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Strongly entangled system-reservoir dynamics with multiphoton pulses beyond
the two-excitation limit: Exciting the atom-photon bound state
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Within the matrix product state framework, we study the non-Markovian feedback dynamics of a two-level
system interacting with the electromagnetic field inside a semi-infinite waveguide where the excitation of an
atom-photon bound state is possible. Taking the steady-state excitation of the emitter as a figure of merit, we
compare the trapped excitation for an initially excited quantum emitter and an emitter prepared via quantized
pulses containing up to four photons. In the latter case, we find that for large feedback delay times, multiphoton
pulses can yield a significantly higher steady-state excitation than possible with an initially excited emitter since
the stimulated emission process can enhance the trapping probability in comparison to the spontaneous decay of

an initially excited emitter.
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I. INTRODUCTION

A promising platform for a reliable implementation of
large-scale quantum networks is offered by photonic quantum
technologies where photons transport quantum information
between the nodes of the network. The nodes, in turn, allow
the storage as well as the manipulation of the informa-
tion [1-10]. In recent years, special attention has been paid to
waveguide quantum electrodynamics (WQED) systems con-
sisting of quantum few-level systems interacting with the
electromagnetic field inside a one-dimensional waveguide. In
these systems, enhanced light-matter interaction and interfer-
ence effects can be observed due to the spatial confinement of
the light field [11,12]. This way, they allow for the creation
of strong effective photon-photon interactions and qubit-qubit
entanglement and, thus, are eligible candidates for the realiza-
tion of quantum information processing protocols [13—17].

Such WQED systems have been studied extensively in
the Markovian regime where employed methods include the
input-output formalism [12,18-20], the Lippmann-Schwinger
equation [15,21,22], a Green’s function approach [23,24], as
well as master equations [25,26]. The Markovian approxi-
mation, however, breaks down if there is a macroscopical
separation between the nodes compared to the wavelength
of the light, for example, in long-distance networks. In this
case, non-Markovian effects become important since the
time-delayed backaction of the electromagnetic field on the
emitters has to be taken into account. As a consequence,
the possibility to use time-delayed signals, for example, in
the context of sub- and superradiance or coherent feedback
control, is opened up [27—41]. Methods to deal with non-
Markovian system dynamics include scattering theory [42,43]
and non-Markovian quantum state diffusion [44]. A further
method to treat such systems is the matrix product state (MPS)
framework [41,43,45,46].
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A remarkable feature in WQED systems is the formation
of atom-photon bound states. On the one hand, the interaction
of the light field with quantum impurities in finite-bandwidth
waveguides can result in bound states outside the continuum
of propagating modes [47,48]. On the other hand, using, for
example, time-delayed feedback, it is also possible to ex-
cite bound states inside the continuum which can potentially
be used for the storage of quantum information [49-58].
A paradigmatic setup in this regard is the two-level system
(TLS) in front of a mirror where emission properties depend
sensitively on the emitter-mirror separation. Here, a finite
excitation of the emitter in the long-time limit is possible
due to the excitation of an atom-photon bound state. In this
bound state, the excitation is distributed between the TLS
(excitonic component) and the waveguide between the TLS
and the mirror (photonic component). For small separations,
the excitonic component dominates while for larger delays
the photonic component becomes more important. There are
two possibilities to populate the bound state: by letting an
initially excited emitter decay or via multiphoton pulses. The
first possibility is most efficient for small separations where
a large overlap of the initial state of the system with the
excitonic component of the bound state can be found and it
holds that the smaller the separation, the higher the steady-
state excitation of the emitter [59,60]. If the bound state is
addressed via photon scattering, the steady-state excitation
depends nonmonotonously on the emitter-mirror separation.
The effectiveness of this excitation scheme is determined by
the overlap of the initial state of the system with the photonic
component of the bound state. Thus, a certain minimum sepa-
ration is crucial for it to work. Because of this nonmonotonous
behavior, studies with pulses of various shapes containing
variable numbers of photons are of interest for which an
efficient description needs to be developed [61-63].

