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Phase-sensitive modulation instability in asymmetric coupled quantum wells
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This paper presents a theoretical investigation of the phase-sensitive modulation instability of a continuous or
quasicontinuous probe beam in an asymmetric coupled quantum well (ACQW) system facilitated by electromag-
netically induced transparency. The dispersive properties of the probe beam can be controlled not only by the
Rabi frequency of the control field but by the relative phase between them as well. The ACQW system exhibits
large Kerr and quintic nonlinearities which could be controlled by controlling the relative phase of the probe
beam. The probe beam is modulation unstable, and the gain and the bandwidth of unstable frequencies could
be controlled by the phase of the probe beam. The gain of the instability disappears at certain values of phase
and at certain other values of the phase the gain of the instability, and the bandwidth of unstable frequencies
could be made large. Similarly, at certain values of the probe phase, the interplay of fourth-order dispersion
and nonlinearity leads to the creation of discrete sidebands of the modulation instability. Both the fourth-order
dispersion and quintic nonlinearity considerably reduces the growth and bandwidth of unstable frequencies.
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I. INTRODUCTION

During past two decades, the phenomena of quantum
coherence and interference effects in semiconductor nanos-
tructures have received tremendous attention due to important
applications in telecommunications and signal processing
[1–4]. Some of these quantum coherent processes are lasing
without inversion [5], coherent population trapping [6], elec-
tromagnetically induced transparency (EIT) [7,8], giant Kerr
nonlinearity [9], four-wave mixing (FWM) [4], optical bista-
bility [10,11], subluminal and superluminal light propagation
[12–14], soliton generation [13], etc., have been investigated
both theoretically as well as experimentally. The EIT phe-
nomenon is the result of interference between quantum states
that is facilitated by external electromagnetic fields leading
to the transparency in an initially opaque medium [8]. The
EIT can be used to manipulate group velocity of light pulses
in dispersive media and enhance nonlinear optical processes
[15,16]. It can minimize linear and two-photon absorp-
tion, and can enhance Kerr as well as quintic nonlinearities
[7,9,17–19].

Optical materials exhibiting large nonlinearity have re-
ceived considerable attention due to potential applications
since large nonlinearities ensure operation of the device at
low light power [9,19,20–22]. The existence of large Kerr
nonlinearity in semiconductor quantum wells (SQWs) under
the regime of EIT has been known for some time [23–25],
while the existence of enhanced quintic nonlinearity has
been predicted very recently [14,26–28]. Materials that ex-
hibit significant quintic nonlinearity play an important role
in quantum information processing such as quantum mem-
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ory of light [3,4], three-qubit quantum processing [1,29],
generation of correlated photon pairs [4], etc. Furthermore,
quintic nonlinearity reduces the phase noise, thereby improv-
ing the performance of interferometry [30], and consequently,
it can improve the high-precession measurements [31]. Ma-
terials exhibiting significant quintic nonlinearity can produce
new phenomena such as liquid light condensates [32], stable
two-dimensional (2D) soliton formation, as well as bistable
solitons [33]. Recently it was realized that the phase of the in-
teracting optical fields in a close-loop interaction scheme may
provide necessary control over several interesting properties
in semiconductor quantum well and atomic systems [34–39].
For example, electron population, absorption and dispersion
properties, electromagnetically induced transparency [34,35],
subluminal and superluminal light propagation [36], optical
bistability (OB) and multistability [37], Kerr nonlinearity [38]
in semiconductor quantum wells, as well as subwavelength
atom localization [39] in atomic media can be controlled by
suitably choosing the phase of the interacting optical beams
or pulses. Borgohain et al. [25] have examined modulation
instability in a three-level symmetric quantum well system by
incorporating higher-order nonlinearity and dispersion. Roles
of quintic nonlinearity and the effect of control detuning were
examined. However, the role of the phase of the probe beam
in determining the dynamics of the modulation instability
(MI) has failed to draw desired attention. Recently it was
realized that the phase of the interacting optical fields may
play important role in determining the dynamics of several
important phenomena; therefore it shall be pertinent to know
the role of phase of the probe beam in the dynamics of MI. In
view of the above, the primary aim of the present investigation
is to explore the role of the phase of the probe beam in
determining its nonlinear dynamics, in particular, modulation
instability. Thus we plan to examine the phase control MI of a
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FIG. 1. (a) Schematic diagram of a single-period asymmetric double quantum well which consists of two thick GaAs wells having thickness
70 and 61 Å, respectively, and separated by a 20-Å thin Al0.33Ga0.77As barrier. (b) Excitation scheme.

continuous or quasicontinuous optical probe beam in an asym-
metric coupled quantum well (ACQW) system facilitated by
electromagnetically induced transparency.

