers and
n(ω) is the refractive index. The term N appearing on the
right-hand side of Eq. (18) is related to the total number of
detected photons and is usually referred to as the shot noise.

In order to evaluate Eqs. (17) and (18), one has to find the
electro-optical signal operator Ŝ given by Eq. (19), which is
still written in terms of the (unknown) output field behind
the crystal, rather than the (known) input field and crystal
properties. In the remainder of this section we describe how
the output field can be expressed in terms of known quantities
by using the Born-series approach and its diagrammatic inter-
pretation outlined in Secs. II B and II C. In all that follows, we
restrict the perturbation series to second order in χ (2).

We begin by considering contributions to 〈: Ŝ :〉, which will
give us the expectation value of the differential photocount
and one term from its variance via Eqs. (17) and (18). Since
〈: Ŝ :〉 is quadratic in the electric field operator we have to
formally square the diagrams found in Fig. 3(a) as shown in
Fig. 5. This gives numerous possible terms, many of which do
not contribute. To demonstrate this we make use of four basic
rules.

(i) Only diagrams with an even number of vacuum fields
contribute.

(ii) Vacuum fields cannot be directly measured by the pho-
tomultipliers.

(iii) Diagrams proportional to off-diagonal elements of G
do not contribute, i.e., the polarization of a field does not
change upon propagation.

(iv) Vacuum fields with different polarizations are uncorre-
lated, i.e., 〈Êvac,iÊ

†
vac, j〉 = 0 if i 
= j.

Rule (i) follows from the linear dependence of Êvac on
the bosonic creation and annihilation operators [see Eq. (4)],
while rule (ii) is a consequence of the normal ordering in
Eqs. (17) and (18). Rule (iii) on the other hand can be shown
to be true if the system exhibits inversion symmetry along the
x and y axes and rule (iv) is a direct consequence of rule (iii)
as can be seen from Eq. (6). Using rules (i)–(iv) (as well as
verifying by explicit calculation), we find as anticipated that
the expectation value of the signal vanishes:

〈: Ŝ :〉 = 0, (20)

which is a direct consequence of the fact that the ground state
expectation value of Êvac is zero.

Next, we evaluate the contribution to the signal’s variance
given by 〈: Ŝ2 :〉. Since 〈: Ŝ2 :〉 depends on the electric field to
the fourth power, we have to square the diagrams in Fig. 5.
By making use of the rules (i)–(iv) we find up to second order
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FIG. 5. Diagrams contributing to Ŝ: The electro-optical signal Ŝ is quadratic in the electric field, so it is diagrammatically described by two
exact vertices. Each of these can be expanded into perturbative vertices as before, cf. Fig. 3.

in χ (2) that the only diagrams contributing are those shown in
Fig. 6. Since the vacuum field is much weaker than that of the
laser pulse, we can neglect the diagram on the right-hand side
in Fig. 6. Translating the first diagram back to a formula, one
obtains

Ŝ2 =
[∫ ∞

−∞
d�

∫
VC

d3r′ Êvac,x(r′,�)H (r′,�) + H.c.

]2

,

(21)

where

H (r′,�) = − 8π icε0χ
(2)(�)μ0

∫ ∞

0
dω

η(ω)
√

ε(ω)ω

h̄

×
∫

d2r‖E∗
p,y(r‖, ω)Gxx(r‖, r′, ω)Ep,y(r′, ω − �).

(22)

Here we have assumed that χ (2) is constant within the range
of frequencies making up the laser pulse, such that it only
depends on the frequency of the vacuum field �. Note gener-
alising the formalism to a nonlinear susceptibility which also
depends on the frequency of the laser pulse is straightforward.

To simplify Eq. (21), we follow Ref. [18] and use the re-
ality relation Êvac,x(r′,−�) = Ê†

vac,x(r′,�) to shift to positive
frequencies � only;

Ŝ2 =
( ∫ ∞

0
d�

∫
VC

d3r′Êvac,x(r′,�)

× [H (r′,�) + H∗(r′,−�)] + H.c.

)2

. (23)

FIG. 6. Diagrams contributing to 〈: Ŝ2 :〉: The squared electro-
optical operator 〈: Ŝ2 :〉 is quartic in the fields such that one has to
expand four exact vertices. Doing so by making use of rules (i)–(iv)
one finds that only the two diagrams shown here are the ones which
contribute to the signal.

Using the commutation relations of the creation and annihi-
lation operators, we see that the only term contributing is the
one which depends on Êvac,xÊ†

vac,x so that we find

〈: Ŝ2 :〉 =
∫ ∞

0
d�

∫ ∞

0
d�′

∫
VC

d3r′
∫

VC

d3r′′

× 〈Êvac,x(r′,�)Ê†
vac,x(r′′,�′)〉F1(r′, r′′,�,�′),

(24)

where

F1(r′, r′′,�,�′) = [H (r′,�) + H∗(r′,−�)]

× [H∗(r′′,�′) + H (r′′,−�′)]. (25)

Lastly, we use macroscopic QED to evaluate the expectation
value of the two-point correlation function of the electric field
operator. This amounts to inserting Eq. (6) into Eq. (24),
giving

〈: Ŝ2 :〉 = h̄μ0

π

∫ ∞

0
d�

∫
VC

d3r′
∫

VC

d3r′′ [1 + 2nT (�)]

× �2Im[Gxx(r′, r′′,�)]F1(r′, r′′,�). (26)

with F1(r′, r′′,�) ≡ F1(r′, r′′,�,�).
We see in Eqs. (24)–(26), that by analyzing the signal

of an electro-optic sampling experiment one can retrieve in-
formation about the two-point correlation function of the
electromagnetic field, sampled within the spatio-temporal
extent of the laser pulse. The latter is determined by the
integration over the crystal volume and the function F1, which
we henceforth refer to as a filter function, since it plays the
role of singling out a particular space-time region in which
the vacuum field is observed—reminiscent of the role of the
plates in the Casimir force. The advantage of this method
over more traditional routes to the quantum vacuum is its
versatility: which part of the correlation function is accessed
in the experiment can be chosen by tuning the filter func-
tion. This can be done by varying relatively easily-accessed
experimental parameters such as the pump beam profile and
duration, which have no analog in Casimir force experiments.
Even more flexible and comprehensive access to the two-point
correlation function is achieved with a slightly more elaborate
experimental setup using two laser beams, discussed in the
next section.

B. Generalization to two beams

In more recent experiments, the setup shown in Fig. 7
has been extended to having two laser beams (see Fig. 7),
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FIG. 7. Two-beam setup: The two-beam setup consists of two
identically-shaped, linearly polarized laser pulses with spatial offset
δr‖ and relative time delay δt . They both propagate through a nlinear
crystal and are analysed separately after emerging from the crystal by
the same ellipsometry also used for the single beam setup, compare
Fig. 4. This setup has been used in Ref. [10] to measure the spectral
decomposition of the electro-magnetic quantum vacuum.

allowing for correlation measurements between different
spatio-temporal regions [10]. It has been shown that this offers
the significant advantage being able to experimentally access
the spectrum of the electro-optic signal s2(�), rather than just
its integrated value 〈: Ŝ2 :〉 = ∫ ∞

0 d�s2(�) [10]. In the fol-
lowing, we state the theoretical result found in Ref. [18] which
can be seen as a generalization of the theoretical framework
outlined in the last section to the two-beam setup. We will
further show a relation which demonstrates, that this setup can
be also used to not only access the spectral characteristics but
also the wave-vector dependence of the polaritonic quantum
vacuum fluctuations. We additionally derive simplified equa-
tions for the signal measured with arbitrary delays and spatial
offsets between the laser pulses.

