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Transfer of information through waveguides near an exceptional point
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The propagation of light in a pair of waveguides (WGs) with a complex index of refraction is studied, when
the WG parameters are adjusted in such a way as to bring the system extremely close to an exceptional point (EP)
while slightly breaking PT symmetry. We find that this breaking of PT symmetry does not affect the structure
of the output signals, although the corresponding propagation constants become slightly complex. Only for
sufficiently strong breaking of the PT symmetry the signal is enhanced or suppressed in a substantial manner.
Moreover, due to the EP it is impossible to tap light into another WG and thus read the transmitted signal without
destroying completely the nodal structure and changing dramatically the intensity of the signal.
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I. INTRODUCTION

Non-Hermitian physical systems have attracted consider-
able attention during the last decade due to their unconven-
tional behavior induced by the so-called exceptional points
(EPs). See, for example, the review of Heiss on the physics of
EPs and references therein [1]. Literally hundreds of papers
were published in most leading scientific journals on the role
of EPs in diverse quantum, optical, and mechanical systems.
An impact of this topical concept is documented by the num-
ber of recent review papers [2–5] and outlooks [6–8].

In the present article, we focus on highlighting the role
of EPs in slightly curved waveguides (WGs) with a slightly
broken PT symmetry. PT -symmetry breaking occurs here
due to the fact that the index of refraction, n(x, z), is set up
to vary along the propagation axis z, so as to bring the WGs
continuously from the standard Hermitian operational regime
towards the EP condition and back. To our knowledge, such
a WG setup has not been studied before in the literature.
We show that an EP does not affect the transfer of optical
information through straight WGs. However, the EP has an
enormously large effect whenever the originally straight WGs
are bent to have the usual structure that allows tapping light
from one WG into another WG (as plotted in Fig. 1 below; see
also Fig. 2 of Ref. [9] and Fig. 1 of Ref. [10]). We demonstrate
that two extreme situations are possible, depending upon the
direction of the bending and on the type of the propagated
mode. Either the power of the propagated light grows expo-
nentially (and might burn the WGs), or the power of the light
at the exit completely vanishes.

PT -symmetric WGs were studied for the first time by
Makris et al. [11] and by Klaiman et al. [12]. Subsequent
studies of the subject include Refs. [13–20]. It was shown in
Ref. [12] that it is possible to produce a straight gain-and-loss
WG in which the propagation constants of all modes are real,
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as long as the strength parameter of the imaginary index of
refraction, α, is smaller than a critical value. At this critical
value, αEP, two modes coalesce to form an EP. Theoreti-
cal argument of Refs. [11,12] then motivated the milestone
experiment published one decade ago [13] that has opened
the field of PT symmetry in optics. For α > αEP, complex
propagation constants are obtained (see, for example, Fig. 5(b)
in the review article [21]).

The subsequent structure of the paper is as follows: In
Sec. II, we will formulate the problem mathematically and
describe the used computational algorithm. In Sec. III, we
introduce our basic WG setup (shown in Fig. 1). In Sec. IV A,
we will present the obtained numerically exact results corre-
sponding to straight WGs which possess remarkable physical
features due to gradual variation of the index of refraction
along the light propagation axis (Figs. 2–6). In Sec. IV B,
we will present the obtained numerically exact results cor-
responding to slightly bent WGs. Namely, in Fig. 7 we
demonstrate that bending affects exponentially the strength of
the output signal. The output power can either exponentially
grow (and it even might burn the WGs), or it can be exponen-
tially suppressed. Finally, we supply concluding remarks in
Sec. V. In addition, Appendix A provides a self-contained de-
scription of the used scattering formalism (which is properly
adapted to our studied situation when the index of refraction
is complex valued). Appendix B contains the additional plots
complementing the paper. We prefer to include these plots in
the form of an Appendix in order to make the overall structure
of our article more transparent for the readers.

II. MATHEMATICAL FORMULATION OF THE PROBLEM

The scalar Maxwell equation to be solved takes the form

[∂xx + ω2n2(x, z) + ∂zz]�(x, z) = 0. (1)

One starts with solving the z-adiabatic problem (where z rep-
resents a parameter rather than a dynamical coordinate), that

2469-9926/2021/103(3)/033518(13) 033518-1 ©2021 American Physical Society

https://orcid.org/0000-0003-1673-7501
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.103.033518&domain=pdf&date_stamp=2021-03-23
https://doi.org/10.1103/PhysRevA.103.033518


NIMROD MOISEYEV AND MILAN ŠINDELKA PHYSICAL REVIEW A 103, 033518 (2021)

FIG. 1. Two coupled waveguides (WGs) with a complex index
of refraction. The straight and bent arrangements are denoted re-
spectively by dashed and solid lines (these are two distinct WG
setups plotted in the same figure). An inset shows how an imaginary
part of the refraction index (responsible for gain and loss) varies
along the propagation axis z. Note that this imaginary part is set to
vanish at the entrance and exit from the WGs. For more details, see
Refs. [12,13,24].

