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Information-theoretical resolution limit of a far-field subwavelength diffraction system
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A general analytical model is established to study the change in the signal-to-noise ratio (SNR) of the spatially
noisy optical signal after passing through a subwavelength-aperture system. The corresponding spatial resolution
limit is redefined based on Shannon’s theory of information, and the expression is analytically given derived from
nonparaxial vectoral diffraction theory. Contrary to the conventional wisdom, it is demonstrated both analytically
and numerically that the SNR of the optical signal will increase with the propagation distance due to the presence
of the subwavelength aperture and the corresponding spatial resolution could, thus, exceed the traditional Abbe-
Rayleigh diffraction limit even though when the input SNR is low. The theoretical result provides perspectives
for optimizing optical resolution and is general, that can be extended to other sciences, such as x-ray imaging
and quantum imaging.
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I. INTRODUCTION

Classical resolution criteria, such as, most famously, the
Rayleigh’s are based on the so-called “calculated image” (see
Refs. [1,2]), which does not represent a fundamental limit
to optical resolution. A more practical and fundamental limit
below the quantum limit [3–6] considers the impact of noise
on the detected results, and modern resolution theories use sta-
tistical and information-theoretical models to redefine optical
resolution [2]. Whereas studies associating the optical resolv-
ing problem with statistics and information theories have been
showing interesting results until very recently [7–15], most of
them are initially meant for general large-aperture systems,
and the sizes of the apertures are seldom specified. In the
theories of light propagation, diffraction results change quali-
tatively when the scale of the diffraction structure reaches sub-
wavelength level [16–22], and abnormal optical phenomena,
including those leading to subdiffraction resolution [16,18],
therefore, occur. Although subwavelength apertures are now
implemented in actual experimental setups, such as near-field
scanning microscopy [23], confocal microscopy [24], and
superoscillation microscopy [25,26] to enhance optical per-
formance, the true resolution limit of these systems due to the
presence of the subwavelength aperture is still quite unclear,
and theoretical study devoted to such an issue is rarely seen.

Despite using different theoretical models to understand
optical resolution [2], one could expect that the resolution
limit is ultimately governed by the fundamental properties
of light propagation and information [7–15]. One of the
interpretations of the optical resolution limit is since the
amount of information in Shannon’s theory of information
could be understood as the number of the symbols used in a
message [27], then the highest possible resolution is defined

*cesyxy@mail.sysu.edu.cn

as the ratio of the geometric scale of the object L to the mutual
information T of the received image under noisy conditions,
which directly links to the signal-to-noise ratio (SNR) of
the object. Such a definition of optical resolution is recently
analytically proposed by Narimanov in Ref. [15], which re-
veals the essential information-theoretical nature of the optical
resolving problem, and offers many unique advantages for
analyzing optical resolutions, especially for objects without
much a priori knowledge.

In this article, we establish a general analytical model
based on the strict vectoral diffraction theory [17,19–22] to
study the change in SNR of the spatially noisy optical signal
after passing through a subwavelength aperture and follow
Narimanov’s proposal to study the corresponding resolution
limit of the general far-field subwavelength diffraction system.
Based on the light propagation properties of the large-aperture
system, Narimanov points out that the resolution could ex-
ceed the traditional Abbe-Rayleigh diffraction limit when the
effective input SNR is large, however, the weak logarithmic
dependence of the resolution limit on the SNR prevents the
system from achieving deep-subwavelength resolution un-
der normal noise conditions. Although such an analytical
result is generally in line with the previous works [7–14],
we show that it does not describe the resolution limit of
a subwavelength-aperture system as the light propagation
properties are essentially different. We show that the SNR
of the optical signal will increase due to the local spatial
coherence imposed by the subwavelength aperture, and the
corresponding resolution limit could, thus, exceed the tradi-
tional Abbe-Rayleigh limit even when the input SNR is low.
We demonstrate the superresolution capability and its physical
mechanism and show that by simply using the far-field diffrac-
tion result of a scanning subwavelength aperture to reconstruct
the amplitude profile of the object, the resolution is multiple
times better than the traditional limit and even those defined
by the SNR. Our results show avenues for optical far-field
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FIG. 1. Configuration for theoretical analysis. (a) General model
for the large-aperture imaging system. (b) General model for the
large-aperture system with a scanning pinhole.

nonfluorescent superresolution, which can be also extended
to other sciences, such as x-ray imaging [28] and quantum
imaging that may benefit from quantum metrology [3–6] and
nonclassical correlations [29–31].