The rest of the article is organized as follows: In Sec. II
we present the theoretical model of an array of asymmet-
ric coupled quantum wells interacting with one probe and
three control laser fields. In this section we also derive the
analytical expressions of susceptibilities of the probe beam.
The properties of phase-controlled linear, Kerr, and quintic
nonlinearities are examined in Sec. III. In Sec. IV we de-
rive the phase-induced dispersion parameters and nonlinear
Schrödinger equation of the propagating probe. In Sec. V we
investigate the MI of the continuous or quasicontinuous probe
field and examine how the growth rate of the instability is
affected by the variation of relative phase between the applied
fields. Finally, an abridged conclusion is included in Sec. VI.

II. THEORETICAL MODEL AND GOVERNING
EQUATIONS

To begin with, we consider an array of 50 modulation-
doped ACQWs, which is grown on a semi-insulating GaAs
substrate. A single period of the coupled well and the cor-
responding excitation scheme are depicted in Fig. 1. Each
period of the ACQW consists of two thick GaAs wells of
thickness 61 and 70 Å, respectively, separated by a 20-Å
thin Al0.33Ga0.77As barrier. Each coupled quantum well pe-
riod is separated by a barrier of Al0.33Ga0.77As of thickness
950 Å, and the structure is very much similar to that re-
ported in Ref. [40]. The two wells in the asymmetric coupled
quantum wells (ACQW) are strongly coupled due to the
small separation between them, and hence, electronic wave

functions of the coupled system overlap. These wave func-
tions and corresponding energy levels depend on the width,
depth, as well as separation between these wells. The elec-
tronic energy levels and corresponding wave functions could
be computed by solving self-consistently the Schrödinger and
Poisson’s equations in the envelope function formalism [41].
The ACQW system considered in the present study has been
intensely used to investigate propagation of solitons and other
phenomena [42,43]. Since the computed energy levels are
available elsewhere [40], we pick up the values, and inter-
ested readers are referred to Ref. [40]. Note that since the
thickness of the quantum wells determines the value of the
energy levels, the susceptibilities of the probe field which shall
be derived in this section shall not explicitly depend on the
thickness of the quantum wells. The energy values of differ-
ent subbands of the coupled quantum wells are 66, 81, 201,
and 250 meV, respectively. In the present investigation we
assume that the doping concentration in the coupled quantum
well is low such that electron-electron interaction produces
negligible influence. As a result, many-body effects arising
from electron-electron interactions are not considered in the
present investigation. The quantum well system interacts with
one continuous wave (CW) or quasicontinuous probe field of
amplitude Ep with angular frequency ωp, and three control
laser fields of amplitudes Ec, Ed , and Eb with angular fre-
quencies ωc, ωd , and ωb, respectively. The probe field acts
on the transition from |1〉 to |4〉, while the three control fields
act on the transitions from |2〉 to |3〉, |3〉 to |4〉, and |2〉 to
|4〉, respectively. In the present system all the lights propagate
along the z axis within the ACQW sample. We consider a
transverse magnetic polarized probe, since the dipole operator
for intersubband transitions is polarized along the growth axis.
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Electric fields which are interacting inside the ACQW can be
written as

�E =
∑

j=p,c,d,b

ê jE je
i(k j z−ω j t ) + c.c., (1)

where êp, êc, êd , and êb are, respectively, the unit vectors
along the polarization direction of the probe and control fields.
Here k j ( j = p, c, d, b) is the corresponding wave vector of
the applied field, and the subscripts p, c, d, and b signify the
probe, first, second, and third control field, respectively, while
the term c.c. signifies the complex conjugate. By adopting the
rotating wave approximation (RWA) [44], the semiclassical
Hamiltonian of the coupled quantum well system can be writ-
ten as