is,

[∂xx + ω2n2(x, z)]φν (x, z) = β2
ν (z) φν (x, z). (2)

Here ν is a discrete index of the transverse electric (TE) modes
(discreteness arises due to the outgoing boundary conditions’
see Refs. [21,22] for details), and β2

ν (z) stands for the associ-
ated modal eigenvalue (formulation including the transverse
magnetic (TM) modes whose polarization is perpendicular
to TE modes goes along analogous lines). An appropriate
normalization is imposed (based upon the so-called c product;
see again Ref. [22]), such that

(φν |φν ′ )x = 〈φ∗
ν |φν ′ 〉x = δνν ′ (all z). (3)

Subsequently, one returns to Eq. (1), and expands �(x, z) in
the z-adiabatic basis set as follows:

�(x, z) =
∑

ν

Cν (z)φν (x, z), (4)

where

Cν (z) = (φν |�)x. (5)

[The usual adiabatic dynamical phase factor e+i
∫ z

0 βν (z′ ) dz′
is

implicitly embedded in the coefficients Cν (z).] This results in
a coupled-channel problem

∂zz �C(z) + A(z) ∂z �C(z) + B(z) �C(z) = �0, (6)

where by definition

Aνν ′ (z) = 2 (φν |∂zφν ′ )x, (7)

Bνν ′ (z) = (φν |∂zzφν ′ )x + δνν ′ β2
ν (z). (8)

The just outlined formulation converting Eq. (1) into an
equivalent Eq. (6) is broadly used in molecular physics
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FIG. 2. Results for the straight case and α(1000 μm) =
0.148 μm−1. An initial population of the ground (ν0 = 0) guided
mode. See the caption of Fig. 3 for an additional discussion.

and spectroscopy to study vibrational problems (see, e.g.,
Ref. [23] for details). Equation (6) needs to be solved for the
unknowns �C(z), while incorporating the appropriate scattering
boundary conditions as specified below.

At the entry and at the exit from our WGs (i.e., for
z → ±∞), the index of refraction approaches its limiting
z-independent profile n(x) = n∗(x). Correspondingly, the z-
adiabatic eigenproblem (2) yields z-independent solutions
φν (x) and βν . The nonadiabatic couplings (φν |∂zφν ′ )x and
(φν |∂zzφν ′ )x vanish; hence light propagates freely in each z-
adiabatic mode φν (x) for z → ±∞. Hence the only nontrivial
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physics (scattering phenomena) takes place in that section of
the WGs where n(x, z) changes appreciably with z and where
the PT symmetry is thus substantially broken. Accordingly,
we impose the appropriate scattering boundary conditions on
�(x, z → ±∞), as detailed in Appendix A.

The just mentioned scattering boundary conditions pro-
vide immediately the corresponding boundary conditions for
the sought particular solution �C(z) of Eq. (6). The resulting
boundary value problem (6) is solvable numerically on a grid
by using any standard finite difference method.

III. OUR WAVEGUIDE SETUP

The corresponding WG setup is plotted schematically in
Fig. 1 (for more details, see Refs. [12,13,24]). In all our nu-
merical simulations, we use the WGs of width W = 1.25 μm
and the mutual separation D = 1.25 μm, much as in Ref. [25].
The solid line of Fig. 1 marks a bent WG that is often used in
conventional integrated optical circuits (having real index of
refraction) to minimize loss of power. One has x[μm](z) =
R −

√
R2 − (z − 1000 μm)2, where R = 3554 μm is the ra-

dius of curvature measured from the center of the WGs.

IV. RESULTS AND DISCUSSION

A. Straight WGs

The considered refractive index profile is such that
n(x, z) = n∗(−x, z). A control parameter α(z) defines here the
gain and loss strength as Im[n] = ±α(z)/k with k = ω/c =
2 π/λ. At the entrance to the two coupled WGs and exit
from them, the index of refraction is real, α(0) = 0 = α(z =
2000 μm). When light propagates inside the WG, α(z) in-
creases gradually such that in the middle of the WGs it gets
a maximal value of α(1000 μm) ≡ α. The value of αEP =
0.150 μm−1 at which an EP is formed was found before in
Ref. [12]. Note that the strength of the imaginary index of
refraction is varied here along the propagation axis, whereas
in Ref. [12] and in the first experiment [13] (which has demon-
strated the concept of PT symmetry in optics) the index of
refraction is held fixed along z.