This article is organized as follows. We start with Nari-
manov’s theory in Sec. II, and give the resolution limit of
the general subwavelength-aperture system in Sec. III. We
demonstrate the superresolution capability and the physical
mechanism behind it in Sec. IV. Conclusions are given in
Sec. V. Complete derivations for the light propagation in the
subwavelength system are given in Appendix A. We supply
more numerical results in Appendix B, and perform a more
rigorous approximation in Appendix C.

II. INFORMATION-THEORETICAL LIMIT
OF OPTICAL RESOLUTION

We follow the lead of Narimanov [15] and start with a
general model to illustrate on the core physics of the problem.

Consider a general imaging model as shown by Fig. 1(a),
a one-dimensional object is placed in the object plane under
the illumination of a monochrome coherent field with a wave-
number k = 2π/λ. The interaction between the illumination
field and the object needs to be considered in the framework
of scattering theory [15,19], yet for general consideration,
one could regard the light field right behind the object E (xo)
as the input “object function” and the imaging problem as
the reconstruction of E (xo) from its detection results s(xi) ≡
E (xi ) + n(xi ), where E (xi ) is the calculated image of E (xo)
and n(xi ) is the additional noise. Regardless of any specific
noise distribution, we assume n(xi ) to be a spatial stationary
random process with a zero mean value and a nonzero mean-
square module.

In general, for a linear system (say injective mapping) with
a clear analytical relation E (xi ) = F {E (xo)}, one can always
reconstruct the input object E (xo) from its ideal image E (xi )
with infinite accuracy mathematically [1], and it is the noise
that practically limits the “spatial accuracy” of the reconstruc-
tion, which is, in general, the resolution. To analyze the effect
of noise on the resolution, mutual information T from Shan-
non’s theory [27] is introduced to define the optical resolution,
which is given in a standard way,

T = H[{s}] − H[{s}|E (xo)], (1)

where H[{s}] is the information entropy that offers a mea-
sure of the expected information received by the detector and
H[{s}|E (xo)] is the conditional entropy for a given object
function E (xo) to measure the loss of validity due to the
additional noise. By its general logarithmic definition [27],
the amount of information can be understood as the number
of the symbols to carry information. Consider using such
symbols to reconstruct the object, then the resolution limit of
an object with a length L under noisy conditions is given by

� = L

T
, (2)

which is the shortest spatial scale of the object whose geom-
etry can be possibly reconstructed, regardless of using any
information processing methods.

To calculate the mutual information T , the signal must
be analytically expressed based on the imaging model. For
a large-aperture system (L � λ), the ideal far-field (r � L)
detected result is naturally the Fourier spectrum of the object
[19],

s(k) = E (k) + n(k) =
∫

E (xo)eikxxodxo + n(k), (3)

where k ≡ (kx, kz ) with the magnitude |k| = k is the wave
vector, and we have

k

r
= kx

xi
= kz

z
. (4)

The information entropy is then given by

H[{s}] = −
∫

Ds(k){P[s(k)]logM P[s(k)]}, (5)

where P[s(k)] is the distribution function of the detected sig-
nal s(k) and the functional integral

∫
Ds(k) is defined in the

standard way [15]. The logarithmic base M is the number of
the possible states of the symbols to reconstruct the object.
Similarly, we have