The main difference in the two-beam calculation compared
to the single-beam case is the laser field. It is now given by
two identically-shaped pulses with possible spatial offset in
the lateral direction δr‖ and relative time delay δt such that
the laser field is given by

Ep(r, t ) = E1(r, t ) + E2(r, t ), (27)

E1(r, t ) =
∫ ∞

−∞
dt E (r, ω)eiωt ey, (28)

E2(r, t ) =
∫ ∞

−∞
dt E (r + δr‖, ω)eiωδt eiωt ey

≡
∫ ∞

−∞
dt Eδ (r, ω)eiωt ey. (29)

The Fourier transformed laser probe field is hence given
by Ep(r, ω) = E (r, ω) + Eδ (r, ω) with Eδ (r, ω) ≡ E (r +
δr‖, ω)eiωδt .

Another less obvious difference compared to the single-
beam calculation is given by the detection scheme. Since
the two laser pulses are propagating into slightly different
directions, they can be measured individually by two sets
of balanced detectors, each of which consists of the same

components as that described in Sec. III A. The statistics of
this more general setup reads [10,18]

m = 〈: Ŝ(δr‖, δt ) :〉 (30)

with Ŝ(δr‖, δt ) ≡ 1
2 {Ŝ1, Ŝ2}, (31)

where {·, ·} denotes the anticommutator, and Ŝi is the beam-
specific electro-optic sampling operator, whose form in terms
of electric fields is given by Eq. (19) with E → Ei. Note that
the diagram which contributes to 〈: Ŝ1Ŝ2 :〉 is the same as in
the previous section except that in the upper (lower) half of the
diagram the laser pulse is given by E1 (E2). To find 〈: Ŝ2Ŝ1 :〉
one simply replaces E1 ↔ E2. Translating this diagram back
to formulas in the same way as was done for Eq. (21), we
obtain up to second order in χ(2) [18],

〈: Ŝ2(δt, δr‖) :〉 =
∫ ∞

0
d�

∫ ∞

0
d�′

∫
VC

d3r′
∫

VC

d3r′′

× 〈Êvac,x(r′,�)Ê†
vac,x(r′′,�′)〉

× F12(r′, r′′,�,�′), (32)

with the generalized filter function for the two-beam setup;

F12(r, r′,�,�′) = 1
2 {[H1(r,�) + H∗

1 (r,−�)]

× [H2(r′,−�′) + H∗
2 (r′,�′)]

+ [H2(r,�) + H∗
2 (r,−�)]

× [H1(r′,−�′) + H∗
1 (r′,�′)]}. (33)

Equations (32) and (33) show that for the two-beam setup
the two-point correlation function of the electric field’s ground
state is accessed in much the same way as for the single beam
setup, but with a more general filter function F12. For zero
spatiotemporal offset (δr‖ = δt = 0), F12 reduces to F1 as can
be seen from comparing their definitions in Eqs. (25) and (33).
This also directly implies that 〈: Ŝ2(0, 0) :〉 = 〈: Ŝ2 :〉.

The most important difference between the one- and two-
beam filter functions is that the averaging of the two-point
correlation function is over a single spatial region, while in
the latter it is over regions which are in general distinct.
This can be seen from the fact that F1(r, r′) ∝ Ep,y(r)Ep,y(r′)
while F12(r, r′) ∝ E1,y(r)E2,y(r′). The connection between
the single-beam and the two-beam setups can be made clearer
by assuming that the crystal and the environment are invari-
ant under shifts in the xy plane by and arbitrary vector δr‖,
i.e., G(r, r′) = G(r ± δr‖, r′ ± δr‖). This is true whenever
we consider a crystal with lateral extension in the xy plane is
much bigger then the beam waist of the laser pulses and their
possible lateral offset, as will be done throughout the remain-
der of this work. Under this assumption it is straightforward
to show that Eq. (32) can be rewritten as

〈: Ŝ2(δt, δr‖) :〉

= 1

2

∫ ∞

0
d�

∫ ∞

0
d�′

∫
VC

d3r′
∫

VC

d3r′′F1(r′, r′′,�)

× [〈Êvac,x(r′,�)Ê†
vac,x(r′′ − δr‖,�′)ei�′δt

+ Êvac,x(r′ − δr‖,�)Ê†
vac,x(r′′,�′)e−i�′δt 〉], (34)
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where F1 is the single-beam filter function shown in Eq. (25),
for the case where the one laser pulse which enters F1 is given
by E1. Equivalently one can derive Eq. (34) with E1 → E2 by
replacing Ê†

vac,x(r′′ − δr‖) → Ê†
vac,x(r′′ + δr‖) and Êvac,x(r′ −

δr‖) → Êvac,x(r′ + δr‖). Hence, we have rearranged the ex-
ponential factors introduced by the spatiotemporal shift of
the second laser pulse in the two-beam measurement from
the filter function to the two-point correlation function of the
electric vacuum field. This way we obtained that the two-beam
setup can equivalently be seen as sampling the two-point cor-
relation function between two spatio-temporal regions which
are shifted by δr‖ and δt relative to each other by means of the
simplified one-beam filter function.

The introduction of a time delay between the pulses allows
the spectrum of the signal to be accessed. To see this, we
derive from Eqs. (32) and (33) the relation

1

8π3

∫ ∞

−∞
dδt

∫
d2δr‖ 〈: Ŝ2(δt, δr‖) :〉ei(δt�+δr‖·q‖ )

= 1

2
s2(|�|, q‖). (35)

Here, s2(�, q‖) is the signal obtained with the single beam
setup decomposed into its dependence on the lateral wave
vector and the frequency of the two-point correlation function,
i.e.,

〈: Ŝ2 :〉 =
∫ ∞

0
d�

∫
d2q‖ s2(�, q‖). (36)

The explicit form of the integrand is

s2(�, q‖) ≡
∫

VC

d3r′
∫

VC

d3r′′ h̄μ0

π
�2F1(r′, r′′,�,�′)

× Im[eiq‖·(r−r′ )Gxx(z′, z′′, q‖,�)], (37)

where G(z′, z′′, q‖,�) is the (2 + 1)-dimensional decomposi-
tion of the Green’s tensor in Fourier space, i.e.,

G(r, r′,�) =
∫

d2q‖eiq‖·(r−r′ )G(z, z′, q‖,�). (38)

We emphasize this connection between the two-beam and
one-beam setups: by measuring the electro-optic sampling
operator of the two-beam setup for various time delays and
spatial offsets, one is able to access the integrand of the
electro-optic sampling observable of the one-beam setup

s2(�, q‖) via Eq. (35). This means for the one-beam setup
only the integrated, single-valued quantity 〈: Ŝ2 :〉 is obtained.
This is similar to the Casimir force where also a wide range of
frequencies contribute to one single observable. By contrast,
the two-beam setup is able to resolve the spectrum of the
vacuum two-point correlation function and its dependence on
the lateral wave vector. This results in a uniquely versatile
method of accessing the QED ground state in media.