Figures 2 and 3 present our results obtained for α =
0.148 μm−1. What is plotted in Figs. 2 and 3 is the resulting
input-output signal as well as the signal in the middle of the
WG (z = 1000 μm). One may observe that the profile at the
output agrees exactly with the input profile; also the nodal
structure is extremely well preserved. On the other hand, in
the middle of the WG, the two plotted modal profiles possess
a large magnitude and look almost identical. This is a conse-
quence of proximity to the EP condition at z = 1000 μm. In
passing we note that the just illustrated near singular behavior
of the modes near the EP can be attributed to the previously
reported stopping of light in the EP-adjusted WGs [25]. While
the light slows down (stops) in the vicinity of (at) the EP, an
additional light comes into the EP region from the entrance
of the WGs, and thus the resulting light intensity is enhanced
(increases) indefinitely.

Next, Figs. 4 and 5 depict the outcome obtained for the
same WG setup as in Figs. 2 and 3 but for α = 0.14975 μm−1.
Due to an extreme proximity to the EP in the middle of
the WGs, the z = 1000 μm signal is strongly enhanced.
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FIG. 3. Results for the straight case and α(1000 μm) =
0.148 μm−1. An initial population of the first excited (ν0 = 1) guided
mode. Comparison with Fig. 2 shows that the z = 1000 μm profiles
for ν0 = 0 and ν0 = 1 look almost identical; this is a consequence of
proximity to the EP condition. On the other hand, the z = 2000 μm
output profiles for ν0 = 0 and ν0 = 1 differ dramatically, and practi-
cally coincide with their input counterparts.

Moreover, a nontrivial scattering takes place, resulting in
a pronounced reflection and affecting substantially also the
transmitted profiles. Note that the nodal structure is still quite
well preserved at the output, in spite of a substantial mixing
between the two involved z-adiabatic modes.

Figure 6 compares the two above considered cases
of α = 0.148 μm−1 and α = 0.14975 μm−1 by plot-
ting the z derivative of the PT -conserved charge Q(z) =
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FIG. 4. The same setup as in Fig. 2, but now for α =
0.14975 μm−1, extremely close to an EP. Nontrivial scattering takes
place here, including a pronounced reflection. Note that the nodal
structure is still quite well preserved at the output, in spite of a
substantial mixing between the two involved z-adiabatic modes.

∫ +∞
−∞ �∗(−x, z) �(+x, z) dx. As a matter of fact, d

dz Q(z) = 0
if and only if the PT symmetry is preserved at a given
location z [12]. An inspection of Fig. 6 reveals that the PT
symmetry of the problem is strongly violated for α = 0.14975
(even in the middle of the WGs); this is also associated with
the nontrivial scattering phenomena reported above.

To the best of our knowledge, the above reported behav-
ior of straight WGs has not been reported before. It follows
then that, even for α = 0.148 μm−1 (i.e., quite close to
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FIG. 5. The same setup as in Fig. 3, but now for α =
0.14975 μm−1, extremely close to an EP. See the caption of Fig. 4
for additional discussion.

αEP = 0.150 μm−1), information can be transferred through
our non-Hermitian straight WGs, while using the zero- and
one-node modes as logical gates, in exactly the same manner
as in Hermitian WGs. This holds in spite of passing near
an EP (where the two mentioned modes are almost linearly
dependent), and in spite of weakly breaking the PT symmetry
when approaching the EP.

B. Slightly bent WGs

In Fig. 7 we show another important result of the present
article. Namely, by slightly bending the WGs of Figs. 2 and 3
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FIG. 6. An examination of PT symmetry of the solution �(x, z)
corresponding to Figs. 2 and 3 and Figs. 4 and 5. The z derivative of
the PT -conserved charge Q(z) = ∫ +∞

−∞ �∗(−x, z) �(+x, z) dx van-
ishes if and only if the PT symmetry is preserved at a given location
z [12].

we induce a dramatic enhancement or suppression of the out-
put signal. We recall in this context that bending of the WGs is
equivalent to adding to n2(x, z) an extra linear term [26,27]. In
our case, this extra linear term is ζx with ζ = 2 neff/R. Here
neff = (2π )−1λ βEP, and βEP stands for the real propagation
constant in the middle of the WGs. The quantity R is the
already encountered radius of curvature measured from the
center of the WGs.
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FIG. 7. The output amplitude S(ζ ) = ∫ +∞
−∞ |�(x, z =

2000 μm)|2 dx calculated for different values of the bending
parameter ζ while holding α = 0.148 μm−1. One observes that S(ζ )
depends exponentially upon ζ , such that S(ζ ) ∼ e−ζ/ω for ν0 = 0
and S(ζ ) ∼ e+ζ/ω for ν0 = 1.

Most importantly, Fig. 7 demonstrates that the just de-
scribed slight bending affects very strongly the resulting
output signals. Namely, while both the shape and the nodal
structure remain unaffected, the magnitude is enhanced or
suppressed depending upon the direction of the bending. The
closer are the WG parameters adjusted to the EP condition,
the larger is the sensitivity of the output results with respect to
bending.