H[{s}|E (xo)] = −
∫

Ds{P[s|E (xo)] logM P[s|E (xo)]}, (6)

where P[s|E (xo)] is the conditional distribution function of the
detected signal for the given object E (xo). For additive noise,
P[s|E (xo)] is simply equal to the noise distribution Pn[n(k)].
With further consideration of the central limit theorem on
the expected signal and the uncorrelated Gaussian noise, both
distribution functions P[s(k)] and Pn[n(k)] can be analytically
expressed (for a detailed derivation, please refer to Sec. 9 of
Ref. [15]), and finally we have

�M = λ

2

1

logM

√
1 + 2 SNR + η SNR2

, (7)

which is the resolution limit of the object with M different
levels of amplitude, and SNR is the effective ratio,

SNR = 〈|s(k) − 〈s(k)〉|2〉
〈|n(k)|2〉 , (8)

and

η = 〈[Re(E (xo) − 〈E (xo)〉)]2〉〈[Im(E (xo) − 〈E (xo)〉)]2〉
〈|E (xo) − 〈E (xo)〉|2〉

− 〈Re(E (xo) − 〈E (xo)〉)Im(E (xo) − 〈E (xo)〉)〉2

〈|E (xo) − 〈E (xo)〉|2〉 (9)
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represents the relative contribution of the absorption of the
object; for a transparent object, we have η = 0.

The analytical result derived based on the large-aperture
approximation in Ref. [15] indicates the possibility of a higher
resolution than the traditional limit λ/2, yet, the required SNR
grows nearly exponential with the resolution, which prevents
the system from achieving deep-subwavelength resolution un-
der the normal noisy condition. Although such a result is
generally in line with the prior works, next, we show that it is
not sufficient for the case of using a subwavelength aperture in
which the far-field diffraction result is qualitatively different
from Eq. (3).

III. RESOLUTION LIMIT OF A
SUBWAVELENGTH-APERTURE SYSTEM

The case of a subwavelength aperture is now implemented
in the actual experimental setups [23–26], yet due to the com-
plicated vectoral boundary conditions, the theoretical analysis
for subwavelength diffraction is generally performed numer-
ically, and the analytical study on the problem is rarely seen
[17]. Introduction to the problem and detailed derivations for
the following discussion are given in Appendix A. A prior
study of the following work can be found in Ref. [16].

A simple reconsideration for Lk < 1 simply represents an
example for a near-field probe [15,23], which is out of the
topic. A more appropriate model is considered as shown by
Fig. 1(b): A scannable subwavelength pinhole with a width
a � λ is added on a “pinhole plane” parallel to both the object
and the image plane, and both z1 and z2 are much larger
than λ. At each scanning position xpj , the detector detects
the secondary diffraction field E2 j (xi ) to estimate the value
of the primary diffraction field of the object at that point
E1(xp), forming the signal array s j . The imaging problem is
as before the reconstruction of the object function E1(xo) from
the detection array of s j .

The imaging process before the pinhole plane is the same
as that shown in Fig. 1(a), and the key difference is introduced
by the secondary diffraction process of the subwavelength
aperture, which changes the returned SNRr of s j . For the input
signal on the pinhole plane E1n(xp) ≡ E1(xp) + n1(xp) with an
input SNR0, the secondary diffraction field at the image plane
is given by [see Eqs. (A8)–(A11) in Appendix A],

E2 j (xi ) = [Gv (r j )a〈Ej〉][1 + ε j (xi )], (10)

where Gv (r j ) is the point-spread function (PSF) of the
first Rayleigh-Sommerfeld integrals [32] and the subscript v

stands for different vector components [see Eqs. (A9) and
(A10) in Appendix A],

r j =
√

(xpj − xi )2 + z2
2 (11)

is the distance between the jth central scanning position xpj

to one point on the image plane xi; a is the width of the
subwavelength pinhole, and

