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Quantum transport in non-Markovian dynamically disordered photonic lattices
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We show theoretically that the dynamics of a driven quantum harmonic oscillator subject to nondissipative
noise is formally equivalent to the single-particle dynamics propagating through an experimentally feasible dy-
namically disordered photonic network. Using this correspondence, we find that noise-assisted energy transport
occurs in this network and if the noise is Markovian or delta correlated, we can obtain an analytical solution for
the maximum amount of transferred energy between all network’s sites at a fixed propagation distance. Beyond
the Markovian limit, we further consider two different types of non-Markovian noise and show that it is possible
to have efficient energy transport for larger values of the dephasing rate.
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I. INTRODUCTION

From a practical point of view, decoherence (the irre-
versible loss of quantum coherence) is a multifaceted process
which presents advantages and disadvantages depending on
the particular circumstances and application. For instance,
from the perspective of perfect state transport, decoherence is
the obstacle to overcome since it may destroy the states way
before they can be conveyed [1]. In contrast, to perform highly
efficient energy transport protocols, decoherence has been
found to be the best allied [2,3]. Thus, a good understanding
of the impact of decoherence on energy transport and energy
conversion in the quantum and classical regimes is essential
to design functional technologies based on hybrid systems
[4], ranging from quantum information processing tasks to
quantum thermodynamics applications [5–8].

In optics, one can use integrated photonic devices, e.g.,
based on direct laser-writing coupled-waveguide lattices
[9,10], to study coherent energy transport [11–13], which is
an important ingredient in the development of integrated pho-
tonic quantum technologies [14,15]. Such devices constitute
a well-established, popular, and relatively-low-cost platform
among experimentalists due to their practical fabrication pro-
cess, where their physical and novel geometric properties
can be easily tailored [16]. In general, these devices are
never completely isolated from their environment; therefore,
to describe their energy losses and decoherence processes, a
treatment based on the theory of open or stochastic quantum
systems [17] is needed.

In the present work we study coherent and incoherent
energy transport in a particular type of integrated photonic
device termed a Glauber-Fock (GF) photonic lattice [18,19].
We choose this particular photonic structure because its closed
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dynamics is effectively described by the unitary evolution
of a displaced quantum harmonic oscillator [18], as experi-
mentally demonstrated in [20,21]. In addition, the physics of
nonlinear [22] and non-Hermitian systems [23,24] can also
be studied using such photonic devices. Thus far, there is a
lack of theory accounting for the interaction of GF lattices
with nondissipative noisy environments. Here we close this
gap by considering specific instances of Markovian (white)
and non-Markovian (correlated) noise. Further, we show that
the corresponding open system dynamics is equivalent to that
of a single excitation propagating in a dynamically disordered
network. Such noisy scenarios are quite relevant in inte-
grated photonics. For example, the interplay between noise
and interference effects can lead to a faster transmission in
the transport dynamics of integrated photonic mazes [25] or
enhancing the coherent transport using controllable decoher-
ence [12]. Our results also present a clear manifestation of
the so-called environment-assisted transport phenomenon in
the single-excitation regime [2,3,26–28]. Furthermore, we ob-
serve that non-Markovianity in the dynamics of the system
enhances the range of dephasing rates over which this effect
persists in our model.

The paper is structured as follows. In Secs. II and III
we analytically show that the master equation governing the
closed and open dynamics of a single excitation in a GF lattice
is identical to the one describing the evolution of a driven
quantum harmonic oscillator. We then examine the impact of
nondissipative Markovian noise on the energy transport. In
Sec. IV we explore non-Markovian noise models, while in
Sec. V we discuss the usefulness of having a correspondence
between the master equations of a driven harmonic oscillator
and a single particle propagating in a GF lattice. In partic-
ular, when the noise-assisted energy transport phenomenon
is manifested in the Markovian case, it is possible to find
an analytical solution for the maximum amount of energy
transferred between all sites of the photonic network. This
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constitutes one of the main results of the present work and
provides a clear advantage in energy transport calculations.
For the non-Markovian case, we find a substantial increase in
the range of the dephasing rate for which the noise-assisted
transport takes place, indicating that the common idea [29]
that noise-assisted transport occurs only in the moderate deco-
herence regime is no longer accurate when the environment’s
finite correlation time is considered. In Sec. VI we summarize
and discuss our conclusions.

II. GLAUBER-FOCK OSCILLATOR MODEL

We start by introducing the Hamiltonian of the quantum
harmonic oscillator (HO) in one dimension driven by an ex-
ternal perturbation Ĥ = h̄ωn̂ + h̄g(â + â†) [30]. Here â and
â† are the usual annihilation and creation operators, n̂ = â†â
is the number operator, and ω is the oscillator frequency. The
term h̄g(â + â†) represents a displacement with strength g.
In the field of integrated photonics, this Hamiltonian gov-
erns the light dynamics in the so-called Glauber-Fock lattice
[18,20,21] or GF oscillator.