Here, we study the excitation of an atom-photon bound
state for a TLS inside a semi-infinite one-dimensional waveg-
uide using the MPS framework for pulses containing up to
four photons. Thereby, we extend an existing method for
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FIG. 1. TLS with decay rate I" consisting of ground state |g) and
excited state |e) separated by energy 7w, inside a semi-infinite one-
dimensional waveguide which provides feedback at the delay time 7.
The TLS is excited via a quantum pulse of shape f().

pulses containing up to two photons [43]. In this context,
we look for ways to control and, in particular, maximize the
steady-state excitation of the emitter.

The paper is structured as follows: After this introduction
in Sec. I, in Sec. II, we introduce the considered system and
present the MPS method for the calculation of its dynamics
including quantized pulses which we benchmark using an
approach in the Heisenberg picture. In Sec. III, we discuss the
non-Markovian system dynamics and, in particular, the exci-
tation of the atom-photon bound state. Finally, we summarize
our findings in Sec. IV.

II. MPS METHOD

Here, we present a method in the MPS framework that
allows the numerically exact calculation of the dynamics in
WQED systems [43,45,46]. We use the approach to study the
dynamics of a single TLS inside a semi-infinite waveguide.
The closed end of the waveguide at a distance d from the TLS
functions as a mirror. It feeds back the excitation emitted from
the TLS after a delay time t = 2d/c where ¢ is the speed
of light in the waveguide. The combined system of the TLS
and the photonic reservoir is depicted in Fig. 1 and can be
described via the Hamiltonian in dipole and rotating wave
approximation,

H = Ho + Hint (1)
Hy = haoE + h f dowrlr,, 2)
How = i [ dago)rlo- + He, 3)

where wy is the transition frequency of the TLS and the
operator E = o,0o_ describes the occupation of its excited
state. Its lowering (raising) operator is denoted by o_ (o)
which, thus, can be interpreted as the polarization of the
TLS and it holds that oy =o' If we assume a TLS

containing at most one excitation, we find [o_, 0] = 1 — 2E.
The annihilation (creation) of a photon with frequency w
in the reservoir is described by the bosonic operator r{".
Reservoir and TLS are coupled with strength g(w) which is,
in general, frequency dependent. Since we want to model
feedback effects we consider a structured reservoir which
results in the frequency-dependent coupling strength g(w) =
go sin(wt /2) where 7 is the feedback-induced delay time.

We transform the Hamiltonian # into the rotating frame
defined by its noninteracting part H, which yields

H =h / dwg(w)(@ ™" r’s_ +H.c.). 4)

The Hamiltonian H" governs the time evolution of the system
which we discuss in the following section.

A. Time evolution

In this section, the time evolution method based on MPS
is introduced in a condensed form to pave the way for the
inclusion of quantized pulses. For a detailed derivation of
the time evolution algorithm with feedback see Ref. [46]. The
MPS framework is based on the Schrodinger picture. The
main idea of the MPS time evolution method is to describe
the continuous system dynamics via a stroboscopic time evo-
lution at discrete time steps Ar which are small compared
to the time scales of the system evolution. To start with, we
introduce the time-dependent quantum noise operators [64],

= L /da)rle"(w*w“)’. )
V2w

As the conjugate operators of ] , these collective operators de-
scribe the creation of a photon at time ¢ and satisfy [r;, r;,] =
8(t —t"). With this definition, after a time-independent phase
shift via a unitary transformation [41,46], the Hamiltonian H’
from Eq. (4) can be written as

H' (1) = —ihkNT[rfo_ —rl o e ™" —Hcl],  (6)

t—t¥—

which is now explicitly time dependent. Here, we defined the
decay rate I' = g} /2. The first term on the right-hand side
of Eq. (6) describes the immediate interaction of the TLS and
the reservoir while the second term arises due to the feedback
signal the effect of which is determined by the feedback phase
¢ = wot. Here, we particularly focus on the special case of
woT = 27mn, n € N, as discussed in detail in Sec. III.