On a technical level this often yields the simplification that
one only needs to model s2(�, q‖) which can then be com-
pared to experimental data. In other cases, however, one is not
only interested in s2(�, q‖) but rather in the signal as a func-
tion of the lateral and temporal shift 〈: Ŝ2(δt, δr‖) :〉. Using a
few general assumptions one is able to exploit Eq. (34) to find
simplified expression for 〈: Ŝ2(δt, δr‖) :〉. Assuming that the
crystal is isotropic and that reflection effects can be neglected,
the xx component of the imaginary part of the Green’s tensor
is given by (see Appendix A):

Im[Gxx(r′, r′′,�)] = 1

8π

∫ ∞

0
dq‖

∫ 2π

0
dφ q‖eiq‖·(r′

‖−r′′
‖ )

× Re

[(
1 − q2

x

q2

)
eiqz (z′−z′′ )

qz

]
. (39)

Here, we have introduced polar coordinates for the lateral
wave vector, i.e., qx = q‖sin(φ) and qy = q‖cos(φ). Next, we
assume that the two laser pulses have a symmetric lateral
profile which is smaller than the crystal surface, such that∫

VC

d3r′
∫

VC

d3r′′ F1(r′, r′′,�,�′)eiq‖·(r′
‖−r′′

‖ ), (40)

is independent of the angle φ. Using these results, one can use
Eqs. (34) and (39) to show

〈: Ŝ2(δt, δr‖) :〉 =
∫ ∞

0
d�

∫ ∞

0
dq‖ cos(�δt )s2(�, δr‖), (41)

with

s2(�, δr‖) =
∫ ∞

0
dq‖

∫
VC

d3r′
∫

VC

d3r′′ h̄μ0

π
�2F1(r′, r′′,�)

× Re

[
g(q‖, δr‖)

Gxx(z′, z′′, q‖,�)

1 − q2
x/q2

]
(42)

and

g(q‖, δr‖)

2π
= 1

2π

∫ 2π

0
dφ

(
1 − q2

x

q2

)
eiq‖·δr‖ =

{
J0(δxqx ) =

(
1 − q2

‖
q2

)
J0(q‖δx) + q‖

q2δx J1(q‖δx) if δy = 0

J0(δyqy) = J0(q‖δx) − q‖
q2δy J1(q‖δx) if δx = 0

, (43)

where Jn denotes the Bessel function of the first kind.
Equations (41)–(43) represent a simpler way to obtain
〈: Ŝ2(δt, δr‖) :〉 compared to Eqs. (32) and (33) under the
assumptions given above. They will be used in Sec. IV, where
they are also compared to experimental data in Sec. IV D.

IV. RESULTS

In the last section, we obtained formulas (24) and (32)
which describe the statistics of electro-optic sampling ex-
periments accounting for absorption, dispersion and general
optical environments. In this section we exploit these in
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FIG. 8. Different levels of approximation. (a) In Sec. IV A, laser
pulses with a constant Gaussian lateral beam profile are considered.
(b) In Sec. IV B, the divergence of the laser pulses is taken into
account and (c) in Sec. IV C, effects emerging from the fact that
the two beams are propagating into slightly different direction are
incorporated. In (a)–(c), also the main equation is referenced which
can be used to calculate the elctro-optic signal for the given setup
under consideration.

realistic contexts, initially, in Sec. IV A, by assuming a Gaus-
sian pump-pulse profile, see Fig. 8(a). For this setup, we
derive simplified equations for the variance of the detected
signal using different approximations. This was similarly done
in Ref. [18], but here we extend the discussion of the parame-
ter range in which the different approximated results are valid.

In Secs. IV B and IV C, we discuss, respectively, the in-
fluence onto the statistics of electro-optic sampling of the
divergence of the laser pulses and of the fact that in the two-
beam setup the two laser pulses are propagating into slightly
different directions, see Figs. 8(b) and 8(d). This allows one to
study in which parameter range these effects have to be taken
into account and in which particular way the signal is influ-
enced by them. Additionally, by varying the beam width while
keeping all other parameters constant, we obtain different
regimes in which evanescent or propagating modes dominate
the signal. The results derived in Secs. IV A–IV C offer a
whole range of different approximated results and a discus-
sion of the parameter ranges in which they apply and are best
suited. This offers a convenient toolbox for future experiments
measuring the quantum vacuum using electro-optic sampling.

Finally, in Sec. IV D, we compare the results coming out
of our theoretical formalism discussed in Secs. IV A–IV C to
experimental data.

A. Gaussian beams: different approximations

We assume that the crystal has length L and is centered
at z = 0. Furthermore, we assume that its extension in the

xy plane is infinite, which is a valid approximation as long
as the lateral extent of the crystal is much greater than that
of the profile of the focused pump pulse in xy direction. The
pump pulse is assumed to be given by a lowest order Laguerre-
Gaussian mode

Ep(r, ω) = Ep(ω)

√
2

πw2
e−r2

‖/w2
eikzey, (44)

where w is the beam waist, k = n(ω)ω/c is the wave vector
of the laser pulse, Ep(ω) is its amplitude which also defines its
spectral decomposition, and ‖ denotes the xy direction, i.e.,
r‖ = (x, y)T . Note that we have assumed that the Rayleigh
length is much shorter than the length of the crystal, i.e.,
w2k/2 � L in order to obtain the simplified expression of the
lowest order Laguerre-Gaussian in Eq. (44). For the more gen-
eral case in which w2k/2 � L is not assumed, see Sec. IV B.

Neglecting reflection effects from the crystal’s surfaces, but
without applying any further approximations, one can evalu-
ate Eq. (25) by inserting Eq. (44) and the bulk Green’s tensor
given by (A1), finding the filter function for the one-beam
setup as derived in Ref. [18]

F (r, r′,�)

= 16|χ (2)(�)|2
π2c2

∫ ∞

0
dω

∫ ∞

0
dω̃

∫
d2k‖

×
∫

d2k̃‖
n(ω)η(ω)ωn(ω̃)η(ω̃)ω̃

h̄2

(
1 − k2

x

k2

)(
1 − k̃2

x

k̃2

)
× e−(r2

‖+r′2
‖ )/w2

e−(k2
‖+k̃2

‖ )w2/4−ik‖·r+ik̃‖·r′

× Re�

[
E∗

p (ω)Ep(ω − �)
ei[kω−�−kz]z

kz

]

× Re�

[
E∗

p (ω̃)Ep(ω̃ + �)
ei[kω̃+�−k̃z]z′

k̃z

]
, (45)

where k̃ = n(ω̃)ω̃/c and we defined a modified real part as

Re�[z(�)] = 1
2 [z(�) + z∗(−�)]. (46)

Inserting Eq. (45) into Eq. (24) one could obtain the signal
without further approximation. The resulting formulas are
very cumbersome so are not shown explicitly here, but can
be significantly simplified by making some assumptions.

No absorption. We begin by neglecting absorption, assum-
ing that the refractive index n is real in all frequency ranges
involved. Using this approximation, one obtains by inserting
Eq. (45) into Eq. (24):

〈: Ŝ2 :〉 = h̄μ0w
4L2

π3c2

∫ ∞

0
d� |χ (2)(�)|2�2

∫
q‖<q

d2q‖

×
(

1 − q2
x

q2

)
e−q2

‖w
2/2

qz

∣∣∣∣∣
∫ ∞

0
dω

∫
d2k‖

× n(ω)η(ω)ω

h̄2

(
1 − k2

x

k2

)
e−(k2

‖+q‖·k‖ ) w2

2

× Re�

[
E∗

p (ω)Ep(ω − �)
sinc[ L

2 �K−]

kz

]∣∣∣∣∣
2

+ (�K− → �K+), (47)
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where we used the shorthand �K± = kω−� − kz ∓ qz, and
+(�K− → �K+) denotes adding the preceding term subject
to the replacement �K− → �K+. We see in Eq. (47) that due
to the fact that we neglect absorption it is found that only
propagating vacuum fields contribute to the signal whereas
there is no contribution from evanescent ones. This can be
seen from the fact that q‖ is only integrated over a circle with
radius q, instead of over all two-dimensional space. Note that
to derive this result no additional assumptions were needed
but it is found to be a consequence of neglecting absorption
effects alone.