〈Ej〉 = 1

a

∫ (a/2)+xpj

−(a/2)+xpj

E1(xp)dxp (12)

is the average amplitude of E1(xp) at the aperture opening.
The complex term ε j in the parentheses is the relative error

between the actual image E2 j (xi ) and the estimated result
[Gv (r j )a〈Ej〉], caused by both the noise and the finite size of
the aperture. The maximum square modulus of this term is
given by [see Inequality (A12) in Appendix A],

|ε j |2 � εnεv, (13)

where εn ≈ 1/SNR0 is the error caused by the noise distorted
boundary [see Eqs. (A13) and (A23) in Appendix A] and εv

is the error caused by the diffraction of the subwavelength
aperture itself, which will decrease with the increase in z2 and
eventually tends to 0 [see Eqs. (A14)–(A21) in Appendix A].
For a finite noise power, we finally have [see Eq. (A22) in
Appendix A]

lim
z2→∞ |ε j (x j )|2= 0. (14)

Although Eq. (3) indicates that the far-field diffraction
result for the large-aperture system is naturally the Fourier
spectrum of the object, the physical meaning of Eq. (10)
here is that despite any noise-distorted boundary, the far-field
diffraction results of a subwavelength aperture tends to a fixed
point-spread-function Gv (r j ) with which the source amplitude
only equals the integral amplitude of E1(xp) at the opening.
Such a result is recently pointed out in a qualitative way in
Ref. [16], and here we derived the analytical expression. The
critical point follows is that the impact of noise on the inten-
sity from the input of the system decreases with the increase
in z2, and the returned SNRr , therefore, improved. Consider
using the average intensity of 〈|E2 j (xi )|2〉 to return the values
of the signal array 〈Ej〉 → s j (phase detection can be achieved
by multiple optical methods, for example, a self-interference
setup [33]) at each scanning position, the returned SNRr of s j

is then given by

SNRr = 〈|1 + ε j |2〉
〈|ε j |2〉 , (15)

which will tend to infinity at the far field as indicated by
Eq. (13),

lim
z2→∞ SNRr = ∞, (16)

regardless of arbitrary raw input SNR0.
If not considering the noise of the detector itself, the resolu-

tion limit of such a subwavelength diffraction system is given
by

�Mr = λ

2

1

logM

√
1 + 2 SNRr + η SNR2

r

, (17)

which could tend to 0 when z2 → ∞, regardless of any raw
noise input.

IV. DISCUSSIONS: ON THE IMPROVEMENT
OF THE RESOLVING POWER

Although Narimanov’s theory depending on Eq. (3) indi-
cates that subwavelength details of the object are still hidden
in the propagating waves and can be reconstructed at the
far field, the result here shows that it can be achieved even
for high noise input. Such a result is based on the far-field
diffraction result of a subwavelength aperture, which shows
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FIG. 2. (a) Statistical results of log10(SNRr ) near the optical axis
versus a dimensionless parameter log10(Z2), where Z2 ≡ z2(4λ/a2),
calculated by 10 000 realizations of E1n(xp), a = 0.1λ, and xi ∈
[−2.5λ, 2.5λ]. (b) A sample of the intensity profile of |E2 j (xi )|2
at Z2 = 103. (c) A sample of the intensity profile of |E2 j (xi )|2 at
Z2 = 0.1.

the intrinsic noise suppression mechanism of subwavelength
diffraction in the monochrome coherent field: As indicated
by Inequality (13), no matter how much error is caused by
the noise on the boundary εn, it will be offset by the diffrac-
tion effect of the aperture itself εv . Although light diffraction
has always been regarded as a “low-pass filter” at which the
subwavelength information is lost, the results here give a com-
plete counterexample to such a theory and provide insights for
further optimizing optical performance.

A question of interest is how “fast” does the returned SNRr

increase with the propagation distance z2. For large z2 and
small 〈|ε j |2〉, the minimum amplification of SNRr/SNR0 near
the paraxial region can be analytically given by [see Eqs. (13),
(15), and (A20) in Appendix A]

1

εv

≈ 1

1 − sinc
( axi

λz2

) . (18)

In general, the smaller aperture a and the closer xi to the x
coordinate of the center of aperture xp, the faster the magnifi-
cation of SNRr/SNR0 with the increase in z2. Note that it is
not explicitly related to the specific distribution of the noise,
indicating that the results are also valid for the resolution
model depending on parameter estimation [3]. The complete
numerical results that consider different distributions is given
in Appendix B, Fig. 6, and here we give an example for a
general demonstration.