The dynamics of the system is governed by the Schrédinger
equation,

d i
EW(I)) = —EW )y @) . (7)

If we discretize time in sufficiently small steps Az, the evolu-
tion from time #; to 11, #x = kAt, k € N, can be described via
the coarse-grained stroboscopic time evolution operator Uy for
which

[V (k1) = Un [ (@) ®)

Uk = exXp I:—% / " dﬂ?—{’(l‘/)i|, (9)
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Concretely, in our system, assuming T = [At, [ € N, it takes
the form,

U = exp[—vVT[AR  (t)o_ — AR (1r_))o_e ™" — H.c.]],
(10)
where we defined the noise increments,

B Tt 1
AR (1) = / dtr/.

Tk

(1)

These operators describe the creation of a photon in time step
k and obey [AR(#;), AR (tx)] = At8yw. With the noise incre-
ments, a discrete, orthonormal time-bin basis of the Hilbert
space can be constructed since the Fock state describing the
kth time bin being occupied by i; photons is obtained via

i, = AR @
NIV

The general state of the TLS and the photonic reservoir in the
time-bin basis takes the form,

2 E Y

i seeosik 105 i i

|vac), . (12)

l/jila---aik—lais,ik,---,iN

X i1y ooy Ik—1, iS5 Iky - -5 IND (13)

where is € {g, e} denotes the TLS being either in the ground
(g) or the excited state (e) while the index ij, j € {1,...,N},
describes the occupation of the jth time bin. Time is assumed
to run from #; to ty. The coefficient tensor Vi, i, | .i.ic.....iy 15
in general, 2p" dimensional where (p — 1) is the maximum
number of photons per time bin considered. The dimension
of the Hilbert space, thus, grows exponentially with the num-
ber of time bins. To effectively reduce the dimension of the
Hilbert space and enable an efficient numerical calculation
of the dynamics, the coefficient tensor is decomposed into a
product of matrices via a series of singular value decomposi-
tions. The state can subsequently be written as

IO EIY

1 yeesTk— 1,08 Iy ees IN

Al AT AT Al L AN

X ity ooy ik—1, 08, Iky o ooy IN) - (14)

This way, a time-local description is obtained since each
matrix A’ refers to a specific time bin while the matrix A’
describes the TLS. Furthermore, the singular values provide
an opportunity to quantify the entanglement between neigh-
boring sites and allow a justified truncation of the Hilbert
space. The idea of the truncation scheme is to neglect the least
entangled and, thus, least important parts of the Hilbert space
via a limitation of the bond dimension.

The time evolution is eventually performed by contracting
and decomposing the time evolution operator, the TLS bin,
and the involved time bins where a swapping algorithm allows
for the efficient inclusion of the non-Markovian feedback
contributions.

B. Quantized pulses

Without a quantized pulse, that is, for a reservoir initially
in the vacuum state, each of the time bins can be initialized in
the vacuum state individually since the reservoir is found in a
product state and there is no entanglement between the bins.

If we, however, drive the TLS with a quantized pulse, the
involved reservoir bins become temporally entangled [43].
In the case of a single-photon pulse, the initial state of the
reservoir is given as

¥ (10)ses = a} 10, ..., 0,

where a. is the creation operator of a wave packet with nor-
malized pulse shape f () for which [64]

(15)

“:;I/dff(t)rff /dtlf(t)|2=l, la;.a}]=1. (16)

This formulation in the time domain can be related to the
description in frequency space,

ah = / dof(w)r], (17)
via the Fourier transform of the coefficients,
1 —i(w—awo)t
flw) = E dtf(t)e . (18)