Ĥ = Ĥ0 + Ĥint, (2)

where

Ĥ0 =
4∑

j=1

Ej | j〉〈 j|, (3)

and

Ĥint = −h̄[�pei(kpz−ωpt )|4〉〈1| + �cei(kcz−ωct )|3〉〈2|
+�d ei(kd z−ωd t )|4〉〈3|
+�bei(kbz−ωbt )|4〉〈2| + H.c.]. (4)

Here Ĥ0 represents the unperturbed Hamiltonian of the sys-
tem in the absence of applied fields, and Ĥint signifies
the interaction of the electrons of the coupled quantum
well with the electromagnetic fields. Due to the close-loop
configuration, the properties of the semiconductor quan-
tum well (QW) are quite sensitive to the phases of the
applied fields; therefore the phases of the corresponding
electromagnetic fields have been appropriately taken into
account in the intersubband transition (ISBT) Rabi frequen-
cies of the probe (�p) and control fields (�c,�d ,�b),
which are defined as �p = |�p|e−iφp = μ̂41 êpEp

h̄ e−iφp , �c =
|�c|e−iφc = μ̂32 êcEc

h̄ e−iφc , �d = |�d |e−iφd = μ̂43 êd Ed

h̄ e−iφd , and
�b = |�b|e−iφb = μ̂42 êbEb

h̄ e−iφb , respectively, whereas μ̂mn =
e〈m|ẑ|n〉 is the electronic dipole moment matrix element
between the transition |m〉 ⇔ |n〉, and the term φm(m =
p, c, d, b) signifies the absolute phase of the applied field Ej .
To investigate the light-matter interaction phenomena that are
occurring in the ACQW system, we follow the density matrix
formalism, which begins with the following equation:

∂ρi j

∂t
= − i

h̄

∑
m

(Ĥimρm j − ρimĤm j )

− 1

2
(�imρm j + ρim�m j ), (5)

where ρi j is the ijth matrix element. The first and second terms
on the right side signify the coherent evolution of the state
and radiative decay process within the system, respectively.
Here, the electron population decay rate from a given energy
level is incorporated in the equation through decay matrix �,
which is defined as �im = 〈i|�|m〉 = γiδim, where δim is the
Kronecker δ. Adopting the procedure of Refs. [34,45], we

obtain following Maxwell’s Bloch equations for the density
matrix elements:

∂ρ̃11

∂t
= i�∗

pρ̃41 − i�pρ̃14, (6)

∂ρ̃22

∂t
= i�∗

c ρ̃32 − i�cρ̃23 + i�∗
bρ̃42 − i�bρ̃24 − γ2ρ̃22, (7)

∂ρ̃33

∂t
= i�cρ̃23 − i�∗

c ρ̃32 + i�∗
d ρ̃43 − i�d ρ̃34 − γ3ρ̃33, (8)

∂ρ̃44

∂t
= i�pρ̃14 − i�∗

pρ̃41 + i�bρ̃24 − i�∗
bρ̃42

+ i�d ρ̃34 − i�∗
d ρ̃43 − γ4ρ̃44, (9)

∂ρ̃21

∂t
= i

(

p − 
b + i

γ21

2

)
ρ̃21 + i�∗

cei�ρ̃31

+ i�∗
bρ̃41 − i�pρ̃24, (10)

∂ρ̃31

∂t
= i

(

p − 
d + i

γ31

2

)
ρ̃31 + i�ce−i�ρ̃21

+ i�∗
d ρ̃41 − i�pρ̃34, (11)

∂ρ̃41

∂t
= i

(

p + i

γ41

2

)
ρ̃41 + i�p(ρ̃11 − ρ̃44)

+ i�bρ̃21 + i�d ρ̃31, (12)

∂ρ̃32

∂t
= i

(

c + i

γ32

2

)
ρ̃32 + i�c(ρ̃22 − ρ̃33)

+ i�∗
d ei�ρ̃42 − i�bei�ρ̃34, (13)

∂ρ̃42

∂t
= i

(

b + i

γ42

2

)
ρ̃42 + i�b(ρ̃22 − ρ̃44)