The observed strong sensitivity of the output information
with respect to bending can be understood as follows. Re-
call again that bending of the WGs is analogous to adding
an extra linear term (i.e., application of a static field) along
the x direction, perpendicular to the propagation direction z
[26,27]. In the Hermitian case, when the two WGs (equivalent
to two potential wells in quantum mechanics) are sufficiently
far apart, such a static field mixes the two nearly degener-
ate field modes ν0 = 0 and ν0 = 1, and forces each of the
modes to be localized inside just a single WG branch (i.e.,
in a single potential well for an equivalent quantum mechan-
ical problem) [28,29]. The propagation constants remain real
valued. In our non-Hermitian case, the mixing of the two
involved modes breaks the PT symmetry of the two coupled
WGs. The corresponding propagation constants become then
slightly complex, and therefore enhance or suppress the signal
accordingly, exactly as plotted in Fig. 7.

The above pursued discussion of bent WGs can be sup-
ported by the following explicit mathematical arguments. As
pointed out already, bending the WGs means perturbing the z-
adiabatic modes by action of an extra linear term ζx (with ζ ∼
1/R) [26,27]. Assume first that the WG parameters are chosen
to be far from the EP. The standard perturbation method shows
then that the modal eigenvalues, βν (z), are slightly changed by
bending into

βζ
ν (z) = βν (z) + ζ (φν |x|φν )x + O(ζ 2) . (9)

Here the modal function φν (x, z) is almost real valued far from
the EP. Thus the correction term (φν |x|φν )x = 〈φ∗

ν |x|φν〉x is
almost real valued also. Assume now that the WG parameters
are chosen to be close to (or even at) the EP. In that case,
one needs use a nonstandard perturbation theory (resulting in
the so-called Puiseux series expansion; see Ref. [22]), which
gives

β
ζ
±(z) = βEP ±

√
(ζEP − ζ ) (φEP|x|φEP)x + O(ζ )

= βEP ± i
√

ζ (φEP|x|φEP)x + O(ζ ), (10)

where βEP is real, and ζEP = 0 is a branch point where a transi-
tion from real to complex modal eigenvalues is obtained. [The
quantity (φEP|x|φEP)x is generally complex, since the modal
function φEP(x, z) is complex valued and self-orthogonal.]
Comparison between the two cases (9) and (10) shows im-
mediately that the effect of bending is by far much larger in
the EP situation, first because

√
ζ � ζ (ζ small), and second

because the resulting perturbation correction is complex in
Eq. (10). This leads to the corresponding enhancement or
suppression of the propagated signal, as described by the
associated exponential term e+i

∫ z
0 βζ

ν (z′ ) dz′
. Indeed, the men-

tioned term e+i
∫ z

0 βζ
ν (z′ ) dz′

diverges to +∞ for increasing z
when Imβζ

ν (z) < 0, and falls off to zero when Imβζ
ν (z) > 0.
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V. CONCLUDING REMARKS

We have studied propagation of light in a pair of non-
Hermitian WGs whose parameters are close to an EP. We have
shown that information can be transferred through such non-
Hermitian straight WGs, while using the zero- and one-node
modes as logical gates. The signal is transferred here exactly
in the same manner as in the usual Hermitian WGs, in spite
of passing near an EP where the two mentioned modes are
almost linearly dependent, and in spite of weakly breaking the
PT symmetry when approaching the EP.

Furthermore, we have investigated sensitivity of our non-
Hermitian WGs with respect to bending. It was shown that a
slight bending (which might not be avoided in experiments)
does not change much the nodal structure of the transferred
optical signal. However, the transferred information is expo-
nentially sensitive to the strength of bending, and this has a
dramatic amplification or suppression effect on the output. If
so, then the transfer of optical information in our proposed
WGs setup is protected from tapping light into another ex-
ternally attached WG [9,10], since this requires a significant
bending (that allows the leakage of the transmitted informa-
tion). A similar argument is expected to hold also in the case
of any other disturbance (like, e.g., a point defect) which one
may create as to extract the transmitted information out of the
WGs.

In summary, the non-Hermitian WGs considered in the
present paper behave qualitatively differently than ordinary
Hermitian or PT -symmetric WGs without an EP. The just
presented findings can be demonstrated experimentally by
using, e.g., the setup described in Ref. [13], and open the
ability of secure transfer of an uncoded information through
optical WGs. Our results are further illustrated by additional
plots given in Appendix B.
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APPENDIX A: TRANSMISSION AND REFLECTION OF
LIGHT IN OPTICAL WAVEGUIDES WITH A COMPLEX

REFRACTION INDEX

1. Basic scattering theory for complex n(x, z)

Propagation of light in our studied optical WGs is de-
scribed by the wave equation (1) of the main text. Here n(x, z)
stands for a given prescribed index of refraction, such that

lim
z→±∞ n(x, z) = ñ(x). (A1)

The solution �(x, z) of Eq. (1) is required to be bounded for
all (x, z) and vanishing for x → ±∞. Moreover, �(x, z) must
satisfy appropriate scattering boundary conditions imposed at
z → ±∞, as detailed below.