A. Unitary dynamics in GF lattices

Assume that the state of the driven HO is given by |�(t )〉 =∑
m Am(t )|m〉, with |m〉 the energy eigenstates and Am(t ) the

corresponding probability amplitudes. Then it is possible to
show that the equations of motion for Am(t ), dictated by the
time-dependent Schrödinger equation ih̄ d

dt |�(t )〉 = Ĥ |�(t )〉
with the above-mentioned Hamiltonian, are isomorphic to
the ones describing the dynamics of a mode field amplitude
Em(z) propagating in a high-quality optical waveguide that
is coupled evanescently to its nearest neighbors forming a
semi-infinite photonic lattice given as [21]

i
d

dz
Em(z) + CmEm−1(z) + Cm+1Em+1(z) + αmEm(z) = 0,

(1)

where z represents the propagation coordinate; Cm ≡ C1
√

m
are the nonuniform coupling coefficients, with C1 the coupling
between the zeroth and the first waveguide; and αm are the
propagation constants. Importantly, in the context of photonic
lattices, the term αm implies that the refractive index of the
waveguides describes a potential that is gradually increasing
(for α > 0) with the waveguide number. That is, the potential
describes a ramp whose slope is controlled by the parameter
α (see Fig. 1 of [21] for an illustration of this refractive index
profile). In a GF lattice α can also be negative, generating
a different lattice response. However, throughout this work
we assume that α is always positive. The correspondence
between Eq. (1) and the equations of Am(t ) can be established
if we identify the label m of each excited waveguide with
the corresponding Fock state |m〉, C1 with g, α with ω, and
the propagation coordinate z with the time variable t [31].
The probability distribution Pm(t ) = |Am(t )|2 of the quantum
system represents the intensity distribution Im(z) = |Em(z)|2
of the light in the photonic array. Details for fabricating this
type of waveguide system can be found in [21]. For instance,
to achieve the increasing coupling C1

√
m between the neigh-

boring waveguides, these need to be directly inscribed in a

(a)

(c)

(b)

(e)

(f)

(d)

FIG. 1. Light intensity propagation in a photonic lattice obtained
by integrating Eq. (1). Light is initially launched into a single
waveguide labeled as (a) and (b) m = 0 and (c) and (d) m = 2. In
(e) and (f) we show the output light intensity Im(Z ) = |Em(Z )|2 at
Z = 3π/2 for the simulations presented in (b) and (d), respectively.
Note that Z ≡ C1z is the scaled propagation distance. Here Im(Z )
exhibits m nodes, as expected from the probability distribution of the
nonclassical displaced Fock states [20]. When the ramping potential
is activated, α �= 0, we see Bloch-like oscillations [32] (left), where
the light exhibits revivals every period Zrev = 2πkC1/α, with k an
integer [21]. We have set the ratio (a) and (c) α/C1 = 1/2 and (b) and
(d) α/C1 = 0, which are feasible experimental values that would al-
low us to implement realistic integrated photonic devices occupying
few centimeter-scale footprints (see the text for more details).

polished fused silica glass using femtosecond-laser-writing
technology [9] with a decreasing separation distance between
them, dm = d1 − (s/2) ln m, where d1 and s are parameters of
C1 that depend on the corresponding waveguide width and
the optical wavelength. With this configuration the evanes-
cent couplings Cm = C1 exp(−[dm − d1]/s) satisfy the desired
square root distribution.

Figure 1 depicts the intensity propagation in a GF lattice of
40 waveguides emulating the unitary evolution of the driven
quantum harmonic oscillator. Clearly, we see two scenarios
where the light spreads over the entire photonic array (delo-
calization) [20] and another in which it strongly localizes as
a manifestation of the so-called Bloch-like oscillations [32].
The analytical solution of Eq. (1) can be found in Ref. [21] in
terms of the associated Laguerre polynomials. As a function
of the scaled (or normalized) distance Z ≡ C1z, the behavior
of Em(Z ) simply depends on the ratio α/C1, and the so-called
revival distance Zrev is given as Zrev = 2πkC1/α. Note that
the difference in the case α > C1 as compared to α < C1 is
the period of the Bloch-like oscillations, which is short in
the former case. Here, to be in accordance with the reported
experimental values of α and C1 in previous works, we adopt
the latter case. These are simple examples showing the typi-
cal dynamics of coherent energy transport in closed systems
where strong interference effects dominate. However, when
dynamical disorder mechanisms are considered in an open
system description, a more involved study of the incoherent
energy transport dynamics is necessary, which we aim to
cover in the following sections.

B. Open dynamics: Markovian master equation

Under the action of Markovian dephasing, the density ma-
trix ρ̂ of the harmonic oscillator described by the Hamiltonian
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Ĥ = h̄ωn̂ + h̄g(â + â†) obeys the phenomenological master
equation d ρ̂/dt = −i[Ĥ, ρ̂] + γ L̂[n̂]ρ̂. Here the second term
on the right-hand side is the standard Lindblad superoper-
ator given by L̂[x̂]ρ̂ ≡ x̂ρ̂x̂† − 1

2 (x̂†x̂ρ̂ + ρ̂x̂†x̂), with γ the
constant dephasing rate. This master equation can be derived
using standard techniques of open quantum systems, where
the usual Born and Markov approximations are used [17].

In general, pure dephasing processes are energy pre-
serving [33]; as a result, the interaction between the sys-
tem and its environment commutes with the unperturbed
Hamiltonian of the system, ωn̂ in the present case. To
obtain the master equation we compute the matrix ele-
ments 〈n|Ĥ ρ̂|m〉 = ωnρnm + ∑

r gVnrρrm, with Vrm ≡ 〈r|(â +
â†)|m〉 = (

√
mδrm−1 + √

m + 1δrm+1); a similar expression is
obtained for 〈n|ρ̂Ĥ |m〉. The matrix elements for the dephasing
term are

γ 〈n|L̂[n̂]ρ̂|m〉 = √
γ n

√
γ mρnm − ρnm(γ n2 + γ m2)/2. (2)

Therefore, we obtain

i
d

dt
ρnm =

[
(ωn − ωm) − i

2
(γ n2 + γ m2)

]
ρnm

+ i
√

γ n
√

γ mρnm −
∑

r

gVrmρnr +
∑

r

gVnrρrm.