For reasons of clarity, here, we focus on the state of the
reservoir exclusively. Typically, the reservoir and the TLS are
initially separable so that the TLS can be initialized indepen-
dently. In the time-bin basis, assuming the pulse shape to be
constant during one time step, that is, f(¢) = fi, t € [, tx+[,
k € {1,..., N}, the initial state is

N

Y (t0)es = ) kAR (@) 0, ..., 0). (19)
k=1

A rectangular pulse which starts at £y, = #; and ends at fepg =

t,, for example, yields

1
= E[AR%) + ART(1)110, ..., 0)

1
= —[I1,0);,+10,1);,1®10,...,0) ,
5 1,2 1.2 3,.N

1V (10)) res

(20)

where the subscripts in the second line indicate the associated
time bins. The time bins involved in the pulse cannot be
initialized separately but due to their entanglement have to be
initialized collectively and are subsequently decomposed into
the MPS form. For a rectangular single-photon pulse running
from time fyuq = p1 At tO teng = pyAt, the matrices A[p]»
where p denotes the time step and i), is the respective physical
index take the form,

Alpl' = Alpi P =0 1),

1 0 k=1
A[pk1‘=(0 1)7 A[pk]2=<g OT) (22)
k

A= (0 %) A= (/5 o). @3

withl <k <N —1.
To simulate n-photon pulses, we generalize the formalism
accordingly to

0), 21

1

|¢(t0)>res = «/ﬁ

(@})"10, ..., 0), (24)
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so that, for example, for n = 2 a pulse with the same shape as
considered in Eq. (20) results in the initial state,

1
Nz
®10,...,005 y. (25)

The explicitly decomposed matrices for the two- and
three-photon pulses we consider in this work are given in
Appendix A. The extension to four and more photons is
straightforward. In principle, the formalism allows the in-
clusion of arbitrary numbers of photons clearly surpassing
the common one- or two-photon limit; however, the required
computational resources increase with the number of excita-
tions in the system since the bond dimension grows with the
considered number of photons as we see in more detail in
Sec. III. The numerical MPS calculations in this paper were
performed using the ITensor library [65].

1Y (t0))es = —=112, 0015 +10,2), 5 + V21, 1) 5]

C. Benchmark for the pulse inclusion

As a benchmark for the interaction of the TLS with quan-
tized pulses we consider the problem within the Heisenberg
picture and assume ¢ < t, that is, we concentrate on the time
before the feedback mechanism comes into play. Using the
Hamiltonian H’ given in Eq. (4), we derive differential equa-
tions for the operators E(t), o_(t), and r,,(t) which are time
dependent in the Heisenberg picture and obtain

d , (o
EE(t) =i / dwg(w)[e ™" (o _(t) —He], (26)

%o_(t) = —i/dwg(w)e_i(‘"_“’U)’[Jl —2E()]r,(t), (27)

d _ . i(w—wp )t

Erw(t) = —ig(w)e o_(1). (28)
The combined state of the TLS and the reservoir is of the
form |j, n) where j € {g, e} denotes the TLS being either in
the ground (g) or the excited state (¢) while n € N indicates
the number of photons in the reservoir initially. In analogy
to the MPS method, the n-photon state can be constructed via

1 Tyn s
lj.n) = ﬁ(af) 1j: 0), (29)
where a’. is the creation operator of a wave packet of shape
f® wiﬂ(l the properties given in Eq. (16).