Figure 2 shows the calculation results of the returned SNRr

as a function of a dimensionless parameter Z2 = z2(4λ/a2)
calculated by 10 000 different realizations. As shown in
Fig. 2(a), for an initial SNR0 ≈ 1 input at the boundary,
the statistical average of the returned SNRr near the center
grows near exponential when Z2 > 1, corresponding to the
far-field diffraction region to which our derivation applies.
These results suggest that the strong exponential dependence
of the resolution increase in the SNR can be effectively offset
by the increase in z2, making it possible to achieve deep-
subwavelength resolution within a practical diffraction region.
As can be seen the returned SNRr soon reaches, at least, 107

FIG. 3. (a) Amplitude profile of the object. (b) Ideal far-field
coherent diffraction pattern of I1(xp) ≡ |E1(xp)|2 (blue dashed line)
and a sample of the noise distorted one I1n(xp) ≡ |E1(xp) + n1(xp)|2
(yellow continuous line). (c) Self-interference fringes of the sub-
wavelength pinhole of the ideal boundary E1(xp) (blue dashed line)
and the distorted one E1n(xp) (yellow continuous line) at z2 = 20λ,
and the inset shows the error between the two results near the center.
(d) Object profiles recovered from the average amplitude 〈Ej〉 of the
ideal signal E1(xp) (blue needles) and ten realizations of the returned
signal s j (yellow lines), and the red dashed line shows an example of
the incorrect results reconstructed from the raw noise signal I1n(xp).

at Z2 = 103, corresponding to a resolution of, at least, λ/20
at z2 = 2.5λ when M = 2 for a transparent binary object. For
a better visual understanding, two samples of the signals are
shown in Figs. 2(b) and 2(c).

To further prove the principle and its practicability, Fig. 3
shows the results of a complete recovery process. Consider a
binary transparent object as assumed by Narimanov [15] with
an amplitude profile as shown in Fig. 3(a), and the objective
resolution here is 0.1λ. For the far-field imaging system, we
assume a standard sinc-type PSF with a half-width not exceed-
ing half of the wavelength,

PSF(x) = sinc

(
2x

λ

)
. (19)

The vectoral effect and the phase distribution are consid-
ered detailed in the Appendices and are not shown here. After
passing through a far-field imaging system, the ideal coher-
ent diffraction pattern I1 ≡ |E1(xp)|2 on the pinhole plane is
given as shown in Fig. 3(b) (blue dashed line). As can be
seen, the PSFs have overlapped with each other and cannot
be resolved by any traditional methods. Consider adding a
noise with zero-average amplitude and an initial SNR0 ≈ 1
on the pinhole plane, and the distorted pattern I1n ≡ |E1(xp) +
n1(xp)|2 is shown in Fig. 3(b) (yellow continuous line). Con-
sider using the self-interference fringes (can be achieved by a
Mach-Zehnder setup [33]) of a subwavelength pinhole with a
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width a = 0.02λ and a scanning interval D = 0.1λ to return
the complex amplitude 〈Ej〉 of each scanning position, and
a sample of the interference fringes of one of the scanning
positions is shown in Fig. 3(c). As can be seen the error ε j

caused by the noise has been reduced to the magnitude of
10−6. According to Eq. (17), this error is small enough for our
objective resolution. The error of each scanning position ε j is
then added on the return value of 〈Ej〉 to form the detection
array s j , and the object is then recovered by an inverse matric
calculated by the PSF of Eq. (19) [34]. The recovered results
are shown in Fig. 3(d), showing that the subwavelength details
of the object are successfully recovered.