(3)

Defining the variables ωn ≡ nω, γn ≡ γ n2, and vi j ≡ gVi j , we
can rewrite Eq. (3) as

i
d

dt
ρnm =

[
(ωn − ωm) − i

2
(γn + γm)

]
ρnm + i

√
γnγmρnm

−
∑

r

vrmρnr +
∑

r

vnrρrm, (4)

which is the same master equation that a single particle, or
excitation, follows during its time evolution in a quantum
network affected by nondissipative noise, as we show in the
following section [see also Eq. (1) of Ref. [34]]. Since Eq. (4)
describes a pure-dephasing process, only the off-diagonal ma-
trix elements of ρ̂ are affected by the constant dephasing rate
γ . Notice that the form of γn ≡ γ n2 implies that Fock states
with high n are more severely affected by dephasing.

III. SINGLE-PARTICLE DYNAMICS IN A NETWORK
AFFECTED BY MARKOVIAN NOISE

In this section we show the equivalence between Eq. (3)
[or alternatively Eq. (4)] and the master equation govern-
ing the evolution (or propagation) of a single particle in a
tight-binding quantum network composed of N coupled sites
affected by a stochastic nondissipative noise (pure dephasing).
In the following and throughout the whole paper, keep in mind
that with the correspondence between the spatial (z) and tem-
poral (t) variables, the integrated photonic lattices discussed
in the preceding section would be a particular case of such
networks. In order to establish this connection we begin by
writing the single-particle tight-binding Hamiltonian

ĤS =
N∑

n=1

ωn(t )|n〉〈n| +
N∑

j<n

κ jn(| j〉〈n| + |n〉〈 j|) (5)

such that the evolution of the single-particle wave function
ψn at the nth site is governed by the stochastic Schrödinger
equation

dψn

dt
= −iωn(t )ψn − i

∑
j �=n

κn jψ j, (6)

where κn j represents, in principle, an arbitrary hopping rate
between sites n and j. In addition, ωn(t ) = n[ω + φn(t )] is the
frequency at the nth site that is affected by the random fluc-
tuations φn(t ). Note that each site exhibits a different natural
frequency that changes linearly with n, namely, ωn. In most
of the literature dealing with stochastic quantum networks, all
sites have the same frequency. However, since our main goal is
to establish a connection between the present physical setting
and the one describing a driven HO, outlined in Sec. II B, we
choose the frequency of the nth site to be proportional to n. To
introduce pure dephasing we consider φn(t ) to be a Gaussian
stochastic process with a zero mean 〈φn(t )〉 = 0 and two-point
correlation function given as

〈φn(t )φm(t ′)〉 = �δnmδ(t − t ′), (7)

where � is the noise strength (dephasing rate) that we have
assumed to be the same for all sites. The Kronecker delta δnm

implies that the noise is uncorrelated between sites n and m,
the Dirac delta function δ(t − t ′) describes the Markovian na-
ture (white noise) of the stochastic process, and 〈· · · 〉 denotes
the average over all possible noise realizations. Next, follow-
ing Ref. [35], we derive the corresponding master equation for
the density matrix

i
d

dt
σnm =

[
(nω − mω) − i

2
(�n2 + �m2)

]
σnm

+ i
√

�n
√

�mδnmσnm −
∑

j

κ jmσn j +
∑

j

κn jσ jm,

(8)

where σnm(t ) ≡ 〈ψnψ
∗
m〉 (see Appendix A). Adopting the no-

tation ωn = nω and �n = �n2, we obtain

i
d

dt
σnm =

[
(ωn − ωm) − i

2
(�n + �m)

]
σnm

+ i
√

�n�mδnmσnm −
∑

j

κ jmσn j +
∑

j

κn jσ jm.

(9)

Notice that the only difference between Eqs. (9) and (4) is
the Kronecker delta δnm appearing in the second term on
the right-hand side of Eq. (9). This difference emerges from
the fact that we have assumed no correlation between noise
affecting different sites [see Eq. (7)]. However, Eqs. (4) and
(9) become identical [no Kronecker delta in Eq. (9)] if we
assume that 〈φn(t )φm(t ′)〉 = �δ(t − t ′), i.e., there must be a
correlation between stochastic processes at different sites.

Such a correlation condition, which at first glance seems
unlikely to be achieved in practice, can easily be emulated
using laser-written photonic lattices in which temporal cor-
relations are translated into longitudinal spatial correlations.
In these photonic devices, ultrashort laser pulses are used
to inscribe each waveguide (site) with a customized refrac-
tive index (propagation constant or site energy) depending
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FIG. 2. Light propagation in a dynamically disorder Glauber-
Fock lattice. On the left we see the diagonal elements σnn obtained
by numerical integration of Eq. (9) describing the emerging intensity
distribution in the lattice; on the right we depict the matrix elements
ρnn from Eq. (4). For these simulations we used the same parameters
and initial conditions as for Figs. 1(a) and 1(c) but now adding white
noise with a dephasing rate � = 0.001 (left) and γ = 0.025 (right).
Due to the noise, light starts to delocalize and the effect is more
prominent in the regions where complete Bloch-like oscillations
would appear in the absence of noise (see Fig. 1). The vertical dashed
line indicates the distance at which the light intensity is calculated.

on the writing speed [34]. The random fluctuations (noise)
in the refractive index are implemented by modulating the
laser’s writing speed during the manufacturing process with
a high degree of control, keeping the coupling coefficients
unchanged [25]. Contrary to uncorrelated noise (7), where
independent noise generators in each inscribed waveguide are
used [25,34], for correlated noise between sites (δnm = 1), a
single generator would need to be used during each fabrication
step of the waveguide array.