As for the MPS method, we assume the TLS and the
reservoir to be initially separable so that we can calculate
the expectation value of the occupation operator of the TLS,
(E()) = (¥ (0)| E(t) |¥(0)), using an initial state of the form
[ (0)) = |j, n). When calculating this expectation value nu-
merically, we find a coupling to matrix elements of the
operators E(¢) and o_(t). For t < 7, these matrix elements
obey

d

—VTIWmfi ) (i,m = 1|o_(t) |k, p)
+ Pf @) (i, ml oy () [k, p— 1)],
(30)

0.6 ‘ ‘
Pulse f(7)
os | HB-n=4 — | |
HB-n=3 —
HB-n=2 —
04 - HB-n=1 7
~ MPS-n=4 = u
T 03 ¢ MPS-n=3 = s |-
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FIG. 2. Comparison of the results for the excitation of a TLS with
I't > 5 as afunction of time obtained using the recursive Heisenberg
approach (HB, solid lines) and the MPS method (dashed lines). The
TLS is initially in the ground state and excited via a rectangular pulse
f(t) of duration I't,, = 2 which contains n photons, n € {1, 2, 3, 4}.

d
E (lv Wll O—(t) |k’ P) =-r <l? m| U_(t) |k7 P>

— VT Jpf O, mlk, p— 1)
— 20, mlE@) |k, p—1)], (31

with fr(t) = f(t — 3)e'™2 — f(t + 3)e~™ 3. The detailed
derivations can be found in Appendix B. We solve the problem
with n excitations in the system by recursively inserting the
results for the case of n — 1 excitations [66] and, in principle,
an analytical calculation is possible. In Fig. 2, the MPS re-
sults for the dynamics of a TLS interacting with rectangular
pulses of duration I't, = 2 containing up to four photons are
compared with those obtained using the recursive Heisenberg
approach introduced in this section. Here, feedback effects
do not come into play since I't > 5. The results coincide
perfectly, confirming the validity of the pulse implementation
in the MPS framework.

III. ADDRESSING THE ATOM-PHOTON BOUND STATE

The MPS formalism introduced in Sec. II allows the nu-
merically exact simulation of the non-Markovian dynamics of
quantum few-level systems driven via quantized pulses con-
taining different numbers of photons. For the system we focus
on, a TLS inside a semi-infinite waveguide, feedback effects
such as the possibility to excite a bound state in the continuum
arise. This phenomenon manifests as a stabilization of the ex-
citation probability (henceforth termed excitation for brevity)
of the TLS pointing to the excitation of an atom-photon bound
state [47].

Due to the implemented feedback mechanism, a signal
emitted towards the mirror returns to the TLS after the delay
time t and interferes with the signal that is emitted from the
TLS at that moment as illustrated in Fig. 1. The effect of the

033704-4



STRONGLY ENTANGLED SYSTEM-RESERVOIR DYNAMICS ...

PHYSICAL REVIEW A 103, 033704 (2021)

1
=)
__ |&200 i
Q
— |E
<5 100
=l
g -
= m 0
g
2 3 4 5
[t

FIG. 3. Excitation of a TLS with 't = 0.5 as a function of time.
The TLS is either initially excited (e) and decays in the vacuum
(dashed light blue line), n = 0, or initially in the ground state (g) and
excited via a rectangular pulse of duration I't, = 0.5 which contains
n photons, n € {1, 2, 3, 4}. (Inset) Bond dimension of the time bins
in the MPS implementation for an n-photon pulse.

interference depends on the feedback phase ¢ = wyt where
wp is the transition frequency of the TLS. If the condition
¢ =2mwm, m € N, is met, the interference potentially leads to
a stabilization of the excitation in the emitter and the trap-
ping of a certain amount of excitation between the TLS and
the mirror. For a feedback phase ¢ # 27m, in the long-time
limit, the emitter inevitably decays to the ground state [57,67].
Henceforth, we assume that a feedback phase ¢ = 2nm is
implemented so that the excitation of an atom-photon bound
state is, in principle, possible. In our analysis, we concentrate
on the steady-state excitation of the emitter, that is, the exci-
tonic component of the atom-photon bound state, as a measure
of the excitation trapping.