Equation (47) can be used as a starting point for further
approximations, see also Ref. [18]. We begin by paraxially
approximating the field generated by the nonlinear mixing in
the frequency range of the laser by assuming that

n2(ω)
ω2

c2
� 1

w2
for ω ∈ [ωc − �ω,ωc + �ω]. (48)

Here, ωc and �ω are the central frequency and the width
of the spectrum of the laser pulse, respectively. We refer to
Eq. (48) as the laser-paraxial approximation, since it implies
that all fields whose frequencies belong to those sampled by
the laser copropagate with it (i.e., in the z direction only). Fur-
thermore, in the laser-paraxial approximation we also assume
that within the frequency range of the laser we can assume
a linear dependence of the refractive index on frequency by
approximating [27]

kω−� − kω � −ng�/c, (49)

where ng = c∂k/∂ω|ω=ωc is the group refractive index at the
central frequency of the laser pulse ωc. This means we assume
that there are no material resonance with frequencies close
to the frequency range of the laser pulse. Using Eqs. (48)
and (49) one obtains the filter function in the laser-paraxial
approximation FLP from Eq. (45) as [18]

FLP(r′, r′′,�) =
(

4|χ (2)(�)|cμ0Nωp

w2n(ωc)

)2

f (�)2

× e−2(r′2
‖ +r′′2

‖ )/w2
e−ing

�
c (z′−z′′ ). (50)

Here, following Refs. [18,33], we have introduced the average
detected frequency

ωp =
∫ ∞

0 dωη(ω)Ep(ω)2∫ ∞
0 dω

η(ω)
ω

Ep(ω)2
, (51)

and the spectral autocorrelation function

f (�) =
∫ ∞

0 dω[Ep(ω)Ep(ω + �) + Ep(ω)Ep(ω − �)]

2
∫ ∞

0 dωη(ω)Ep(ω)2
. (52)

Inserting Eq. (50) into Eq. (26), we obtain the spectrum of
the variance of the electro-optical signal in the laser-paraxial
approximation

s2(�) = (NLωp)2h̄|χ (2)(�)|2
4π3c4ε3

0n2(ωc)
�2 f (�)2

∫
q‖�q

d2q‖
1 − q2

x
q2

qz

× e−q2
‖w

2/4

(
sinc

[
L

2
�k−

]2

+ sinc

[
L

2
�k+

]2)
(53)

where �k± = ng
�
c ± qz with qz =

√
q2 − q2

‖ , with q =
n(�)�/c being the wave vector at the frequency of the vac-
uum �.

We can also paraxially approximate the vacuum field by
assuming

q2 = n2(�)
�2

c2
� 1

w2
. (54)

Since the exponential in Eq. (53) effectively restricts q‖ <

2/w, we find that Eq. (54) implies q‖ � q. This allows one
to make use of the assumption shown in Eq. (54) by Taylor
expanding Eq. (53) in orders of q‖/q up to the first nonvanish-
ing, post-paraxial order, i.e., third order in q‖/q. Subsequently,
one can carry out the q‖ integral analytically, leading to

s2(�) = (NLωp)2h̄

π2ε3
0c3n3(ωc)w2

n(ωc)

n(�)
|χ (2)(�)|2� f (�)2

×
{(

1 − e−q2w2/4
)
sinc

[
L

2
�k−

]2

−
[

4 − e−q2ω2
0/4(4 + q2ω2

0 )

qω2
0�k2−

(
sinc[L�k−]

− sinc

[
L

2
�k−

]2)]}
+ (�k− → �k+), (55)

which we refer to as the Taylor-expanded result. Here,
+(�k− → �k+) denotes addition of the preceding term sub-
ject to the replacement �k− → �k+. Note that here we have
�k± = ng

�
c ± q. To further simplify the expression we can

also restrict the Taylor expansion in Eq. (53) to its lowest
order:

s2(�) = (NLωp)2h̄

π2ε3
0c3n3(ωc)w2

n(ωc)

n(�)
|χ (2)(�)|2� f (�)2

×
(

sinc

[
L

2
�k−

]2

+ sinc

[
L

2
�k+

]2)
.

(56)

The first term of this expression coincides with the result
obtained in Ref. [33], so that this more general approach
reproduces the exact same results as the more specialized
theory of Ref. [33] in the relevant limiting case [no absorption
or reflection effects, wave vectors obeying Eqs. (48), (49), and
(54)].

A few remarks concerning the structure of the different
approximated results in Eqs. (47), (53), (55), and (56) are
in order. First we see that in all of them the q‖ integral is
restricted by q which leads to qz ∈ R since n(�) ∈ R. This
means whenever absorption can be neglected, only propagat-
ing, transverse vacuum field fluctuations contribute. Note that
this is not true for general absorbing crystals as is discussed
below and in Ref. [18]. Furthermore, in all of the approx-
imated results we find two terms containing sinc-functions
with arguments proportional to either �k+ or �k− [�K+
or �K− in Eq. (47)], accounting for phase-matching. The
difference between �k+ and �k− [�K+ or �K− in Eq. (47)]
is that in the former the wave vector of the vacuum modes is
in the opposite direction to that of the laser field. Since this, in
general, leads to reduced phase matching (at least for propa-
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gating waves) we call these terms off-resonant, and numerical
evaluation shows that they are usually negligibly small. As is
shown in Ref. [18], this is not true whenever the light-matter
coupling is strong, i.e., when absorption is not negligible.

The spectral autocorrelation function defined in Eq. (52)
demonstrates that it is crucial to use ultrashort laser pulses.
One finds that the only frequencies contributing from the
vacuum are those smaller than half of the spectral width of
the laser pulse, such that the overlap of Ep(ω) and Ep(ω ± �)
does not vanish. Physically, this can be understood by realis-
ing that only vacuum fluctuations whose wave length is longer
than the spatial extensions of the laser pulse are resolved.

To summarize this section, we stated four different expres-
sions for the spectrum of the electro-optical signal at four
different levels of approximations: the full result in Eq. (47)
where we only neglected absorption and reflections from the
crystal surfaces, the laser paraxial approximated result in
Eq. (53) where we additionally assumed Eqs. (48) and (49)
to hold, and two different stages of the full-paraxial approxi-
mation found in Eqs (55) and (56) where we also applied the
paraxial approximation to the vacuum fluctuations.

We now compare those approximations by evaluating the
signal as a function of the beam waist, i.e., 〈: S2(w) :〉. To do
so we fix all other parameters to those also used in Ref. [33]
which are chosen in close analogy to the experimental re-
alization in Ref. [9], i.e., we set l = 7μm and we define
the normalized spectrum of the laser pulse Ep(ω) to have a
rectangular shape such that it is equal to one for ω ∈ [ωc −
�ω,ωc + �ω] and zero otherwise. Choosing ωc = 255 × 2π

THz and �ω = 75 × 2π THz leads to a pulse duration of
�t = 5.9 fs. The crystal is assumed to be made of ZnTe, such
that the refractive index in the near-infrared frequency range
is given by [34]

n(ω)2 = A +
(

Bλ2

λ2 − C

)
, (57)

where λ = 2πc/ω, A = 4.27, B = 3.01, and C = 0.142 lead-
ing to ng = 2.24. In the THz frequency range, we use [35]

n(�) = Re

[√
ε∞

(
1 + (h̄ωLO)2 − (h̄ωTO)2

(h̄ωTO)2 − (h̄�)2 − ih̄γ�

)]
, (58)

with ωTO = 5.31 × 2π THz, ωLO = 6.18 × 2π THz, γ =
0.09 × 2π THz, and ε∞ = 6.7. Neglecting the imaginary part
in Eq. (58) is only valid as long as the frequencies under
consideration are far from the material resonance which lies
at approximately 40 × 2π THz. The nonlinear susceptibility
is given by χ (2) = 1.17 × 10−21 C V−2 [35] and is assumed
to be constant in the frequency range under consideration.