The recovery program requires no a priori constraint on the
object, which indicates that the algorithm is far from optimal.
By only considering a reverse matric and a general far-field
PSF [34], these results clearly show from the fundamental
level that the presence of a subwavelength pinhole suppresses
the noise and returns results valid for a deep-subwavelength
far-field resolution �0.1λ within a practical scale. If more a
priori constraints or optimized algorithms are used as they
are imposed in standard analog methods, such as that in
Refs. [35,36], the requirements on the SNR of the resolution
will be further relaxed, which means for an even higher reso-
lution.

Although a subwavelength aperture has been used as a
near-field probe in an actual experiment to achieve subwave-
length imaging for a long time [23], the results here indicate
that it is also possible to use it as a “far-field probe.” The
technique is general and does not explicitly require any so-
phisticated optical element, which has great potential to be
extended beyond optical imaging to other fields, especially for
those in which the conventional optical “lenses” are difficult
to be applied, such as x-ray imaging [28].

V. CONCLUSIONS

We established an analytical model to study the change in
the SNR of the optical signal after passing through a subwave-
length aperture and give the corresponding resolution limit of
a subwavelength coherent diffraction system based on Shan-
non’s theory of information. The theoretical results reveal
the intrinsic noise suppression mechanism of subwavelength
diffraction, which provides perspectives for further optimizing
optical resolution.
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APPENDIX A: LIGHT PROPAGATION THROUGH
A SUBWAVELENGTH APERTURE

To derive Eq. (10), standard assumptions for subwave-
length diffraction are applied [17,19–22]. Consider an imag-
ing model as shown in Fig. 4: The monochrome coherent
field E1n = E1 + n1 generated by the object and the noise
is incident on a one-dimensional aperture, which consists

FIG. 4. Configuration for theoretical analysis.

of a perfectly conducting screen of infinite extent and zero
thickness and an opening with a width of a centered at xpj .
After passing through the aperture, the complete diffraction
field is written as E2 j , and both E1n = E1nxx̂ + E1nzẑ and
E2 j = E2 jx x̂ + E2 jz ẑ are assumed to be a polarized electric
field. The magnetic field is neglected here, and it can be
determined by the Maxwell equation H = −ic(∇ × E )/ω.
The case of the polarized magnetic field and a more complete
two-dimensional case can be worked along the same line [19].
For simplification, we set xpj = 0, and E2 j at any point behind
the screen is strictly given by the first Rayleigh-Sommerfeld
integral [32],

E2 jx(xi ) = −1

2π

∫ ∞

∞
E2 jx(xp)

∂G(r2)

∂z2
dxp, (A1)

E2 jz(xi ) = 1

2π

∫ ∞

∞
E2 jx(xp)

∂G(r2)

∂xi
dxp, (A2)

where r2 =
√

(xp − xi )2 + z2
2 is the distance between one

point on the pinhole plane and one point on the image plane
and G(r) = eikr/r is the Green’s function. E2 jx(xp) is the tan-
gential component of the electric field of E2 j at the boundary.
For the far-field condition z2 � λ, it is valid to replace it with
E1nx(xp) at the opening and write [17,37]

E2 jx (xi ) = −1

2π

∫ a/2

−a/2
E1nx(xp)

∂G(r2)

∂z2
dxp, (A3)

E2 jz(xi ) = 1

2π

∫ a/2

−a/2
E1nx(xp)

∂G(r2)

∂xi
dxp. (A4)

For z2 � λ > a, we extract the Green’s-function terms in
Eqs. (A3) and (A4) from the integrals and write

lim
z2→∞ E2 jx(xi ) = −1

2π

[
∂G(r j )

∂z2

]
a〈Ej〉, (A5)

lim
z2→∞ E2 jz(xi ) = −1

2π

[
∂G(r j )

∂xi

]
a〈Ej〉, (A6)

where r j =
√

(xpj − xi )2 + z2
2 and

〈Ej〉 ≡ 1

a

∫ a/2

−a/2
E1nx(xp)dxp = 1

a

∫ a/2

−a/2
E1(xp)dxp (A7)

is the average complex amplitude of E1nx at the aperture
opening, and we assume the noise does not affect the mean
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of amplitude. Since for the polarized monochrome field the
complete electromagnetic field can be determined by one
component, we omit subscript x of E1nx and write E1n in the
main text and below.