+ i�d e−i�ρ̃32 − i�ce−i�ρ̃43, (14)

∂ρ̃43

∂t
= i

(

d + i

γ43

2

)
ρ̃43 + i�d (ρ̃33 − ρ̃44)

+ i�pρ̃13 + i�bei�ρ̃23 − i�∗
cei�ρ̃42, (15)

where 
 j ( j = p, c, d, b) is the detuning frequency of
the corresponding applied field, which is defined as

p = ωp − E4−E1

h̄ , 
c = ωc − E3−E2
h̄ , 
d = ωd − E4−E3

h̄ , and

b = ωb − E4−E2

h̄ , respectively. The population conservation

condition
∑4

i=1 ρ̃ii = 1, together with ρm j = ρ∗
jm(m, j =

1, 2, 3, 4; m �= j), supplements the above equation. In order to
derive the above equations, we have defined the relative phase
of the applied fields in a close loop as � = φc + φd − φb,
which is an important parameter that modifies the linear
as well as nonlinear properties of the QW nanostructure.
In addition, for the sake of simplicity, we assume that the
angular frequency of the applied fields must satisfy the
condition ωc + ωd = ωb, i.e., 
c + 
d = 
b, which reduces
to kc + kd = kb. Moreover, we have used the following
transformations: ρ21 = ρ̃21ei(φb−φp)e−i(kbz−ωbt )ei(kpz−ωpt ), ρ31 =
ρ̃31ei(φd −φp)e−i(kd z−ωd t )ei(kpz−ωpt ), ρ41 = ρ̃41e−iφpei(kpz−ωpt ),
ρ42 = ρ̃42e−iφbei(kbz−ωbt ), ρ32 = ρ̃32e−iφc ei(kcz−ωct ), and
ρ43 = ρ̃43e−iφd ei(kd z−ωd t ). In semiconductor QWs, γ jl = γ j +
γ

d ph
jl ( j = 2 − 4) signifies the total population decay rate from

the energy subband | j〉, which consists of a population decay
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rate due to inelastic LO phonon emission at low temperature
and a dephasing term (γ d ph

j ) originates not only from electron-
electron and electron-phonon scattering, but also from
inhomogeneous broadening due to scattering on interfaces.

In the steady state we assume that all the electrons will ini-
tially occupy the ground state, i.e., ρ̃11 = 1, ρ̃ii(i = 2, 3, 4) =
0 at t = 0. Under the limit of a weak probe field approx-
imation [12], we may also assume that the probe field is
sufficiently weak in comparison to the control fields [i.e.,
�p � �c,�d , and �b]; under this assumption, the carrier in
the ground state is not too much depleted [i.e., ρ̃11 	 1, ρ̃ii 	
0 (i = 2, 3, 4), at t > 0]. Therefore we introduce the pertur-
bative expansion ρ̃i j = ∑

k ρ̃
(k)
i j , where ρ̃

(k)
i j is the kth-order

perturbation of ρ̃i j . Within the regime of adiabatic formulation
[44], it can be easily shown that ρ̃

(0)
i j = δi j (i �= j), ρ̃

(0)
ii (i =

2, 3, 4) 	 0, and ρ̃ j1 	 ρ̃
(1)
j1 ρ̃

(0)
11 ( j = 2, 3, 4). Note that ρ̃ii is

the population density matrix element, while ρ̃i j is the op-
tical response to the probe field for the transition |i〉 → | j〉.
Therefore the population conservation condition is valid for
the zeroth order in the perturbative expansion and not valid
for higher-order terms, i.e., ρ̃

(0)
11 + ρ̃

(0)
22 + ρ̃

(0)
33 + ρ̃

(0)
44 = 1. By

virtue of above approximations, Eqs. (10)–(12) reduce to

∂ρ̃
(1)
21

∂t
= i

(

p − 
b + i

γ21

2

)
ρ̃

(1)
21 + i�∗

cei�ρ̃
(1)
31

+ i�∗
bρ̃

(1)
41 − i�pρ̃

(0)
24 , (16)