Using these definition we numerically evaluate 〈: S2(w) :〉
and the result is plotted in Fig. 9. We find that for all values
of w we have good agreement between the partial-paraxial
and the full result. This is expected since Eqs. (48) and (49)
are satisfied for all values of w shown in Fig. 9. Furthermore,
for the parameters considered here it is mainly frequencies
around � = 200 × 2π THz that are accessed [18], such that
according to Eq. (54) the paraxial approximation is only valid
if w � 0.5 μm. This is confirmed in Fig. 9 where we see that
only for w > 2 μm the Taylor-expanded result offers a good
approximate value, and the full paraxial approximated result

−

FIG. 9. Comparison of the different approximated results I: We
numerically evaluate 〈: S2(w) :〉 as functions of the beam waist w

using the different approximated results: The full-paraxial approx-
imation (56), the result with a Taylor-expanded integrand (55), the
laser paraxial one (53), and the full result (47).

starts to deviate form the full result already for values of the
beam waist smaller than 5 μm.

With absorption. Next we also calculate the signal without
neglecting absorption. Again one can find different stages of
approximation by applying the paraxial approximation to the
laser field and the vacuum field, respectively. As discussed in
the previous paragraph, the laser paraxial approximation gives
a reasonable level of agreement in experimentally feasible
parameter regimes. Hence, when including absorption effects
we only discuss the signal’s spectrum in the laser paraxial
approximation. This can be obtained by inserting Eq. (50) into
Eq. (24) and allowing n(�) to be a complex quantity. Some
algebra shows that in this case (see also Ref. [18])

s2(�) = h̄
(Nωp� f (�)|χ (2)(�)|)2[2nT (�) + 1]

2π2c4ε3
0n2

×
∫ ∞

0
dq‖ q‖e−q2

‖w
2/4Re

[(
2 − q2

‖
q2

)
( −iL

qz(ng�/c − qz )
+ 1 − eiL(qz−ng�/c)

qz(qz − ng�/c)2

)

+ (ng → −ng)

]
. (59)

In Ref. [18], Eq. (59) was used to show that in case the
resolved frequency range of the polaritonic vacuum fluctua-
tions coincides with a material resonance for which Im[�]
has a sharp peak, also the signal increases significantly due to
longitudinal (so-called matter-dominated) fluctuations. Here,
we show that even far from material resonances where Im[�]
does not show any sharp peaks (but is only slightly bigger than
zero) absorption must be taken into account in order to predict
the electro-optic sampling signal. To do so, we consider the
frequency range of the quantum-vacuum fluctuations accessed
in Ref. [10] which is � ∈ [0, 4 × 2π THz]. In order to avoid
measuring thermal fluctuations we assume a temperature of
T = 4 K as in the experiment [10] (see Sec. IV D for a dis-
cussion of the influence of thermal fluctuations). Furthermore
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FIG. 10. Real and imaginary parts of the refractive index: We
show the real (left-hand side) and imaginary part (right-hand side)
of the refractive index as measured in Ref. [10] at temperature
T = 4 K (red dashed lines). The imaginary part is obtained from the
measurement of the absorption coefficient α via α(�) via α(�) =
Im[n(�)]�/c. The real and imaginary parts used in the simulation
is shown by the black solid lines and differ from the measured data
only for very small frequencies � < 0.03 × 2π THz in which the
measurement apparently seems to give unreasonable results and in
regions where Im[n(�)] < 0, which violates causality and which
would lead to diverging outcomes of the simulations.

we choose L = 3 mm,

Ep(ω) =
√

1

σ

e−(ω−ωc )2/σ 2

(2π )1/4
, (60)

with ωc = 375 × (2π ) THz, σ = √
2/π (�t )−1 and the pulse

duration is given by �t = 80 fs. For the group refractive index
in the near-infrared (frequency range of the laser) we use
ng = 3.20 which means we reduce the value measured at room
temperature [compare Eq. (57)] since we assume T = 4 K
[10]. For the nonlinear susceptibility, we use [35]

χ (2)(�) = n4(ωC)ε0

2
r41

[
1 + C0

(h̄ωTO)2

h̄� − ih̄�γ

]
, (61)

with ωTO = 5.31 × 2π THz, γ = 0.09 × 2π THz, C0 =
−0.07, r41 = 1.17 × 10−21 C V−2. We further use the re-
fractive index in the THz-frequency range as measured in
Ref. [10] which is also shown here in Fig. 10. Compare Table I
for an overview over all parameters.

Using these parameters, we calculate again the electro-
optic signal as a function of the beam-waist in the laser-
paraxial approximation both with and without absorption
[Eqs. (59) and (53), respectively] as well as in the full paraxial

TABLE I. Parameters of the crystal and the laser pulse as in
Ref. [10].

with Ep(ω) =
√

1
σ

e−(ω−ωc )2/σ2

(2π )1/4 ,

Laser pulse (44) ωc = 375 × (2π ) THz, w = 125 μm,
σ = √

2/π (�t )−1

group refractive index ng = 3.20
in near-infrared

Refractive index interpolation curves in Fig. 10
Temperature T = 4 K
Nonlinear Eq. (61) [35]

susceptibility
Length of crystal L = 3 mm

FIG. 11. Comparison of the different approximated results II.
(Bottom) We numerically evaluate 〈: S2(0, 0) :〉 as functions of the
beam waist w for the parameters realized in Ref. [10] using the dif-
ferent approximated results: the full-paraxial approximation (56), the
laser-paraxial approximated result with absorption (59), and without
absorption (53). The vertical red dotted line indicates the beam waist
used in Ref. [10]. (Top) spectrum of the electro-optic sampling signal
for a beam waist w = 80 μm using the laser-paraxial approximated
result with (solid line) and without (dashed line) absorption. In both
plots, the signals are normalized by

√
C = 2χ (2)LωcN/nε0c.

approximation [Eq. (56)]. The result is shown in the bottom
part of Fig. 11.

In the inset, we see that in this parameter range the
paraxial-approximation does not apply since it overestimates
the signal significantly (by up to two orders of magnitude).
Comparing the integrated signal 〈: S2(0, 0) :〉 with and with-
out including absorption effects we see moderate differences
of up to 15%. In the upper part of Fig. 11, the spectrum of the
signal at w = 80 μm is shown [remember that the spectrum is
accessible via the two-beam setup, compare Eq. (35)]. Here,
we see a clear difference between the results which include
absorption effect or not: absorption effects give rise to addi-
tional contributions at around 1.5 × 2πTHz whereas the peak
at around 2.2 × 2πTHz gets damped due to the increase of
the imaginary part of the refractive index, compare Fig. 10.
This shows the crucial importance of including absorption
effects into the description of electro-optic sampling even
when operating far from any material resonances. See also
Sec. IV D and in particular Figs. 15 and 16 for a comparison
of these theoretical predictions to the experimental data from
Ref. [10]. Furthermore, here we only discussed values of the
beam waist w > 10 μm for which only propagating modes
and not evanescent ones contribute. The importance of absorp-
tion effects becomes even more evident for w < 10 μm where
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evanescent modes dominate the signal. This is discussed in the
next section, since for w < 10 μm, the beam divergence has
to be taken into account.