Let us emphasize that in GF lattices, the hopping rates
must satisfy, as in the previous case, κn j = g(

√
jδn j−1 +√

j + 1δn j+1) and the time evolution must be interpreted as
spatial propagation. The light intensity represents the proba-
bility distribution Pn, but now this is given by the diagonal
matrix elements ρnn and σnn.

In Fig. 2 we compare the dynamics generated by numeri-
cally integrating Eqs. (9) and (4). Specifically, we present the
corresponding diagonal elements σnn and ρnn to illustrate the
intensity propagation in a dynamically disorder Glauber-Fock
photonic lattice. Both master equations were numerically
solved using the technique described in [36]. In Fig. 2 one
can see that, due to the added noise, near the revival distances
C1zrev = 4πk, light delocalization is more prominent. From
the experimental point of view this means that one could build
photonic waveguide arrays having just one Bloch-like oscilla-
tion (k = 1) and see the desired dephasing effect. In fact, the
ratio α/C1 = 1/2 used in Figs. 1 and 2 can easily be obtained
by choosing the coupling between the zeroth and the first
waveguide as C1 = 0.88 cm−1 [37,38] and α = 0.044 mm−1

[32]. The use of these values implies that we should design
approximately 40 nearest-neighbor coupled waveguides with
zrev = 4π/C1 = 14.28 cm, which is a feasible scenario. For
instance, in [11,12,20,21,39] 10- to 15-cm-long waveguide
arrays were built, and in [37,38], 101 identical waveguides
were inscribed within one of these types of arrays. In the
photonic device, the parameter Cm = C1

√
m increases with

the waveguide’s label, and by using the above parameters we

obtain C40 ≈ 5.5 cm−1, which corresponds to the largest cou-
pling coefficient reported experimentally in [40]. It is worth
pointing out that, given the stochastic nature of the process,
a certain number of waveguide samples is needed in order to
observe the mean density matrix described in Eq. (9). Previous
work by two of us [34] has shown that this number is approx-
imately 20. We would also like to mention that reconfigurable
electrical oscillator networks [27,41] and optical tweezer ar-
rays [42,43] are other viable experimental platforms in which
Eq. (9) and the correlated noise condition between different
sites can be realized.

IV. TIME-DEPENDENT DEPHASING RATE IN THE
MASTER EQUATION

We now turn our attention to generalize the results obtained
in the preceding section to the case of time-dependent de-
phasing. This opens up the possibility to introduce memory
effects in the dynamics of both models, that is, it enables
investigations of non-Markovian effects.

A. Glauber-Fock oscillator

The master equation, in the Lindblad form, for the Hamil-
tonian Ĥ under a time-dependent dephasing noise is given as

d ρ̂

dt
= −i[Ĥ, ρ̂] + γ (t )L̂[n̂]ρ̂. (10)

This equation is an ad hoc generalization of the master
equation of a two-level system describing pure-dephasing dy-
namics in a possibly non-Markovian regime [see Eq. (9) of
Ref. [44] and Eq. (17) of Ref. [45]]. In cases where γ (t ) be-
comes negative, the quantum dynamical semigroup property
of Eq. (10) no longer holds [17]. Consequently, the divisibility
of the quantum map is broken and Eq. (10) can be classified as
non-Markovian [45,46]. Here we only consider cases in which
γ (t ) is non-negative. However, it is worth pointing out that
Eq. (10) can be used to describe the dynamics of the system
under non-Markovian environments provided the dephasing
rates exhibit finite environment correlation times [44,47].

From Eq. (10), and following the same steps as in the
preceding section, we obtain the master equation

i
d

dt
ρnm =

[
(ωn − ωm) − i

2
[γn(t ) + γm(t )]

]
ρnm

+ i
√

γn(t )γm(t )ρnm −
∑

r

κrmρnr +
∑

r

κnrρrm.

(11)

It is interesting to note that the only difference between this
expression and Eq. (4) is the time-independent γn, which is
now replaced by γn(t ) ≡ γ (t )n2. In what follows, we discuss
its effect in the transport dynamics of complex quantum net-
works.

B. Single-particle dynamics in a quantum network

We start by investigating the dynamics of a single particle
under the influence of a Gaussian non-Markovian stochastic
noise �n(t ), with zero mean 〈�n(t )〉 = 0 and two-point cor-
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relation function

2〈�n(t )�m(t ′)〉 = �λδnme−λ|t−t ′|. (12)

This is the well-known modified Ornstein-Uhlenbeck noise,
where � is the inverse relaxation time and λ is the noise
bandwidth which is related to the environmental memory
time as τc = λ−1, such that when λ is finite the τc is also
finite, giving a non-Markovian character to the dynamics
[see Eq. (3) of [44] and Eq. (2.9) of Ref. [47] for a de-
tailed discussion on Ornstein-Uhlenbeck noise]. This process
has a well-defined Markovian limit which is obtained when
limλ→∞〈�n(t )�m(t ′)〉 = �δnmδ(t − t ′) [44].