∂ρ̃
(1)
31

∂t
= i

(

p − 
d + i

γ31

2

)
ρ̃

(1)
31 + i�ce−i�ρ̃

(1)
21

+ i�∗
d ρ̃

(1)
41 − i�pρ̃

(0)
34 , (17)

∂ρ̃
(1)
41

∂t
= i

(

p + i

γ41

2

)
ρ̃

(1)
41 + i�p

(
ρ̃

(0)
11 − ρ̃

(0)
44

)
+ i�bρ̃

(1)
21 + i�d ρ̃

(1)
41 . (18)

Considering only a linear response of the probe field (�p) and
introducing the Fourier transformation of Eqs. (16)–(18), we
immediately obtain(

ω + 
p − 
b + i
γ21

2

)
β

(1)
21 + �∗

cei�β
(1)
31 + �∗

bβ
(1)
41 = 0,

(19)

�ce−i�β
(1)
21 +

(
ω + 
p − 
d + i

γ31

2

)
β

(1)
31 + �∗

dβ
(1)
41 = 0,

(20)

�bβ
(1)
21 + �dβ

(1)
31 +

(
ω + 
p + i

γ41

2

)
β

(1)
41 = −p, (21)

where β
(1)
i j and p are, respectively, the Fourier transfor-

mation of ρ̃
(1)
i j and �p, and ω is the Fourier transformation

variable. After some simple algebra, it is easy to obtain the fol-
lowing relations from Eqs. (19)–(21): β

(1)
21 (ω) = p

D2(ω,�)
D(ω,�) ,

β
(1)
31 (ω) = p

D3(ω,�)
D(ω,�) , and β

(1)
41 (ω) = −p

Dp(ω)
D(ω,�) . By virtue

of the inverse Fourier transformation of β
(1)
21 (ω), β

(1)
31 (ω),

and β
(1)
41 (ω) we immediately obtain ρ̃

(1)
21 (0) = �p

D2(0,�)
D(0,�) ,

ρ̃
(1)
31 (0) = �p

D3(0,�)
D(0,�) , ρ̃

(1)
41 (0) = −�p

Dp(0)
D(0,�) ; where Dp(ω) =

{X (ω)Y (ω) − |�c|2}, D2(ω,�) = {Y (ω)|�b| − |�c�d |ei�},
D3(ω,�) = {X (ω)|�d | − |�c�b|e−i�}, D(ω,�) =
{X (ω)Y (ω)Z (ω) − |�c|2Z (ω) − |�d |2X (ω) − |�b|2Y (ω) +
2�c�d�b cos(�)}, X (ω) = (ω + 
p − 
b + i γ21

2 ), Y (ω) =
(ω + 
p − 
d + i γ31

2 ), and Z (ω) = (ω + 
p + i γ41

2 ).
Before proceeding to incorporate terms arising due to non-

linear polarization, we note an early work of nonlinear optical
process using EIT by Harris et al. [46]. They have shown that
by applying a coupling field between a metastable state and
the upper state of an allowed transition to ground, one may
obtain a resonantly enhanced third-order susceptibility while
at the same time inducing transparency of the media. The sus-
ceptibility was calculated under the assumption that the Rabi
frequency of the probe as well as the effective Rabi frequency
of the signal between the ground and the metastable state are
very small in comparison to the Rabi frequency of the control
field. Under the above condition, the third-order nonlinear
susceptibility was found to contain a term which is nonlinear
just in the control beam. On the other hand, the nonlinear
process, such as soliton propagation in atomic systems and
quantum wells, has been extensively investigated by several
workers using the probability amplitude as well as the density
matrix formalism [47–49], where the nonlinear susceptibility
has been derived using a slightly different procedure. In the
present investigation, the probe beam is small, and to incorpo-
rate nonlinear polarization we adopt the procedure [47–49]
that has been widely used in the investigation of nonlinear
processes in atomic systems as well as in quantum wells.
For simplicity we assume that the probe field is propagating
along the z direction, and under the slowly varying envelope
approximation (SVEA) [12], the equation for the propagating
probe can be obtained from Maxwell’s wave equations, which
can be written as