B. Beam divergence and beam-waist dependence of the signal

So far, we have assumed that the laser pulses have a Gaus-
sian profile with constant beam width w. However, in a more
realistic scenario, the laser pulses are focused to a certain point
inside the crystal and diverge over a certain length scale—the
Rayleigh length zR, cf. Fig. 8(b). To account for this effect, we
consider lowest order Laugerre-Gaussian modes which have
the form [27]

Ep(ω, r) = Ep(ω)

√
2

πw2

e−r2
‖/w2(1+iz/zR )

1 + iz/zR
eikzey. (62)

Here, zR = kw2 = πw2/λ is the Rayleigh length where λ is
the wavelength of the laser pulse. Note that by taking the limit
z/zR → 0 in Eq. (62) we recover the Gaussian mode structure
considered in Sec. IV A, cf. Eq. (44). This means that the re-
sults obtained in the last section are only good approximations
as long as the Rayleigh length is much larger than the length of
the nonlinear crystal, i.e., zR � L or equivalently w � √

L/k
as we will show explicitly in the following. However, since the
signal increases with decreasing beam waist (compare Figs. 9
and 11) future experiments might strive for smaller values of
w and thus the question arises in which way the signal is
effected if zR � L does not hold anymore.

In this section, we thus derive equations which take the
beam divergence into account. Furthermore, we apply this

formalism to the parameter range experimentally accessed in
Ref. [10] except that we decrease the beam waist.

Inserting the more general shape of the laser pulse in
Eq. (62) into the expression for the filter function found in
Eq. (25), we find after some algebra

F1(r′, r′′,�) =
(

4|χ (2)(�)|cμ0Nωp

w2n(ωc)

)2

f (�, r) f ∗(�, r′)

× e−ing
�
c (z′−z′′ ), (63)

where

f (�, r) = 1

2
∫ ∞

0 dω η(ω)E2
p (ω)

∫ ∞

0
dω

w2

W2(ω, z)

× Ep(ω)Ep(ω − �)Re�

[
e−2r2

‖/w2(1+i 2zc
n(ω−�)w2 )]

.

(64)

Here, we have defined

W2(ω, z) = w2

(
1 + i

2zc

n(ω − �)w2

)
, (65)

and recall Eq. (46) for the definition of the modified real part
Re�. In a next step we insert Eq. (63) into Eq. (42) (note that
we are using Eq. (42) instead of Eq. (26) in order to account
for a possible lateral shift) and after a calculation very similar
to the one in Sec. IV A, one finds

s2(�, δr‖) = (Nωp)2h̄

16π3c4ε3
0n2(ωc)

|χ (2)(�)|2�2
∫ ∞

0
dq‖ q‖

∫ ∞

0
dω

∫ L/2

−L/2
dz

∫ ∞

0
dω̃

∫ L/2

−L/2
dz′ e−ing�(z−z′ )/c[

2
∫ ∞

0 dω η(ω)E2
p (ω)

]2

× Re

[
g(q‖, δr‖)

eiqz |z−z′ |

qz

]
Re�

[
Ep(ω)Ep(ω − �)e−q2

‖W2(ω,z)/8
]
Re�

[
Ep(ω̃)Ep(ω̃ − �)e−q2

‖W∗2(ω̃,z′ )/8
]
. (66)

One could in principle carry out the z and z′ integrals in
Eq. (66) straight away. Here, we first approximate in Eq. (65)
by assuming that the central frequency of the laser pulse ωc is
much larger than the width of spectrum of the laser pulse σ

and the resolved THz frequency �, i.e., ωc � σ,� such that

W2(ω, z) ≈ w2

(
1 + i

2zc

nωcw2

)
. (67)

This is a very accurate approximation for the setup used in
Ref. [10] were ωc = 375 × 2π THz, σ = 1.5 × 2πTHz and
� < 3 × 2π THz. Using Eq. (67) in Eq. (66) and assuming
that the spectrum of the laser Ep(ω) is centered symmetrically
around the central frequency, i.e., Ep(ωc − ω) = Ep(ωc + ω)
one finds

s2(�, δr‖) = (Nωp)2h̄

4π3c4ε3
0n2(ωc)

|χ (2)(�)|2 f 2(�)�2
∫ ∞

0
dq‖

∫ L/2

−L/2
dz

∫ L/2

−L/2
dz′ e−ing�(z−z′ )/cq‖e−q2

‖w
2/4

× Re

[
g(q‖, δr‖)

eiqz |z−z′ |

qz

]
Re

[
e−iq2

‖zc/4nωc
]
Re

[
e−iq2

‖z′c/4nωc
]
. (68)

Next, we carry out the z, z′ integrals just as we did in Eq. (59).
The resulting expression involves four different terms, each
resembling that in Eq. (59) but with the phase mismatch

replaced by

�q = ±qz + ng
�

c
→ ±qz + ng

�

c
± q2

‖c/4nωc. (69)
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FIG. 12. Beam divergence. (First row:) Using the parameters
found in Table I, the signal is calculated including [full, compare
Fig. 8(b)] and neglecting [zR → ∞, compare Fig. 8(a)] the effect
of the beam divergence. (Second row) In the second row, we show
the signal including the effect of beam divergence as in the first
row (full, black solid line), only including modes with q‖ < Re[q]
(propagating, green dotted line) and only including modes with q‖ >

Re[q] (evanescent, red dotted-dashed line). Note that in the bottom
right plot the green dotted line cannot be seen since it overlaps
entirely with the black solid line, whereas the red dotted-dashed line
is negligibly small and thus cannot be found within the logarithmic
scale shown here. In both rows, the signal is calculated with a lateral
shift between the two laser pulses of δy = 0, 20 μm in the left and
right columns, respectively.

Hence, including the beam divergence into the formal-
ism leads to a new phase matching condition (�q = 0)
which involves a new term which grows quadratically with
q‖.

To analyze this result we plot 〈: Ŝ2(0, 0) :〉 [recall
〈: Ŝ2(0, 0) :〉 = ∫ ∞

0 d�s2(�)] fixing all parameters as in
Ref. [10] (compare Table I) except that we vary L/zR by
varying the beam waist w. The result shown in the left column
of Fig. 12 reveals the dependence of the integrated signal on
the beam waist and can be seen as an extension of Fig. 11
to lower values of the beam waist. As expected, we see that
effects arising from the divergence of the laser pulses arise
only for L/zR > 1. Furthermore, the signal can be charac-
terized by two different regimes as indicated in the lower
part of Fig. 12: for 2/w � q, we find that only modes with

q‖ < Re[q] contribute since the exponential e−q2
‖w

2/4 restricts
the lateral component of the wave vector to q‖ < 2/w. These
modes are propagating in z direction since in this case qz =√

q2 − q2
‖ has only a small imaginary part due to the small

values of Im[n(�)], see Fig. 10. For q � 2/w, on the other
hand, modes with q‖ > Re[q] dominate the signal, compare
the red dotted/dashed line in the lower left part of Fig. 12.
These modes are evanescent since now the imaginary part of
qz =

√
q2 − q2

‖ dominates over its real part. In this regime
the electro-optic signal grows exponentially with w again.
Whenever absorption is neglected, evanescent modes get ex-
actly canceled such that the lateral wave vector is restricted to
q‖ < q [compare Eq. (53)] meaning that the behavior of the
signal in the regime q � 2/w can only be modelled correctly
if absorption effects are taken into account even though the
resolved frequency range is far from any material resonance
and the imaginary part of the refractive index remains below
0.15, see Fig. 10.

The exponential decay of the evanescent modes leads to
an additional feature: when considering the two-beam setup
with a finite lateral shift between the laser pulses which is big
enough such that the two laser pulses do not overlap, we find
that evanescent modes do not contribute anymore. This can
be seen in the right part of Fig. 12 where we used the same
parameters as before but chose a lateral shift of δy = 20 μm.
Interestingly, since now only propagating modes with q‖ < q
can contribute to the signal, the additional term q2

‖c/4nωc in
the phase matching condition in Eq. (69) remains small even if
the beam waist is reduced further. Hence, the beam divergence
does not play any role even if L/zR > 1, compare upper right
plot of Fig. 12.