In the asymptotic region of z → ±∞, Eq. (1) reduces to

(∂xx + ω2 ñ2(x) + ∂zz ) �(x, z) = 0. (A2)

The problem thus becomes separable in coordinates x and z.
Stated mathematically, our sought solution �(x, z) can be for
z → ±∞ expressed in the form

�(x, z → ±∞)

=
∑

ν

A±
ν φν (x)

e+iβνz

√
2 βν

+ B±
ν φν (x)

e−iβν z

√
2 βν

, (A3)

with the involved symbols explained as follows. Entities φν (x)
and βν are defined by an eigenvalue problem

(∂xx + ω2 ñ2(x)) φν (x) = β2
ν φν (x),

φν (x → ±∞) = 0. (A4)

Here ν stands for a discrete label of the eigenstates. We restrict
our considerations to guided modes only (β2

ν > 0). Entities
A±

ν and B±
ν represent as yet arbitrary coefficients.

Considerations of the previous paragraph enable us to im-
pose now the scattering boundary conditions on �(x, z →
±∞). Namely, we require having

�(x, z → −∞)

= φν0 (x)
e+iβν0 z√

2 βν0

+
∑

ν

Rν φν (x)
e−iβνz

√
2 βν

(A5)

and

�(x, z → +∞) =
∑

ν

Tν φν (x)
e+iβν z

√
2 βν

, (A6)

where ν0 is prescribed, and Tν and Rν are as yet unknown
coefficients to be found. The physical meaning of the just
imposed boundary conditions is the following: The term

φν0 (x)
e+iβν0 z√

2 βν0

(A7)

represents an incoming wave sent into the waveguide. We
assume that the incoming signal populates only a single mode
ν0. The term

∑
ν

Tν φν (x)
e+iβνz

√
2 βν

(A8)

represents the transmitted wave coming out of the waveguide
in the forward direction. The Tν’s stand for the associated
transmission coefficients. The term∑

ν

Rν φν (x)
e−iβνz

√
2 βν

(A9)

represents the reflected wave coming out of the waveguide
in the backward direction. The Rν’s stand for the associated
reflection coefficients. One can see that we are dealing here
with multichannel scattering phenomena analogous to those
of quantum mechanics.

Our task is now to construct explicitly the solution �(x, z)
of the wave equation (1) supplemented by the boundary con-
ditions (A5) and (A6). This can be accomplished by taking
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advantage of an ingenuous trick of Ref. [31]: One resolves
first a collection of auxiliary problems

(∂xx + ω2 n2(x, z) + ∂zz ) � (ν)(x, z) = 0, (A10)

� (ν)(x, z → +∞) = φν (x)
e+iβν z

√
2 βν

. (A11)

The solution � (ν)(x, z) of Eqs. (A10) and (A11) is well
defined and unique. Its asymptotic behavior at z → −∞ is
described by the formula

� (ν)(x, z → −∞)

=
∑
ν ′

Fν ′ν φν ′ (x)
e+iβν′ z
√

2 βν ′
+ Gν ′ν φν ′ (x)

e−iβν′ z
√

2 βν ′
, (A12)

where F = [Fν ′ν] and G = [Gν ′ν] are certain well-defined
matrices. Subsequently, one constructs the desired solution
�(x, z) of our problem (1) and Eqs. (A5) and (A6) by taking
a linear combination

�(x, z) =
∑

ν

cν � (ν)(x, z). (A13)

The pertinent coefficients c = [cν] are fixed in such a way as
to fulfill boundary condition (A5), meaning that

F c = f (ν0 ), (A14)

where the column vector f (ν0 ) possesses zero components ev-
erywhere except for the ν0th component (which equals unity).
Correspondingly

c = F−1 f (ν0 ), (A15)

and this yields in turn

t ≡ [Tν] = c, (A16)

r ≡ [Rν] = G c = GF−1 f (ν0 ). (A17)

The desired solution �(x, z) of our problem (1) and Eqs. (A5)
and (A6) has thus just been built.

2. Probability conservation in non-Hermitian scattering:
The case of general n(x, z)

Let us return to Eq. (1). Assume that the index of refraction
n(x, z) is generally complex valued. If so, then the studied
problem is non-Hermitian, and the appropriate non-Hermitian
probability conservation law needs to be established by using
the formalism of the mutually associated left and right solu-
tions �L(x, z) and �R(x, z) of Eq. (1). A general account of
the left-right formalism is given, e.g., in Ref. [22].