To begin with, we consider the regime of medium delay
times. In Fig. 3, the dynamics for a TLS with I't = 0.5 sub-
jected to rectangular pulses of duration I't, = 0.5 containing
up to four photons is shown and compared to the case of an
initially excited emitter decaying spontaneously in the vac-
uum. There are different scenarios in which an atom-photon
bound state is excited: On the one hand, a stabilization of the
excitation can be observed for an initially excited emitter that
does not fully decay in the vacuum (dashed light blue line).
In this case, the amount of excitation trapped in the system
decreases monotonously with 't [59]. On the other hand,
we can evoke a stabilization of the excitation in a TLS that
is initially in the ground state using multiphoton pulses. In
this case, the shape of the pulse and the contained number
of photons additionally influence the trapped excitation. For
a TLS initially in the ground state, a single-photon pulse
does not cause a stabilization at a finite amount of excitation
(solid green line, first from the bottom). We need at least two
photons in the pulse to evoke such behavior where the first
photon partially excites the emitter and due to the scatter-
ing of the remaining photons, a nonzero steady state can be
reached [61].

A stabilization can be observed for the two-photon pulse
(solid blue line, second from the bottom). Further increasing
the number of photons in the pulse results in an increasing
steady-state excitation for the system under consideration as
we see in the case of a three- (solid red line, second from the
top) and a four-photon pulse (solid black line, first from the
top). Here, the steady-state excitation of the initially excited
emitter clearly exceeds the one that can be reached using the
considered pulses with up to four photons. This is, however,
not always the case as we will see below. The specific pulse
width was chosen since for the given system parameters we
found it to yield the highest steady-state excitation possible
with rectangular pulses. Generalizing this observation, we
found that in the considered range of parameters the highest
possible steady-state excitation was evoked by pulses of width
', <T't.

In the inset of Fig. 3, the bond dimension of the time
bins in the MPS implementation for different numbers of
photons is shown. The bond dimension quantifies the entan-
glement of the time bins and, hence, functions as a measure
of the required computational resources. This way, it gives
an impression of the scaling of the MPS method with the
number of excitations. In the case of a single-photon pulse,
the maximum is reached at ¢t = ty, Where the pulse starts.
For a two- or three-photon pulse, the bond dimension reaches
its maximum after one feedback round trip time, that is,
at t =ty + T, before decaying again while for the four-
photon pulse this is the case after two feedback intervals
att =ty + 27.

Next, we turn to the strongly non-Markovian regime char-
acterized by I't >> 1. The dynamics of the excitation of a TLS
subjected to feedback with I't =4 is shown in Fig. 4. The
emitter is either initially excited and decays spontaneously
in the vacuum or starts in the ground state and is excited by
rectangular pulses of duration I't, = 4 containing up to four
photons. In this regime, the excitation of the atom-photon
bound state via multiphoton pulses is more effective than in
the regime of short delay times.

Since we are interested in ways to control and, in particular,
maximize the trapping probability, we note that the steady-
state excitation of the TLS presented in Fig. 4 for the consid-
ered rectangular two-photon pulse approximately matches the
excitation at which the initially excited TLS in the vacuum
stabilizes, (E(fx)) = lim;_, oo (E(¢)) = 0.040. The rectangu-
lar three-photon pulse, by contrast, results in a steady-state
excitation that clearly exceeds this value. A fourth photon
in the pulse additionally increases the steady-state excitation
slightly, (E(t~,)) = 0.085. Comparing the excitation schemes,
this corresponds to an increase of around 110%. Thus, our
findings suggest that the quantum optical preparation of an ex-
cited emitter via multiphoton pulses can be significantly more
effective than via an initially excited emitter in the regime of
large delay times. Here, the quantum pulse induces a stimu-
lated emission process that enhances the trapping probability
in comparison to the spontaneous decay of an initially excited
emitter.