C. Angled beams

In electro-optic sampling experiments of the quantum vac-
uum using the two-beam setup the two laser pulses are not
perfectly parallel but propagate into slightly different direc-
tions defined by an angle α, compare Fig. 8(c). In order to
describe this effect we define two new coordinate systems
whose coordinates are rotated in the yz plane by ±α, i.e.,

r±α =
⎛⎝ x

ycos(α) ± zsin(α)
zcos(α) ∓ ysin(α)

⎞⎠. (70)

This way the calculation of the filter function in the ro-
tated reference frames is equivalent to the one carried out in
Sec. IV A and one finds

〈
: Ŝ2

α (δt, δr‖) :
〉 = 1

2

∫ ∞

0
d�

∫ ∞

0
d�′

∫
VC

d3r′
∫

VC

d3r′′[F1(r′
α, r′′

−α,�)〈Êvac,x(r′,�)Ê†
vac,x(r′′ − δr‖,�′)ei�′δt 〉

+ F1(r′
−α, r′′

α,�)〈Êvac,x(r′ − δr‖,�)Ê†
vac,x(r′′,�′)e−i�′δt 〉].

(71)

One can carry out the r′
‖ and r′′

‖ integrals using∫ ∞

−∞
dy′

∫ ∞

−∞
dy′′e−2{[cos(α)y′+sin(α)z′]2+[cos(α)y′′−sin(α)z′′]2}/w2+ing

�
c sin(α)(y′+y′′ )+iqy (y′−y′′ )

= π

2

w2

cos2(α)
e− w2

4cos2 (α)
[q2

y +sin2(α)ng�/c]−i sin(α)
cos(α) [ng

�
c sin(α)(z′−z′′ )−qy (z′+z′′ )]

. (72)
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Using this result, some further algebra shows that

s2
α (�, q‖) = h̄

(Nωp� f (�)|χ (2)(�)|)2[2nT (�) + 1]

2π2c4ε3
0n2

e−[q2
x +

q2
y

cos2 (α)
+n2

g
�2

c2 tan2(α)]w2/4

cos(α)2
Re

{
eiq‖·δr‖

qz

(
1 − q2

x

q2

)

×
⎛⎝ iLsinc[Lqytan(α)]

qz − qytan(α) − ng
�
c

cos(2α)
cos(α)

+ e−iLqytan(α) − e−iL[ng
�
c

cos(2α)
cos(α) +qz][

qz − ng
�
c

cos(2α)
cos(α)

]2 − [qytan(α)]2

⎞⎠ + (ng, α → −ng,−α)

}
(73)

and〈
: Ŝ2

α (δt, δr‖) :
〉 =

∫
d2q‖

∫ ∞

0
d� cos(�δt )s2

α (�, q‖). (74)

We use the result in Eqs. (73) and (74) to obtain the signal as a
function of the angle α for different lateral shifts between the
two laser pulses using the parameters realized in Ref. [10] (cf.
Table I). The result is shown in Fig. 13. Note that δy indicates
the distance between the two laser pulses in the center of the
crystal, cf. Fig. 8(c). With increasing angle α the two laser
pulses get significantly closer than δy at the backside of the
crystal. The bottom part of Fig. 13 can be explained by means
of two effects.

Firstly, the phase matching condition now reads[
cos(α)qz − cos(2α)ng

�

c

]2

− [qysin(α)]2 = 0. (75)

FIG. 13. Signal as a function of the angle α. (Bottom) The signal
as a function of α for the parameters in Table I is shown for different
values of the lateral shift δy between the two laser pulses, compare
Fig. 8(c) for the definition of the angle α. (Top) The spectrum of
the signal at δy = 0 from the bottom plot for different values of the
angle α = 0, 0.1, 0.15, 0.2 as indicated by the arrows starting from
the plot in the bottom.

With increasing angle α Eq. (75) can be satisfied for lower
values of � leading to an increase of the signal for such values
of � as can be seen in the spectrum in the upper part of Fig. 13.

Secondly, the signal decreases with decreasing overlap of
the two laser pulses. This affects mainly the high frequency
components of the signal which are more sensitive towards
a longer propagation length. In case of δy = 0 an increasing
angle α leads to less overlap and thus due to this effect the
signal simply decreases with α. With increasing lateral shift δy
on the other hand the signal starts to possess a maximum value
when the angle is high enough such that the two laser pulses
overlap again close to the backside of the crystal. This leads
to an even higher increase of the signal obtained with a lateral
shift δy > 0. For very high values of α, the signals obtained
using different lateral shifts δy are approximately the same
since for all of them the two laser pulses cross somewhere
within the crystal.

In the upper part of Fig. 13, we see the spectrum of the
signal with δy = 0 for different values of α. We find that with
increasing angle α the high-frequency components of the sig-
nal become suppressed. This will be further discussed when
we compare our theory to experimental data in the following
Sec. IV D.

D. Comparison to experimental data

We now compare the theoretical results obtained in the
last sections to the experimental data taken from Ref. [10].
Here, the pulse duration δt and crystal length L are both
much longer than in Ref. [9], being given by �t = 80 fs and
L = 3 mm, see Table I. This leads to the frequency range
accessed using this experimental setup being much lower,
given by [0, 3] × 2π THz. This means that thermal effects can
become important, so should be discussed first.

The ratio of thermal to quantum fluctuations is that of the
two terms on the right-hand side of Eq. (6), so is simply
given by 2nT (�) as defined in Eq. (7). As shown in Fig. 14,
the experiment of Ref. [9] mainly quantum fluctuations are
accessed even at room temperature, whereas in Ref. [10] one
has to cool the system down to T = 4 K in order to observe a
signal which is not dominated by thermal fluctuations.

To compare the theoretical framework developed here to
the experimental data we adjust all parameters to agree with
those used in Ref. [10], see Table I. As we can see from
Fig. 11, in the parameter range of this experiment we can-
not use the full paraxial approximation and also we have to
include absorption effects. On the other hand, the experimen-
tally realized parameters lead to L/zR ≈ 10−3 such that the
effect of beam divergence can be neglected, compare Fig. 12.
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FIG. 14. Thermal versus quantum fluctuations. Regions of the
temperature-frequency parameter space in which each kind of fluc-
tuation dominates, with the border defined by solving 2nT (�) = 1.
The frequency ranges access in Refs. [9,10] are indicated by the
labels “Zurich” and “Konstanz,” respectively, and the thermal photon
number is shown at the end of each frequency range.

Hence, we use Eq. (59) which is the result in the laser paraxial
approximation which includes absorption as well as Eq. (73)
to account for the angle α between the laser pulses which we
assume the be α = 0.05. The results are shown in Fig. 15. We
find reasonable agreement for frequencies � > 0.7 × 2π THz
given the uncertainties on parameters such as the nonlinear
susceptibility and the group refractive index at T = 4 K. Also,
the result which includes the finite angle between the two
laser pulses agrees better with the experimental data at high

FIG. 15. Comparison to experimental data (we used a different
Fourier transform convention for obtaining the spectrum from the
time domain data compared to the one used in Ref. [10]). We plot
the measurement data found in Ref. [10]. The predictions of our
theoretical framework for different values of ng are shown with the
differently dashed lines. Here,

√
C = 2χ (2)LωpN/nε0c.