The entities �L(x, z) and �R(x, z) are defined by the fol-
lowing boundary value problems:

(∂xx + ω2 n2(x, z) + ∂zz ) �R(x, z) = 0, (A18)

(∂xx + ω2 n2(x, z) + ∂zz ) �L(x, z) = 0, (A19)

where

�R(x, z → −∞)

= φν0 (x)
e+iβν0 z√

2 βν0

+
∑

ν

R(R)
ν φν (x)

e−iβν z

√
2 βν

, (A20)

�R(x, z → +∞) =
∑

ν

T (R)
ν φν (x)

e+iβν z

√
2 βν

, (A21)

and

�L(x, z → −∞)

= φν0 (x)
e−iβν0 z√

2 βν0

+
∑

ν

R(L)
ν φν (x)

e+iβνz

√
2 βν

, (A22)

�L(x, z → +∞) =
∑

ν

T (L)
ν φν (x)

e−iβν z

√
2 βν

. (A23)

Note that, for real-valued n(x, z), we have �L(x, z) =
�∗

R(x, z). On the other hand, for generally complex n(x, z),
the entity �L(x, z) is generally different from �∗

R(x, z).
Define the corresponding Wronskian

W (z)

=
∫ +∞

−∞
dx �L(x, z)i∂z �R(x, z) − �R(x, z)i∂z �L(x, z).

(A24)

This is a generally complex-valued entity. Importantly, W (z)
is actually z independent, since

∂z W (z)

=
∫ +∞

−∞
dx�L(x, z) i ∂zz �R(x, z) − �R(x, z) i ∂zz �L(x, z)

=
∫ +∞

−∞
dx

×�L(x, z) i (−∂xx − ω2 n2(x, z)) �R(x, z)

−�R(x, z) i (−∂xx − ω2 n2(x, z)) �L(x, z)

= (−i)
∫ +∞

−∞
dx

×�L(x, z) ∂xx �R(x, z) − �R(x, z) ∂xx �L(x, z) = 0,

(A25)

as follows using integration by parts. Thus W (z) is an entity
which remains constant along the z direction. In passing we
note that our just given proof of ∂z W (z) = 0 has not exploited
at all any boundary conditions imposed on �R,L(x, z).

In practice, we calculate �R,L (x, z) using the method of
adiabatic expansion [see Eq. (4) of the main text], such that

�R,L(x, z) =
∑

ν

CR,L
ν (z)φν (x, z). (A26)

Here φν (x, z) are generally complex-valued entities defined by
an eigenproblem

(∂xx + ω2 n2(x, z)) φν (x, z) = β2
ν (z) φν (x, z),

φν (x → ±∞) = 0 (A27)

[see Eq. (2) of the main text and the accompanying discus-
sion]. Recall that the φν’s are orthonormalized with respect to
the c product [22],

(φν |φν ′ )x =
∫ +∞

−∞
φν (x, z)(φν ′ (x, z)dx = δνν ′ . (A28)
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FIG. 8. Function α(z) determining the imaginary part of the re-
fraction index, such that Imn(x, z) = α(z)/k where k = 2π/λ. Note
that α(z) is almost constant around z = 1000 μm where the EP is
approached.

After plugging Eq. (A26) into Eq. (A24) one finds that

W (z)

=
∑

ν

(
CL

ν (z)i∂zC
R
ν (z) − CR

ν (z)i∂zC
L
ν (z)

)
+

∑
νν ′

×(
CL

ν (z)CR
ν ′ (z)i (φν |∂zφν ′ )x − CR

ν (z)CL
ν ′ (z)i(φν |∂zφν ′ )x

)
=

∑
ν

(
CL

ν (z)i∂zC
R
ν (z) − CR

ν (z)i∂zC
L
ν (z)

)
+

∑
νν ′

CL
ν (z)CR

ν ′ (z)2i(φν |∂zφν ′ )x. (A29)

Formula (A29) is suitable for a practical numerical calculation
of W (z). One may evaluate W (z) along the z direction, and
check whether it remains constant. This is a strong test of our
numerical calculations.

The above discussed Wronskian provides a key leading
towards the sought non-Hermitian law of probability conser-
vation. Namely, direct calculation yields

W (z → +∞) = −
∑

ν

T (L)
ν T (R)

ν (A30)

and

W (z → −∞) = −1 +
∑

ν

R(L)
ν R(R)

ν . (A31)

There are some extra z-dependent oscillating terms appearing
in W (z → −∞), yet these are granted to vanish since W (z)
has been demonstrated to be z independent. Thus altogether∑

ν

T (L)
ν T (R)

ν +
∑

ν

R(L)
ν R(R)

ν = 1, (A32)

which is valid in the most general non-Hermitian case. This
is the sought law of non-Hermitian probability conservation.