∂�p

∂z
+ 1

c

∂�p

∂t
= iκρ̃41, (22)

where κ = N |μ41|2
2h̄ε0c ωp; c, ε0, h̄ are, respectively, the speed of the

light in vacuum, the permittivity in free space, and Planck’s
constant. Here N is the carrier concentration in the semicon-
ductor QW. Following [49] the density matrix element ρ̃41 is
evaluated (derivation shown in Appendix) as

ρ̃41 	 {
1 − (∣∣ρ̃ (1)

21

∣∣2 + ∣∣ρ̃ (1)
31

∣∣2 + ∣∣ρ̃ (1)
41

∣∣2)
+ (∣∣ρ̃ (1)

21

∣∣2 + ∣∣ρ̃ (1)
31

∣∣2 + ∣∣ρ̃ (1)
41

∣∣2)2}
ρ̃

(1)
41 . (23)

Note that only those terms which lead to the Kerr nonlinearity
have been retained and other higher-order terms neglected in
Refs. [47–49], whereas, though small, we have retained terms
up to |ρ̃ (1)

j1 |4, j = 2, 3, 4. The reason for retaining such small
terms is based on the fact that occasionally even a small non-
linear term may be responsible for rich nonlinear dynamics.
In view of the above, Eq. (22) is now rewritten as

∂�p

∂z
+ 1

c

∂�p

∂t
= iκρ̃

(1)
41 + (NLT )ρ̃ (1)

41 , (24)

where

NLT = −iκ
{(∣∣ρ̃ (1)

21

∣∣2 + ∣∣ρ̃ (1)
31

∣∣2 + ∣∣ρ̃ (1)
41

∣∣2)
− (∣∣ρ̃ (1)

21

∣∣2 + ∣∣ρ̃ (1)
31

∣∣2 + ∣∣ρ̃ (1)
41

∣∣2)2}
. (25)
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FIG. 2. Variations of the (a) imaginary and (b) real parts of linear susceptibility as a function of normalized probe detuning for different
values of the Rabi frequency of the second control field (�d ), while the Rabi frequency of the first control field is fixed (�c = 2γ ′

41) and Rabi
frequency of the third control field is switched off, i.e., �b = 0. Other relevant parameters are 
d = 
b = 0, normalizing factor γ ′

41 = 1 ps−1,
and relative phase � of the applied fields is zero.

The total induced polarization �P at the probe frequency ωp is
�P(ωp) = ε0χp(ωp,�)|Ep|, where the susceptibility χp(ωp,�)
at the probe frequency ωp can be written as the sum of linear
and nonlinear terms as

χp(ωp,�) = χ (1)(�) + χ (3)(�)|Ep|2 + χ (5)(�)|Ep|4 + · · · .

(26)

Solving Eqs. (22)–(26), the analytical expressions of linear
and higher-order nonlinear susceptibilities are obtained as

χ (1)(�) = −2cκ

ωp

Dp(0)

D(0,�)
, (27)

χ (3)(�) = 2cκ

ωp

|μ41|2
h̄2

Dp(0)

D(0,�)

×
{ |Dp(0)|2 + |D2(0,�)|2 + |D3(0,�)|2

|D(0,�)|2
}
,

(28)

χ (5)(�) = −2cκ

ωp

|μ41|4
h̄4

Dp(0)

D(0,�)

×
{ |Dp(0)|2 + |D2(0,�)|2 + |D3(0,�)|2

|D(0,�)|2
}2

.

(29)

In the next section we analyze the properties of linear and
nonlinear susceptibilities of the probe under the regime of EIT
window in the QW system.

III. PROPERTIES OF PHASE CONTROL LINEAR AND
NONLINEAR SUSCEPTIBILITIES

In this section we examine the behavior of the phase-
dependent linear, Kerr, and quintic nonlinearities exhibited
by the multiple ACQW system at the probe frequency. The
value of several parameters related to the ACQW [40,50]
are as follows: N = 1020 m−3, μ41 = 15.68 × 10−29 C m,
ωp = 2.84 × 1014 s−1, thus κ = 1.24 × 1015 m−1 s−1. The
decay rates are γ21 = 1.51 × 1011 s−1, γ31 = γ41 = 3.03 ×
1012 s−1, and the value of the normalization factor is chosen to

be γ ′
41 = 1 ps−1. Before proceeding further, we first examine

the properties of the linear susceptibility (χ (1)) of the probe
beam in absence of the relative phase (�) of the applied fields.
In Fig. 2(a) we have depicted the variations of the imagi-
nary part of the linear susceptibility with normalized probe
detuning (
p/γ