FIG. 16. Comparison to experimental data (we used a different
normalization for obtaining the spectrum from the time domain data
as the one used in Ref. [10]). We plot the measurement data found
in Ref. [10] with the solid line and its uncertainty is indicated by
the shaded area. The predictions of our theoretical framework for
different values of ng are shown with the differently dashed lines.
Here,

√
C = 2χ (2)LωpN/nε0c.

frequencies. The rather high values of the experimental data
at low frequencies � < 0.7 × 2π THz might indicate that the
crystal or the surrounding optical instruments have not fully
thermalized such that there are contributions stemming from
a blackbody at T = 20 K, compare red dotted-dashed line
in Fig. 15. Using α = 0.05 and T = 20 K, one finds good
agreement between theoretical prediction and experimental
data over the whole frequency range.

Next, we also compare the theoretical framework devel-
oped here to the measurement in Ref. [10] which includes
lateral shifts between the two laser pulses, compare Fig. 16.
Again, we find the best agreement for the result with α = 0.05
and T = 4 K although the rather high experimental uncer-
tainties cannot reliably distinguish between or rule out the
different theoretical predictions.

Nevertheless, we have seen reasonable agreement between
experimental data and the theoretical prediction and found
that already in the measurements of Ref. [10], it is crucial to
go beyond the paraxial approximation to the quantum vacuum
and to include absorption effects. Also, effects arising from
the angle between the laser pulses lead to changes in the signal
of up to 0.15 % and thus might be crucial to incorporate when
future experiments further reduce the signal to noise ratio.

V. CONCLUSION

In this paper, we have provided an in-depth discussion
of the theoretical framework developed in Ref. [18] capa-
ble of predicting the quantized electromagnetic field behind
a nonlinear crystal through which a coherent laser pulse
propagates accounting for absorption, dispersion and possible
reflective optical environments. This includes a new diagram-
matic way of representing the resulting expressions for the
electromagnetic field emerging from the crystal which makes
it easier to apply this formalism to other processes such as
spontaneous parametric down-conversion or the generation
of photonic Bose–Einstein condensates [14]. Furthermore,
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optical analogues of the dynamical Casimir force [36,37] and
of Hawking radiation [38] have recently been discussed. The
description of these experiments and extensions thereof are
also well suited to the formalism developed here. In all cases,
our formalism would allow for a discussion of these processes
in a parameter regime where light and matter are strongly
coupled or where the influence of surrounding optical objects
(e.g. cavities) are non-negligible or even desired.

We extended the application of our theory to electro-optic
sampling experiments compared to Ref. [18] by including
angled beams and effects stemming from the divergence of
the laser pulses onto the output statistics. We further provided
an in-depth discussion of the utility of different approximated
results with the remarkable conclusion, that in experimen-
tally relevant parameter regimes absorption has to be taken
into account even when working far from any material res-
onance. Furthermore, a relation was derived revealing that
electro-optic sampling experiments can be used to access the
two-point correlation function of the electric field operator as
a function of its lateral wave vector. The approximated results
showed reasonable agreement with experimental data.

Further investigations using this formalism are needed to
find out if electro-optical sampling can be used to access the
changes induced by macroscopic objects such as plates or
cavities upon the quantum vacuum. This would form a link
between the two ways of accessing the quantum vacuum:
electro-optic sampling and more elaborate medium-induced
quantum-vacuum effects such as the Casimir force, the Purcell
effect or the Casimir–Polder force. Note that the effect of
nonlinear processes upon the quantum vacuum itself has not
been included so far, since these effects are expected to be
much weaker than the one described in this paper. However,
a useful generalization of this work would also include those
effects [39,40].
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APPENDIX A: GREEN’S TENSOR

In this Appendix, we give a brief introduction of the
Green’s tensor and the forms most convenient for this work.
For a more detailed discussion see, e.g., Ref. [16].

The Green’s tensor G is defined by Eq. (5) and the
boundary condition G(r, r′, ω) → 0 for |r − r′| → ∞. Here,
ε(r, ω) is the linear permittivity and c the speed of light in free
space.

Neglecting reflection effects by assuming ε(r, ω) = ε(ω),
the Green’s tensor is given by its bulk case, defined as
that which solves the differential Eq. (5) for ε(r, ω) = ε(ω).

In a (2 + 1)-dimensional Weyl decomposition relative to a
plane with normal vector in the positive z direction, one
finds [16]

G(0)(r, r′, ω)

= − 1

4π2k2(ω)

∫
d2k‖

eik‖·(r−r′ )

kz
δ(z − z′)ezez

+ i

8π2

∫
d2k‖

eik‖·(r−r′ )

kz

∑
σ=s,p

[eσ+eσ+eikz (z−z′ )θ (z − z′)

+ eσ−eσ−e−ikz (z−z′ )θ (z′ − z)]. (A1)

Here, k = √
ε(ω)ω/c is the magnitude of the wave vector k,

and kz = kz(k‖, ω) =
√

k2 − k2
‖ with Im[kz] > 0. The polar-

ization vectors eσ± with σ = s, p are given by

es±(k‖) = ek‖ × ez = 1

k‖

⎛⎝ ky

−kx

0

⎞⎠; (A2)

ep± = 1

k
(k‖ez ∓ kzek‖ ) = 1

k

⎛⎜⎝∓ kxkz

k‖

∓ kykz

k‖
k‖

⎞⎟⎠. (A3)

APPENDIX B: VACUUM PICTURE

We assume that the laser is in a coherent state such that its
state is given by |{f (r, ω)}〉 defined via f̂ (r, ω)|{f (r, ω)}〉 =
f (r, ω)|{f (r, ω)}〉 [41]. Note that we used the polaritonic an-
nihilation operator f̂ to define the coherent state (instead of the
usually used free-space creation and annihilation operators).
The values for f (r, ω) can formally be defined assuming that
the form of the classical laser pulse Ep is known by demanding
that the expectation value of the field operator Ê coincides
with the classical field, i.e.,

Ep = 〈{f (r, ω)}|Ê|{f (r, ω)}〉 = i
ω2

c2

√
h̄ε0

π
Imε(r, ω)

×
∫

d3r′G(r, r′, ω) · f (r′, ω).

(B1)

Here we used that if there are no other excitations of the elec-
tromagnetic field apart from the laser pulse we have Ê = Êvac,
where Êvac is defined in Eq. (4). This way, the system is
described by the state and field |{f (rω)}〉, and Êvac, respec-
tively. This means, that the characterization of the laser field
is contained solely in the state of the system.

Equivalently, one can make use of a unitary transformation
transforming the description of the laser pulse from the state
of the electro-magnetic field to its field operator. This is done
in close analogy to [28] except that here we have a continuous
set of modes and use the polaritonic creation and annihilation
operators instead of the free space ones. This transformation
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is performed by the following unitary operator;

D̂[f (r, ω)] = exp

{∫ ∞

−∞
dω

∫
d3r[f (r, ω) · f̂†(r, ω)

−f∗(r, ω) · f̂ (r, ω)]
}
. (B2)

The transformed state then is given by the vacuum state of the
theory which can be seen from

f̂ (r, ω)|ψ ′〉 = f̂ (r, ω)D̂−1[f (r, ω)]|ψ〉 = 0 , (B3)

for any f̂ (r, ω) from which directly follows |ψ ′〉 = |0 f 〉. Fur-
thermore for the transformed field operator, we find

Ê′(r, ω) = D̂−1[f (r, ω)]Ê(r, ω)D̂[f (r, ω)]

= Ep(r, ω) + Êvac(r, ω). (B4)

Here, Êvac is given by Eq. (4).
In conclusion, we find that the state and the operator of the

electric field are transformed as

{|{f (r, ω)}〉, Ê} → {|0 f 〉, Ep + Êvac}. (B5)

The latter is called the vacuum picture and is used throughout
this work. In this picture the quantum field of the coherent
laser pulse is given by the classical laser pulse and the vacuum
electric field operator.
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