As shown in Appendix A, for the present case we obtain
the equation

d

dt
σnm = −i(nω − mω)σnm − i

∑
j �=n

κn jσ jm + i
∑
j �=m

κ jmσn j

−in〈ψnψ
∗
m�n(t )〉 + im〈ψnψ

∗
m�m(t )〉, (13)

where the matrix elements are given as σnm = 〈ψnψ
∗
m〉. Al-

though �n(t ) represents in general non-Markovian noise, it
is still a Gaussian process; therefore, we can use Novikov’s
theorem [48] to compute the elements

〈ψnψ
∗
m�n(t )〉 ≈ − i

2
nσnm(t )�(t ) + i

2
mδmnσnm(t )�(t ), (14)

where �(t ) ≡ �(1 − e−λt )/2 is basically the time integral of
the two-point correlation function of the environment [44]
(see Appendix B for details). Hence, Eq. (13) becomes

i
d

dt
σnm =

[
(ωn − ωm) − i

2
[�n(t ) + �m(t )]

]
σnm

+ i
√

�n(t )�m(t )δnmσnm −
∑

r

κrmσnr +
∑

r

κnrσrm,

(15)

where �n(t ) ≡ �(t )n2. This is the master equation and de-
scribes the dynamics of a single particle in a non-Markovian
environment and, as expected, it reduces to Eq. (9) when �(t )
is time independent.

Similarly to the case of Markovian noise, discussed in the
preceding section, the only difference between Eqs. (15) and
(11) is the additional Kronecker delta appearing in Eq. (15).
That is, when there are noise correlations between different
sites, ρnm and σnm become identical. Even though they exhibit
similar evolution, ρnm and σnm are of a different nature. In
other words, ρnm is the density matrix for a quantum harmonic
oscillator inhabiting an infinite-dimensional Hilbert space
spanned by an infinite number of Fock states. In contrast,
σnm is the density matrix of a single particle, or excitation,
evolving in a quantum network made out of a finite number of
coupled sites, with their corresponding Hilbert space.

Finally, we would like to stress that the derivation
of Eqs. (9) and (15) is in principle valid for arbitrary
time-independent hopping rates κrm and not only for nearest-
neighbor interactions. Therefore, these master equations may
describe an extensive class of complex networks that do not
necessarily have to be photonic.

V. AVERAGE ENERGY OF THE SYSTEM

A. Analytical solution for the Markovian case

In this section we discuss some advantages of having a
correspondence between the master equations of a driven
quantum harmonic oscillator and a single particle propagating
in a photonic network. When one is interested in computing
the average of certain observables, e.g., the average energy of
a particle propagating in a network, solving the HO master
equation is much simpler than solving the latter. For example,
if we insert the Hamiltonian describing the Glauber-Fock
oscillator ĤGF ≡ ωn̂ + g(â + â†) into Eq. (10), we readily
obtain the equations of motion for the average of the number
and field operators

d〈n̂〉
dt

= −ig〈â†〉 + ig〈â〉,
d〈â〉
dt

= [−iω − γ (t )]〈â〉 − ig,

(16)

where d〈â†〉/dt = d〈â〉∗/dt . In the absence of dephas-
ing γ (t ) = 0 and assuming the initial condition |ψ (0)〉 =
|m〉, these equations reduce to the well-known solution
for the average of the number operator 〈n̂(t )〉 = m +
(2g/ω)2 sin2(ωt/2). From this expression, one can directly
determine the time at which the states return to their initial
configuration (revival time) trev = 2πk/ω, with k an integer.
Further, in the limit ω → 0, the evolution operator becomes
the Glauber displacement displacement operator, D(α) =
exp(αâ − α∗a†) with α = igt , which transforms a vacuum
initial state into a coherent state [20]. Accordingly, in this
limit we have limω→0〈n̂(t )〉 ∼ (gt )2, which corresponds to the
average value of a coherent state. For the case of nondissipa-
tive (pure dephasing) Markovian noise, the dephasing rate is a
non-negative constant γ �= 0. Then the average for the number
operator is

〈n̂(t )〉 = m + 2g2

(ω2 + γ 2)2
[ f (t ) + e−γ t g(t )], (17)

where we have defined the functions f (t ) ≡ γ 2(γ t − 1) +
ω2(γ t + 1) and g(t ) ≡ (γ 2 − ω2) cos(ωt ) − 2γω sin(ωt ). It
is remarkable that the temporal behavior of 〈n̂(t )〉 in the
quantum system gives crucial information about the energy
transport across all sites in the photonic structure at a fixed
propagation distance [31]. This is because 〈n̂(t )〉 can be
rewritten as 〈n̂(t )〉 = ∑

n Pn(t )n, where Pn(t ) = ρnn(t ) is the
probability distribution that we are associating with the light
intensity In(z) on each waveguide of the photonic lattice. So,
in GF lattices, In(z) is measured first and then the quantity
〈n̂(z)〉class ≡ ∑N

m=0 mIm(z) is evaluated. This corresponds to
the classical analog of the average photon number in waveg-
uide arrays. Evaluating 〈n̂(t )〉 at the revival time (revival
distance in the GF lattice) yields