-5x10-7
 0

 5x10-7
 1x10-6

 1.5x10-6
 2x10-6

 2.5x10-6
 3x10-6

 3.5x10-6
 4x10-6

 0  500  1000  1500  2000

α=0.148 μm-1

A
νν

’(z
) 

 (
μm

-1
)

z (μm)

 Re A00(z)
 Im A00(z)

-5x10-7
 0

 5x10-7
 1x10-6

 1.5x10-6
 2x10-6

 2.5x10-6
 3x10-6

 3.5x10-6
 4x10-6

 0  500  1000  1500  2000

α=0.148 μm-1

A
νν

’(z
) 

 (
μm

-1
)

z (μm)

 Re A11(z)
 Im A11(z)

-0.01
-0.008
-0.006
-0.004
-0.002

 0
 0.002
 0.004
 0.006
 0.008
 0.01

 0  500  1000  1500  2000

α=0.148 μm-1

A
νν

’(z
) 

 (
μm

-1
)

z (μm)

 Re A01(z)
 Im A01(z)

-0.01
-0.008
-0.006
-0.004
-0.002

 0
 0.002
 0.004
 0.006
 0.008

 0.01

 0  500  1000  1500  2000

α=0.148 μm-1

A
νν

’(z
) 

 (
μm

-1
)

z (μm)

 Re A10(z)
 Im A10(z)

FIG. 9. The matrix A(z) defined by Eq. (7) of the main text.
Results obtained for the case of straight WGs and α(1000 μm) =
0.148 μm−1.
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FIG. 10. The matrix B(z) defined by Eq. (8) of the main text.
Results obtained for the case of straight WGs and α(1000 μm) =
0.148 μm−1.
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FIG. 11. The coefficients Cν (z) corresponding to the adiabatic
basis set expansion (4) of the main text and to the solution plotted in
Figs. 2 and 3 of the main text. One can see that, for α(1000 μm) =
0.148 μm−1, the mixing between the ν = 0 and ν = 1 z-adiabatic
modes is rather small, in spite of proximity of the studied system to
the EP (αEP = 0.150 μm−1).

Equation (A32) is very useful also for checking the accuracy
of our numerical calculations.
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FIG. 13. The matrix A(z) defined by Eq. (7) of the main text.
Results obtained for the case of straight WGs and α(1000 μm) =
0.14975 μm−1.
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FIG. 14. The matrix B(z) defined by Eq. (8) of the main text.
Results obtained for the case of straight WGs and α(1000 μm) =
0.14975 μm−1.
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FIG. 15. The coefficients Cν (z) corresponding to the adiabatic
basis set expansion (4) of the main text and to the solution plotted in
Figs. 4 and 5 of the main text. One can see that, for α(1000 μm) =
0.14975 μm−1, the mixing between the ν = 0 and ν = 1 z-adiabatic
modes becomes very substantial due to an extremely close proximity
of the studied system to the EP (αEP = 0.150 μm−1).

3. Probability conservation in non-Hermitian scattering: The
case of n(+x, z) = n∗(−x, z)

From now on, let us consider a more special arrangement
when n(x, z) is complex valued but possesses the property

n∗(−x, z) = n(x, z), (A33)

much as in Fig. 1 of the main text. Validity of Eq. (A33)
is a necessary but not sufficient condition for having PT
symmetry (real modal eigenvalues). A moment of reflection
reveals that Eq. (A33) implies having

�L(x, z) = �∗
R(−x, z), (A34)

and

T (L)
ν = T (R)∗

ν ℘ν, R(L)
ν = R(R)∗

ν ℘ν, (A35)

where ℘ν stands for parity of the mode φν (x), such that
φν (−x) = ℘ν φν (x). In particular, ℘0 = +1 and ℘1 = −1. The
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FIG. 16. This plot complements Fig. 7 of the main text and
shows the effect of bending on the output signal for the case of
α = 0.148 μm−1. The upper panel corresponds to ν0 = 0, the lower
panel to ν0 = 1. The strength of the bending (both magnitude and
orientation) is characterized by the parameter ξ = ω2ζ as explained
in the main text. Whenever the ν0 = 0 signal is enhanced, the ν0 = 1
signal is correspondingly suppressed, and vice versa.

conservation law (A32) is now converted into∑
ν

℘ν

∣∣T (R)
ν

∣∣2 +
∑

ν

℘ν

∣∣∣R(R)
ν

∣∣2 = 1. (A36)

Moreover, the Wronskian (A24) becomes equal to

W (z) =
∫ +∞

−∞
dx

×�∗
R(−x, z)i∂z �R(x, z)

−�R(x, z)i∂z�
∗
R(−x, z). (A37)

This z-independent quantity is manifestly real valued.
The z-adiabatic modes obviously possess the symmetry

property

φν (x, z) = ℘νφ
∗
ν (−x, z). (A38)