To prove these expressions, the Cauchy-Schwarz inequal-
ity is used. Use a uniform expression to rewrite Eqs. (A5) and
(A6),

lim
z2→∞

∫ a/2

−a/2
E1n(xp)Gv (r2)dxp

= Gv (r j )
∫ a/2

−a/2
E1n(xp)dxp, (A8)

where Gv is the point-spread function for the first Rayleigh-
Sommerfeld integral and the subscript v stands for x or z. For
the x component of the electric field,

Gx(r) ≡ −1

2π

[
∂G(r)

∂z

]
= −1

2π
cos (θ )

(
ik

r
− 1

r2

)
eikr, (A9)

and for the z component,

Gz(r) ≡ 1

2π

[
∂G(r)

∂x

]
= 1

2π
sin (θ )

(
ik

r
− 1

r2

)
eikr . (A10)

Since r j is not related to xp, the relative error between the
left and the right sides of Eq. (A8) is as follows:

ε j =
∫ a/2
−a/2

E1nx(xp)[Gv (r2) − Gv (r j )]dxp

[a〈Ej〉]Gv (r j )
. (A11)

Let [Gv (r2) − Gv (r j )] = �Gv . According to the Cauchy-
Schwarz inequality we write

|ε j |2 � εnεv. (A12)

where

εn ≡
∫ a/2
−a/2 |E1nx(xp)|2dxp

|a〈Ej〉|2 (A13)

is the error on the intensity caused by the noise distorted
boundaries, and

εv ≡
∫ a/2
−a/2 |�Gv|2dxp

|Gv (r j )|2 (A14)

is the error caused by the diffraction of a finite-size aperture
itself. For a signal with finite power and a〈Ej〉 �= 0, regardless
of any specific distribution, εn is a finite positive real num-
ber, thus, according to the squeeze theorem we only need to
prove that the second term brought by the diffraction is small
enough,

lim
z2→∞ εv = 0, (A15)

that we prove Eq. (A8).
For the x component of the electric field, substituting

Eq. (A9) into Eq. (A14) and expanding �Gx, we have

εx =
∫ a/2

−a/2

∣∣∣∣cos (θ2)R(r2)eikr2

cos (θ j )R(r j )eikr j
− 1

∣∣∣∣
2

dxp, (A16)

FIG. 5. (a) log10(1/ε ′
v ) as a function of log10(Z2), calculated by

Eq. (A24), where Z2 ≡ z2(4λ/a2), P = 5a, xi0 = 0, and a = 0.1λ.
(b) Improvement of the resolution limit �M/�Mr as a function of
log10(Z2), calculated by Eqs. (7) and (17), SNR0 = 1.5, M = 2, η = 0,
and �M = λ/2.

where

R(r) = −1

2π

(
ik

r
− 1

r2

)
. (A17)

Consider that when z2 � a and r j � λ, then cos(θ2) ≈
cos(θ j ) and R(r2) ≈ R(r j ), and we write

εx =
∫ a/2

−a/2
|eik(r2−r j ) − 1|2dxp. (A18)

Let �r = r2 − r j since �r � r j , we have d�r =
sin(θ j )dxp, and we write

εx = 1

sin (θ j )

∫ a sin(θ j )/2

−a sin(θ j )/2
|eik �r − 1|2d �r. (A19)

After integration, when xi � z2 we have

εx = 1 − sinc

(
a

λ
sin(θ j )

)
≈ 1 − sinc

(
axi

λz2

)
. (A20)

It is not difficult to write εx = εz. When a < λ, for any
given xi, we write

lim
z2→∞ εv (xi ) = 0, (A21)

and, finally,

lim
z2→∞ ε j (xi ) = 0. (A22)

The physics here as indicated by Inequality (A12) is no
matter how much error εn is caused by the noise on the
intensity, it will be offset by the coherent diffraction effect
of the subwavelength structure at the far field. If we consider