〈n̂(trev)〉 = m + 2g2

ω2

[ 2πkγ̃

1 + γ̃ 2
+ 1 − γ̃ 2

(1 + γ̃ 2)2
(1 − e−2πkγ̃ )

]
,

(18)

where γ̃ = γ /ω is the scaled dephasing rate and m is the
initially excited site. Note that 〈n̂(trev)〉 attains its maximum
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FIG. 3. Manifestation of the noise-assisted transport phe-
nomenon, captured by the average photon number of Eq. (18), as a
function of the scaled dephasing rate γ̃ = γ /ω at different scaled re-
vivals times counted by k, the ratio g/ω = 1, and the initial condition
m = 2.

value when the decoherence rate is comparable to the en-
ergy scale of the system, i.e., when γ̃ ∼ 1 Eq. (18) reduces
to 〈n̂(trev)〉max ∼ m + 2πk(g/ω)2. This result indicates that
independently of the initial condition (excited site) |m〉, the
delocalization of the initial excitation will increase linearly, as
a function of k, at each revival time (distance), as shown in
Fig. 3.

The Bell-like shape depicted in Fig. 3 is in fact a signature
of the so-called environment-assisted transport phenomenon,
which in the present case is symmetric with respect to the
scaled dephasing rate. Note that this result contrasts with
the asymmetric behavior typically observed in other coupled-
oscillator systems [26,31,49].

In general, there are two distinct regimes in systems ex-
hibiting noise-assisted transport. For small dephasing rate
γ̃ 
 1, the energy transport is proportional to γ̃ such that
Eq. (18) reduces to 〈n̂(trev)〉 ∼ m + 4πk(g/ω)2γ̃ . On the other
hand, when the dephasing rate is very high γ̃ � 1, the energy
transport decreases with 1/γ̃ ; in fact, it is easy to show that
〈n̂(trev)〉 ∼ m + 4πk(g/ω)2γ̃ −1. These regimes are shown in
Fig. 4 (see the black solid lines). The fact that the energy
transport has a nonmonotonic behavior can be understood, in
a quantum scenario, as a consequence of the quantum Zeno
effect (QZE) [50]. In the QZE a frequent measurement on a
quantum system inhibits transitions between quantum states
[51]. In our system the QZE is dominant when the dephasing
rate is extremely high, i.e., when the nondissipative noise acts
as the measurement process.

In the corresponding optical context of waveguide arrays,
the above effects are expected to occur at the revival distance,
under the assumptions of coupling coefficients without dis-
order and no losses in the waveguide array. However, that
is not the case in practical implementations. For example,
in the presence of static disorder, Anderson localization of
light will occur for large disorder values, as experimentally
demonstrated in [38] for α = 0, i.e., without Bloch oscilla-
tions. When static disorder and Bloch oscillations are both

FIG. 4. Noise-assisted transport phenomenon in a Glauber-Fock
oscillator (lattice) as a function of the dephasing rate γ under
(a) Ornstein-Uhlenbeck noise and (b) power-law noise. The system
was prepared initially in ground state |0〉, i.e., m = 0, g = 1, ω =
0.5, and k = 1. For (a) λ → ∞ and (b) λ−1 → ∞ the black solid
line corresponds to the Markovian limit given by Eq. (18) and for
(a) λ−1 = 10 and (b) λ = 10 the red dashed line shows the behavior
in the non-Markovian regime evaluating Eq. (16) at trev. We obtain
the red circles and black squares by integrating the master equation
(11).

present, hybrid Bloch-Anderson localization of light emerges
with gradual washing out of Bloch oscillations [39]. Never-
theless, in such a case, the first Bloch-like revival (the one we
have required to be present in this work) is still visible [39].
Hence, we deduce that our results are robust against static
disorder. On the other hand, a typical experiment of this kind
shows low losses. To be more specific, propagation losses are
in the range of 0.1–0.9 dB cm−1 for straight sections of the
waveguides and also there is an excellent mode overlap with
standard fibers (0.1 dB cm−1) [10,16,34]. Moreover, losses
are approximately independent of the writing speed [9].

Before concluding this subsection, we would like to point
out that while we have assumed zero-temperature conditions
for the driven quantum harmonic oscillator, there is no re-
striction for considering temperature effects upon the photonic
lattices structures. Most experiments using direct laser-written
waveguides are performed at room temperature [9,10]. More-
over, impressive thermal effects can be admitted on these
devices. For instance, in [52] it was experimentally shown
that by varying a temperature gradient, the Bloch oscillations’
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period and amplitude could be controlled. This can be done
by heating and cooling the opposite sides of the waveguide
array. Specifically, a transverse linear temperature gradient
�T leads to a linear variation of the propagation constants,
i.e., α ∝ �T . Such a result suggests an attractive alternative
to get the desired ramp potential or the random fluctuations
without changing the laser’s writing speed.