′
41) for different values of the Rabi frequency

(�d ) of the second control beam, while the Rabi frequency
of the first control field is kept constant at �c/γ

′
41 = 2 and

the third control field (�b) is switched off. From Fig. 2(a),
under the resonance (i.e., 
d = 
b = 0) it is evident that
in absence of the second control beam (i.e., �d = 0), the
probe beam experiences large absorption at around 
p = 0.
With the increase in the value of the Rabi frequency of the
second control, the width of the absorption peak gradually
reduces while side peaks emerges on both sides of the main
peak. Consequently, transmission windows are created at the
off-resonant positions (
p �= 0) of the probe beam. The width
of these two side windows increases with the increase in the
value of �d/γ

′
41. Therefore, though the second control beam

is not sufficient to create a transparency window at the probe
resonance, secondary transmission windows can be created
at the off-resonant positions. Figure 2(b) demonstrates the
variation of the real part of χ (1) versus normalized probe
detuning (
p/γ

′
41) for different values of the Rabi frequency

(�d ) of the second control beam, while the Rabi frequency
of the first control field is kept constant at �c/γ

′
41 = 2, and

the third control field (�b) is switched off. As shown in
Fig. 2(b), with the increase in the value of the second control
beam �d from 0 to 5γ ′

41, the slope of Re(χ (1) ) changes, and
since this slope determines the group velocity of the beam,
consequently, the group velocity can be controlled with the
second control beam.

We now proceed to investigate the influence of the cyclic
field (�b) on the behavior of linear susceptibility. In Fig. 3
we have demonstrated the variations of the imaginary and
real parts of χ (1) with normalized probe detuning 
p/γ

′
41

for different values of the Rabi frequency of the third con-
trol beam (�b), while values of the other two control fields
have been kept constant at �c/γ

′
41 = 2 and �d/γ

′
41 = 3,

respectively. From Fig. 3(a) we notice that with the appli-
cation of finite value of the third control field, for example,
for �b/γ

′
41 = 2, a transparency window is formed which
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FIG. 3. Variations of the (a) imaginary and (b) real parts of linear susceptibility as a function of normalized probe detuning for different
values of the Rabi frequency of the third control field (�b), while the Rabi frequencies of the first and second control fields are fixed, i.e.,
�c = 2γ ′

41 and �d = 3γ ′
41. Other relevant parameters are 
d = 
b = 0, normalizing factor γ ′

41 = 1 ps−1, and relative phase � of the applied
fields is zero.

broadens further with increasing value of �b. The suppression
of the absorption of the probe beam is the manifestation of
the quantum destructive interference effect which is governed
by strong controlling beam, and the physical principle behind
this is well understood and can be found elsewhere [7,8].
Meanwhile, from Fig. 3(b) we find that within the EIT window
the slope of the real (χ (1)) changes from negative to positive
in the domain −4 � 
p/γ

′
41 � 2 for �b/γ

′
41 = 2, and similar

behavior is observed for the case of �b/γ
′
41 = 4.

To this end we now examine the role of the relative phase �

on the behavior of χ (1). The variations of real and imaginary
parts of χ (1) with the probe detuning 
p/γ

′
41 for different val-

ues of relative phase have been demonstrated in Fig. 4. From
figure it is evident that with the chosen values of Rabi fre-
quencies and detuning a transmission window with negligible
absorption over a broad detuning 
p appears when the phase
� = 0. With the increase in the value of �, the imaginary part
of the refractive index does not change significantly within
the probe detuning −2.5γ ′

41 � 
p � 2.5γ ′
41, except for the

appearance of a small hump near 
p = 0. Therefore, without
much loss of accuracy, we can safely conclude the variation of
� does not change the absorption property of the probe appre-
ciably. However, a careful examination shows that the real part
of the refractive index is susceptible to significant change due
to the variation of �. Therefore dispersive properties of the
probe beam can be controlled not only by the Rabi frequency
of the control field but by the relative phase between them as
well.