In the inset of Fig. 4, the bond dimension of the time
bins for the different numbers of excitations in the system is
presented so that an assessment of the required computational
resources is possible. Comparing it to the inset of Fig. 3, we
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FIG. 4. Excitation of a TLS with 't = 4 as a function of time.
The TLS is either initially excited (e) and decays in the vacuum
(dashed light blue line), n = 0, or initially in the ground state (g) and
excited via a rectangular pulse of duration I't, = 4 which contains n
photons, n € {1, 2, 3, 4}. (Inset) Bond dimension of the time bins in
the MPS implementation for an n-photon pulse.

see that in addition to the number of photons in the pulse, a
long delay time is the major numerical cost factor.

IV. CONCLUSION AND OUTLOOK

We studied the interaction of a TLS with the electromag-
netic field inside a semi-infinite one-dimensional waveguide
within the MPS framework. In this system, multiphoton pulses
can excite an atom-photon bound state.

The effectiveness of the excitation scheme depends on the
system parameters. In the regime of small delay times, the
excitonic component of the bound state dominates and its
excitation is most effective via the spontaneous emission of
an initially excited emitter. In the strongly non-Markovian
regime of large delay times, our analysis for up to four pho-
tons showed that via multiphoton pulses the emitter can be
stabilized at a steady-state excitation exceeding that of an
initially excited TLS decaying in the vacuum significantly.
For the parameters we considered, we found an increase
of 110%. This shows that multiphoton pulses are a versa-
tile tool for the excitation of the atom-photon bound state
since they induce a stimulated emission process that can
enhance the trapping probability in comparison to the spon-
taneous decay of an initially excited emitter, especially in
the strongly non-Markovian regime. Thus, the findings sug-
gest that it is possible to realize tailored trapping scenarios
using pulse engineering which can be an important step on
the path towards the implementation of effective quantum
memory.

It will be interesting to extend our model to more complex
systems consisting of multiple emitters where, for example,
the effect of quantum pulses on the entanglement of the emit-
ters can be studied.
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APPENDIX A: INITIALIZATION OF THE PULSE BINS

If the TLS is subjected to a quantized pulse, the tensor de-
scribing the entangled state of the involved time bins has to be
decomposed into matrices allowing a time local description.

For a rectangular two-photon pulse starting at fy, = p; At
and ending at #.,q = py At, the matrices A[p] i describing time
bin p with corresponding physical index i, take the form,

Alpill'=1 0 0), A[pP=@0 1 0,
AlpiP=0 0 1D, (A1)
1 0 0

Apd' =10 V& 0|,
0 0 L
0 \/E 0
Al =g o Jacn|.
0 0 0
0 0 Ji
Alp’ =10 o o | (A2)
0 0 0
1 N7
Alpn] = (0 0 =) .
T
AlpyT? (o S o),
T
AlpyP = (/3 0 o), (A3)

where | < k < N — 1. If the same pulse containing three pho-
tons is considered, we find

Alppl'=1 0 0 0), ApP=@0 1 0 0),
AlplP=0 0 1 0), Apl*=@©0 0 0 1,
(A4)
1 0 0 0
0 /& 0 0
A l: b N
[Pkl 0 0 (k;zl)- 0
0 0 0o JEZ
1
o Jt o 0
2(k—1)
Apr =10 0 & ° |
0 0 0 WE(D
0 0 0 0
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0 0 /& 0
AlpeP=|0 0 0 D
0 0 0 0
00 0 0
00 0 Jk
Alpt =0 000, (AS)
00 0 0
0 0 O 0
T
I (N-1)°
Alpy)'=(0 0 0 Ja)
T
AlpvP=(0 0 D o)
T
3 _ 3(N=1)
AlpnP=(0 28D o o),
T
Al = (/3 0 0 o). (A6)

APPENDIX B: BENCHMARK

In order to benchmark the interaction of the TLS with
quantized pulses before feedback effects set in, that is, for
t < t, we derive differential equations for the operators E (¢),
o_(t), and r,(t) in the Heisenberg picture. An arbitrary
Heisenberg operator A(t) is related to its counterpart in the
Schrodinger picture As = A(0) via