Hence we may write

Cν (z) = CR
ν (z) = ℘νCL∗

ν (z). (A39)
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The Wronskian formula (A29) becomes then

W (z) =
∑

ν

℘ν (C∗
ν (z) i ∂z Cν (z) − Cν (z) i ∂z C∗

ν (z))

+
∑
νν ′

(℘ν C∗
ν (z)Cν ′ (z) i (φν |∂zφν ′ )x

−℘ν ′ Cν (z)C∗
ν ′ (z) i (φν |∂zφν ′ )x )

=
∑

ν

℘ν (C∗
ν (z) i ∂z Cν (z) − Cν (z) i ∂z C∗

ν (z))

+
∑
νν ′

℘ν C∗
ν (z)Cν ′ (z) 2 i (φν |∂zφν ′ )x. (A40)

The last line of Eq. (A40) is granted to be real valued, since

∑
νν ′

℘ν C∗
ν (z)Cν ′ (z) 2 i (φν |∂zφν ′ )x

=
∑
νν ′

℘ν ′ C∗
ν ′ (z)Cν (z) 2 i (φν ′ |∂zφν )x

=
∑
νν ′

℘ν ′ C∗
ν ′ (z)Cν (z) 2 (−i) (φν |∂zφν ′ )x

=
∑
νν ′

C∗
ν ′ (z)Cν (z) 2 (−i)℘ν (φν |∂zφν ′ )∗x

=
(∑

νν ′
℘ν C∗

ν (z)Cν ′ (z) 2 i (φν |∂zφν ′ )x

)∗
. (A41)

We have taken advantage here of the following identity:

(φν |∂zφν ′ )x =
∫ +∞

−∞
dx φν (x, z)∂z φν ′ (x, z)

=
∫ +∞

−∞
dx φν (−x, z)∂z φν ′ (−x, z)

= ℘ν ℘ν ′

∫ +∞

−∞
dx φ∗

ν (x, z)∂z φ∗
ν ′ (x, z)

= ℘ν ℘ν ′ (φν |∂zφν ′ )∗x . (A42)

Equations (A36), (A37), and (A40) have proven to be very
useful for checking the accuracy of our numerical calculations
presented in the main text.

Finally, for the sake of completeness and clarity, let us
supply one little addition: In the Hermitian and symmetric
case we have both n(x, z) = n∗(x, z) and n(x, z) = n∗(x, z).
Correspondingly, we encounter two distinct conserved (z-
independent) Wronskian entities: The first is the one derived

in Appendix A 2, which reads as

W (z) =
∫ +∞

−∞
dx

×�∗
R(+x, z) i ∂z �R(x, z)

−�R(x, z) i ∂z �∗
R(+x, z), (A43)

or equivalently

W (z) =
∑

ν

(C∗
ν (z) i ∂z Cν (z) − Cν (z) i ∂z C∗

ν (z))

+
∑
νν ′

C∗
ν (z)Cν ′ (z) 2 i (φν |∂zφν ′ )x. (A44)

The second is the Wronskian entity (A37) and Eq. (A40)
derived above.

APPENDIX B: SOME ADDITIONAL PLOTS

Here we supply some additional plots complementing the
results presented in the main text.

1. Straight WGs, α(1000 μm) = 0.148 μm−1

[αEP(1000 μm) = 0.150 μm−1]

Figure 8 shows the used profile of α(z). Figures 9 and
10 show that the off-diagonal nonadiabatic couplings [cf.
Eqs. (7) and (8) of the main paper] are almost zero around
z = 1000 μm where the EP is approached. Therefore, one
may expect that the PT symmetry will be well preserved
around z = 1000 μm in close vicinity of the EP. Such an ex-
pectation is confirmed by the upper panel of Fig. 6 of the main
paper. Figure 11 shows the calculated expansion coefficients
Cν (z) entering into Eq. (4) of the main text.

2. Straight WGs, α(1000 μm) = 0.14975 μm−1 [closer to
αEP(1000 μm) = 0.150 μm−1]

Figure 12 shows the used profile of α(z). Figures 13 and 14
show that the off-diagonal nonadiabatic couplings [cf. Eqs. (7)
and (8) of the main paper] are reduced around z = 1000 μm
where the EP is approached. Therefore, one may expect that
the PT symmetry will be approximately preserved around
z = 1000 μm in close vicinity of the EP. Such an expectation
is confirmed by the lower panel of Fig. 6 of the main paper.
Figure 15 shows the calculated expansion coefficients Cν (z)
entering into Eq. (4) of the main text.

3. Bent WGs, α(1000 μm) = 0.148 μm−1

Figure 16 shows that a slight bending of the studied WGs
(which cannot be avoided in experiments) would affect only
marginally the output signal. On the other hand, a larger
bending (performed possibly by an eavesdropper in order
to allow for tapping light) leads to a dramatic (exponential)
enhancement or suppression of the output signal.
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