B. Numerical solution for the non-Markovian case

We now look into the numerical solutions of the equations
of motion for the average field and number operators under
two different types of non-Markovian noise models. We con-
sider Ornstein-Uhlenbeck noise (OUN) and power-law noise
(PLN), both of which have a well-defined Markovian limit.
The time-dependent dephasing rates for these cases are given
as [47,53]

�(t ) =
{

�
2 (1 − e−λt ) for OUN

�
2(λt+1)3 for PLN,

(19)

where � is the inverse relaxation time and λ and 1/λ are
the noise bandwidths for OUN and PLN, respectively, which
in turn are related to the finite correlation time of the en-
vironment. Note these quantities can be considered as the
inverse environmental memory time that vanish in the limit
of λ → ∞ and 1/λ → ∞ for OUN and PLN, respectively,
yielding the Markovian limits of these noise models. Natu-
rally, in the Markovian limit, the time-dependent dephasing
factors become time independent. It is important to note that
in both cases �(t ) never becomes negative throughout the
evolution. Therefore, the dynamics generated is completely
positive (CP) divisible at all times and considered as Marko-
vian [54,55]. Nevertheless, it is clear that finite environment
correlation time results in non-Markovian behavior in the
dynamics [44,47] such that any intermediate map taking the
system from t1 to t2 is not independent of the initial time t0.
It has been shown that it is also possible to quantify these
“weaker” forms of non-Markovianity emerging in these mod-
els, by adopting different strategies as shown in [53].

In [53] the authors provide a geometric measure of non-
Markovianity that is capable of capturing the amount of
non-Markovianity for the CP-divisible models considered
above and provide a comparative analysis. Setting x = λ−1

for OUN and x = λ for PLN, it has been shown that the non-
Markovianity of PLN is always higher than that of OUN for
any finite x (cf. Fig. 1 of [53]). Note that x = 0 corresponds to
the case λ → ∞ for OUN and 1/λ → ∞ for PLN, which are
the Markovian limits of these models. We set x = 10 and look
at the noise-assisted transport phenomenon in a Glauber-Fock
oscillator (lattice) under OUN and PLN, together with their
corresponding Markovian limit. Figure 4 shows that for this
value x = 10, which corresponds to λ = 0.1 for OUN and λ =
10 for PLN, the noise-assisted transport phenomenon shows
a higher enhancement over a broader range of dephasing in
the case of PLN as compared to OUN, which also presents a
higher non-Markovianity.

In Fig. 4(a) we show that the pure numerical calculation
of the master equation (11) coincides (as expected) with
the solution of Eq. (16), but the latter is significantly more

straightforward to solve than the former. Interestingly, even
when we do not consider correlations between sites, one can
still observe the enhancement in noise-assisted transport in
the non-Markovian case described by the master equation
(15). This suggests that for the specific model of GF os-
cillator (lattice) considered in this work, non-Markovianity
seems quite advantageous in the noise-assisted transport phe-
nomenon. Increased non-Markovianity in the open system
dynamics allows us to achieve finite 〈n̂(t )〉, or equivalently
〈n̂(z)〉class, for larger values of the dephasing rate. Although
our findings are limited to the models considered in this work,
they are in accordance with recent results in the literature
that show positive correlation between non-Markovianity and
noise-assisted transport efficiencies [26,56,57].

VI. CONCLUSION

We have explored the conditions under which the master
equation describing a driven quantum harmonic oscillator,
interacting with an environment in a nondissipative way, is
equivalent to the master equation describing light propagation
in a dynamically disordered photonic lattice, the Glauber-
Fock photonic lattice. One of these conditions is that the noise
between different sites (waveguides) must be correlated. The
second condition is to choose a number of waveguides such
that the light does not reach the boundary where the sites
corresponding to high number states lie. Further, we have
shown that the noise-assisted energy transport phenomenon
can be observed in this type of system and that it is possible to
obtain analytical solutions for certain observables quantities,
e.g., the average photon number. Using these solutions, we
can readily predict the maximum amount of energy trans-
ferred between all the sites. This, in the Markovian scenario,
occurs for decoherence rates comparable to the energy scale
of the system. For the non-Markovian case, we found that
the range of the dephasing rate, in which the noise-assisted
transport occurs, is substantially larger. Our results are in good
agreement with recent theoretical [56,57] and experimental
[26] works showing that non-Markovian environments have
a strong influence on the energy transport. Looking forward,
and following the ideas of Refs. [35,58], it would be interest-
ing to go beyond the single-excitation regime and derive the
corresponding master equation of, for example, two correlated
particles propagating over these stochastic networks affected
by non-Markovian noise.
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APPENDIX A

The time derivative of the density matrix σnm(t ) ≡ 〈ψnψ
∗
m〉 is given as

d

dt
σnm =

〈
ψ∗

m

dψn

dt
+ ψn

dψ∗
m

dt

〉
, (A1)

where each term can be calculated using the stochastic Schrödinger equation:

ψ∗
m

dψn

dt
= −inωψnψ

∗
m − inφn(t )ψnψ

∗
m − i

∑
j �=n

κn jψ jψ
∗
m, (A2a)

ψn
dψ∗

m

dt
= +imωψnψ

∗
m + imφm(t )ψnψ

∗
m + i

∑
j �=m

κ jmψnψ
∗
j . (A2b)

Performing the stochastic averaging procedure, these terms yield

d

dt
σnm = −i(nω − mω)σnm − i

∑
j �=n

κn jσ jm + i
∑
j �=m

κ jmσn j − in〈ψnψ
∗
mφn(t )〉 + im〈ψnψ

∗
mφm(t )〉. (A3)

In particular, to obtain the stochastic averages in the last two terms of Eq. (A3), one needs to resort to Novikov’s theorem [48]

〈ψnψ
∗
mφn(t )〉 =

∑
p

∫
dt ′〈φn(t )φp(t ′)〉

〈
δ[ψn(t )ψ∗

m(t )]

δφp(t ′)

〉
(A4a)