A(t) =U'(t,0)AsU(z, 0), B

where U(t, 0) is the time-evolution operator from time O to
time . Assuming no explicit time dependence, A(t) obeys the
Heisenberg equation of motion,
d ;
A1) = “uta, 0)[H', AslU (2, 0). (B2)
dt h
Using the Hamiltonian H’ given in Eq. (4) of the main text,
we obtain

%E(r) =i f dog(@)[e™ ™'yl ()o_(t) —H.ec.], (B3)

%o_(t) _ f dog(@)e L — 2E()]ra(t), (B4)

ir (1) = —ig(w)e @~ o_(1).
dr ”

We integrate out the reservoir modes by formally integrating
Eq. (BS) and plugging the result,

(B5)

t
1) = o) ig(@) [ dre o). (86)
0
into Eqs. (B3) and (B4). In analogy to the MPS method
presented in Sec. II, we introduce the quantum noise oper-
ators r,T(O) as the conjugate operators of 7/ (0) [see Eq. (5)
of the main text] which allow the description of a fully
quantized input pulse [68,69]. The Markovian case where
we assume a constant coupling strength between the emit-
ter and the reservoir has been discussed extensively in the
literature [18,20,70,71]. If a feedback mechanism at delay
time T > 0 is implemented, we assume a sinusoidal frequency

dependence of the coupling strength, g(w) = go sin(wt/2),
and define the delayed input operator,

rir = rj_% (O)E*iw()f _ rt+% (O)Eiwof_

(B7)

This way, Egs. (B3) and (B4) yield the delay differential
equations [72],

%E(t) = —2TE(t) — VTlr] ,o_(t) + He]

+ e %o, (t — T)o_(t) + H.c.]O( — 1),
(BY)
%(L(t) = —To_(t) — VT[1L = 2E(t)]r;
+ e [o_(t — 1) — 2E(t)o_(t — T)]O@ — 1),
(B9)

where we again use the definition of the decay rate I' = 7 g3 /2
and find that after the non-negligible delay time 7, feedback
effects influence the dynamics. Since our aim is to benchmark
the MPS results before feedback effects set in, we omit the
time-delayed terms in Egs. (B8) and (B9) and, this way, avoid
having to deal with two-time correlations.

We are interested in the dynamics of the expectation
value of the occupation operator of the TLS, (E(t)) =
(W (0)| E()|¥(0)). Assuming the TLS and the reservoir to
be initially separable, the initial state of the system can be
written as |y (0)) = |j, n) for a TLS initially in either the
ground (j = g) or the excited state (j = ¢) and n photons in
the reservoir. This n-photon state can be obtained from the
vacuum state of the reservoir via the creation operator a;
which describes the creation of a wave packet of shape f ()
according to

(@p)"1j,0), (B10)

1
lj,n) = —=
Vnl
where the pulse shape f(¢) has the properties given in Eq. (16)
of the main text. Conversely, the annihilation of a photon can
be described as

. 0 n=0
rt|]vn>=

Vaf®ljn—=1, n>0

We calculate the above expectation value using Eq. (BS8)
by which it is coupled to matrix elements of the form
(i, m|E(t) |k, p) and (i, m|o_(t)|k, p). Assuming ¢ < T,
these matrix elements can be obtained via

(B11)

d E(t)|k
- m| EO) 1k, p)

= 2T (i, m| E(¢t) |k, p)

— NTI/mfi@) (i,m — 1 o_(t) |k, p)

+ /pfe@) (i,mloy (1) |k, p— 1)], (B12)

d . «
E (l,m|0'_(t)| ’p>

= —T (i, mlo_(1) |k, p) = VT /pfr(I(i, mlk, p — 1)
— 2(i,mlE@) |k, p—1)], (B13)

where f;(t) = f(t — %)eiwng — f(t+ %)eﬂ‘wn%.
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