1

εn
≡ |a〈Ej〉|2∫ a/2

−a/2
|E1nx(xp)|2dxp

≈ SNR0 (A23)

to be approximately the signal-to-noise ratio of the input sig-
nal, then the minimum magnification of SNRr/SNR0 at the
far field is analytically given by 1/εv . Consider the smallest
pixel size of the detector as P, then the minimum SNR mag-
nification can be adjusted as

1

ε′
v

≡ 1∫ xi0+P/2
xi0−P/2 εvdxi

, (A24)
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FIG. 6. Vectoral diffraction results E2 j (xi ) of different boundary distributions E1n(xp) at different Z2’s, calculated by the first Rayleigh-
Sommerfeld integrals [Eqs. (18) and (19)], a = 0.1λ. (a)–(c) Normalized amplitude of the x-component |E2 jx (xi )| at different Z2’s, Z2 =
0.1, 10, 100, respectively. (d) Normalized phase distribution of the x-component arg[E2 jx (xi )]/π at Z2 = 100. (e)–(g) Normalized ampli-
tude of the z-component |E2 jz(xi )| at different Z2’s, Z2 = 0.1, 10, 100, respectively. (g) Normalized phase distribution of the z-component
arg[E2 jx (xi )]/π at Z2 = 100. u1–u4 stand for different distributions of E1n(xp). u1: E1n(xp) = δ(xp), where δ(x) is the Dirac-δ function to
represent the ideal point-spread function of Gv . u2: E1n(xp) = rect(xp/a), where rect(xp) is the rectangular function of the aperture to represent
a uniform light field distribution. u3: E1n(xp) = Nrand(xp), where Nrand(x) is a random process consisting of 100 Gaussian random numbers to
represent a normally distributed boundary. The Gaussian random numbers are generated by the rand(ū, σ ) function in the MATLAB program,
where ū = 0.5 is the mean and σ = 0.5 is the standard deviation. u4: E1n(xp) = Urand(xp), where Urand(xp) is a random process consisting
of 100 random numbers that are uniformly distributed in the interval [0, 2]. The random numbers are generated by the rand function in the
MATLAB program.

where xi0 is the central position of the pixel. A plot figure
of log10 (1/ε′

v ) and the corresponding resolution improvement
�M/�Mr as a function of Z2 are as shown in Fig. 5.

APPENDIX B: VECTORAL CALCULATION RESULTS
OF DIFFERENT BOUNDARY DISTRIBUTIONS

The complete vectoral diffraction results of E1n(xp) under
different boundary distributions are as shown in Fig. 6. The
results show no substantial difference between the vectoral
fields calculated by different distributions when Z2 � 100
even for the nonparaxial region.

APPENDIX C: A MORE RIGOROUS APPROXIMATION

In Eq. (A8), we perform the approximation Gv (r2) ≈
Gv (r j ) and extract it from the integral. Alternatively, we can
perform a more rigorous approximation by expanding the
phase factor eikr2 to the first-order eikr2 ≈ eikr j (1 + ik �r) and
write

Gv (r2) ≈ Gv (r j )(1 + ik �r), (C1)

so that Eq. (A8) is rewritten as

lim
z2→∞

∫ a/2

−a/2
E1n(xp)Gv (r2)dxp = Gv (r j )[a〈Ej〉 + f1], (C2)

where

f1 = ik sin(θ j )
∫ a/2

−a/2
xp[E1(xp) + n(xp)]dxp (C3)

is the corresponding correction term. Consider that the ex-
pected distribution of noise to this term is 0. Also, expand
E1(xp) to first order,

E1n(xp) ≈ E1(xpj ) + (xp − xpj )E
′
1(xpj ), (C4)

and we find

f1 ≈ 1
12 [ik sin(θ j )]a

3E ′
1(xpj ), (C5)

where E ′
1(xpj ) is the slope of the incident field at xpj . This

term represents the contribution of oblique incidence to the
diffraction.
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