=
∑

p

∫
dt ′�δnpδ(t − t ′)

〈
δ[ψn(t )ψ∗

m(t )]

δφp(t ′)

〉
(A4b)

= 1

2

∑
p

�δnp

〈
δ[ψn(t )ψ∗

m(t )]

δφp(t )

〉
(A4c)

= �

2

〈
δ[ψn(t )ψ∗

m(t )]

δφn(t )

〉
, (A4d)

where the operator δ/δφp(t ) stands for the functional derivative with respect to the stochastic process. Similarly, the second term
can be found as

〈ψnψ
∗
mφm(t )〉 = �

2

〈
δ[ψn(t )ψ∗

m(t )]

δφm(t )

〉
. (A5)

To obtain Eqs. (A4c) and (A5) we have used the fact that, in the Stratonovich interpretation,
∫

δ(t ) = 1
2 [59]. It is important

to mention that Novikov’s theorem is only valid for stochastic Gaussian processes, which can be either Markovian or non-
Markovian as well [60]. To compute the corresponding functional derivatives we need the formal integration of Eq. (A3), which
before the stochastic average is

ψn(t )ψ∗
m(t ) =

∫ t

0
dt ′[ f (ψnψ

∗
m, . . .) − inψnψ

∗
mφn(t ′) + imψnψ

∗
mφm(t ′)], (A6)

where f (ψnψ
∗
m, . . .) represents all the terms that do not contain the stochastic variable φn(t ). Thus, the functional derivatives are

δ[ψn(t )ψ∗
m(t )]

δφn(t )
= −inψnψ

∗
m + imψnψ

∗
mδnm, (A7a)

δ[ψn(t )ψ∗
m(t )]

δφm(t )
= −inψnψ

∗
mδnm + imψnψ

∗
m, (A7b)

in which we have used the identity δφp(t ′)/δφq(t ) = δpqδ(t ′ − t ) [48]. Using these results, we can compute the stochastic average
for the last two terms in Eq. (A3) as

−in〈ψnψ
∗
mφn(t )〉 = − 1

2�n2ρnm + 1
2�nmρnmδnm, (A8a)

im〈ψnψ
∗
mφm(t )〉 = 1

2�nmρnmδnm − 1
2�m2ρnm, (A8b)

and as a result we obtain Eq. (8).
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APPENDIX B

Applying Novikov’s theorem [48] in 〈ψnψ
∗
m�n(t )〉 we get

〈ψnψ
∗
m�n(t )〉 =

∑
p

∫
dt ′〈�n(t )�p(t ′)〉

〈
δ[ψn(t )ψ∗

m(t )]

δ�p(t ′)

〉
(B1a)

=
∑

p

∫
dt ′ �λ

2
δnpe−λ|t−t ′ |

〈
δ[ψn(t )ψ∗

m(t )]

δ�p(t ′)

〉
. (B1b)

The final aim of this Appendix is to know if the master equation (13), after applying Novikov’s theorem in Eq. (B1b), will be
similar to the master equation (11). Using the formal integration of Eq. (13), before doing the stochastic average, we can compute
the functional derivative of Eq. (B1b) as

δ[ψn(t )ψ∗
m(t )]

δ�p(t ′)
= δ

δ�p(t ′)

∫ t

0
dt ′′[ f (ψnψ

∗
m, . . .) − inψnψ

∗
m�n(t ′′) + imψnψ

∗
m�m(t ′′)]

=
∫ t

0
dt ′′

[
−inψnψ

∗
m

δ�n(t ′′)
δ�p(t ′)

+ imψnψ
∗
m

δ�m(t ′′)
δ�p(t ′)

]

=
∫ t

0
dt ′′[−inψnψ

∗
mδnpδ(t ′′ − t ′) + imψnψ

∗
mδmpδ(t ′′ − t ′)]

= − i

2
nψn(t ′)ψ∗

m(t ′)δnp + i

2
mψn(t ′)ψ∗

m(t ′)δmp. (B2)

Performing the stochastic average in Eq. (B2), we obtain〈
δ[ψn(t )ψ∗

m(t ′)]
δ�p(t ′)

〉
= − i

2
nδnpσnm(t ′) + i

2
mδmpσnm(t ′). (B3)

Now we substitute Eq. (B3) in Eq. (B1b),

〈ψnψ
∗
m�n(t )〉 =

∑
p

∫
dt ′ �λ

2
δnpe−λ|t−t ′|

{
− i

2
nδnpσnm(t ′) + i

2
mδmpσnm(t ′)

}
(B4a)

= − i

2
n

∫
dt ′ �λ

2
e−λ|t−t ′|σnm(t ′) + i

2
mδmn

∫
dt ′ �λ

2
e−λ|t−t ′ |σnm(t ′) (B4b)

≈ − i

2
nσnm(t )

∫
dt ′ �λ

2
e−λ|t−t ′ | + i

2
mδmnσnm(t )

∫
dt ′ �λ

2
e−λ|t−t ′ |, (B4c)

where we have made an approximation σnm(t ′) ≈ σnm(t ), i.e., we assume that the dynamics of the density matrix is slower
compared with the dynamics of the stochastic processes. Under this approximation, we can perform the integral of Eqs. (B4),∫ t

0
dt ′ �λ

2
e−λ|t−t ′| = �

2
(1 − e−λt ) ≡ �(t ). (B5)

With this result, Eq. (B4c) reduces to Eq. (14).
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