We now examine the effects of relative phase � on the
properties of Kerr nonlinearity. The variations of the Kerr non-
linearity with probe detuning for different values of relative
phase � have been depicted in Fig. 5, where the curves are
drawn setting the control fields at resonance condition i.e.,

d = 
b = 0. These figures clearly indicate that the value
of the Kerr nonlinearity can be varied by varying the relative
phase as long as probe detuning |
p/γ

′
41| > 2.5. For example,

if we set 
p/γ
′
41 = 5, then at � = 0, χ (3) possesses a positive

value; however, at � = π
2 the value of χ (3) becomes negative,

and at � = π the value still remains negative with decreasing
magnitude and at � = 3π

2 the negative value further increase
in magnitude. Therefore, with an appropriate choice of detun-
ings of the control fields, the value and sign of the nonlinearity

can be controlled by �. To have a better appreciation of the
influence of � on χ (3), we demonstrate the variations of χ (3)

with � at three different selected values of probe detuning

p in Fig. 6. This figure clearly indicates that the magnitude
and sign of the third-order susceptibility can be tuned as per
requirement by suitably selecting the value of �. The sign
of χ (3) and the type of dispersion are a crucial factor for the
creation of bright and dark solitons; therefore an appropriate
condition for formation of solitons can be created by a suitable
choice of �.

To this end, we now proceed to examine the behavior of
the fifth-order nonlinearity χ (5), which is popularly known as
quintic nonlinearity. In order to investigate the influence of the
relative phase on χ (5), we have demonstrated the variations
of Re(χ (5)) with normalized detuning 
p/γ

′
41 for different

values of � from 0 to 2π , while the Rabi frequencies of the
three control fields have been kept constant at �c/γ

′
41 = 2,

�d/γ
′
41 = 3, and �b/γ

′
41 = 4, respectively. From Fig. 7 it is

amply clear that by varying the relative phase �, it is possible
to control the amplitude of the fifth-order susceptibility. Note
that usually the sign of Re(χ (5) ) is opposite to χ (3). This
behavior remains unaffected for all values of �. To have an
idea about the magnitude of the quintic nonlinearity, we take
a typical point in Fig. 7(d) and estimate its value. For exam-
ple, at 
p/γ

′
41 = 0.75, �c/γ

′
41 = 2, �d/γ

′
41 = 3, �b/γ

′
41 = 4,


d = 
b = 0, and � = 3π
2 , the typical value of χ (5) is found

to be −0.35 × 10−26 m4/V4, which is quite large in compari-
son to other nonlinear media. For example, a brief comparison
is given in Table I, which shows that the present value of
quintic nonlinearity is at least 12 orders larger in comparison
to that of SiO2 optical fibers. However, this value of the
quintic nonlinearity could be controlled by suitably choosing

TABLE I. Comparison of the typical values of quintic nonlinear-
ities in quantum wells and other media.

Materials χ (5) in m4/V4 References

As2Se3 glass −1.29 × 10−39 [51]
SiO2 Fiber −4.2 × 10−38 [52]
GaAs/Al0.33Ga0.67As −0.35 × 10−26 Present work
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FIG. 4. Variations of the imaginary (solid line) and real parts (dashed-dot line) of linear susceptibility as a function of normalized probe
detuning for different values of the relative phase �, while the Rabi frequencies of three control fields have been fixed at �c = 2γ ′

41, �d = 3γ ′
41,

and �b = 4γ ′
41, respectively. Here the value of detunings are 
d = 
b = 0, and the normalizing factor γ ′

41 = 1 ps−1.

the Rabi frequencies of the control beam and relative phase
factor between them.

IV. NONLINEAR SCHRÖDINGER EQUATION
OF THE PROBE BEAM

In order to study the modulation instability of the probe
beam, which could be either a continuous wave (CW) or a
quasicontinuous wave (QCW), we need to derive an appro-
priate nonlinear Schrödinger equation. Therefore, as a first
step, we perform the Fourier transformation of the linearized
version of Eq. (24) to obtain

∂p

∂z
− iβ(ω,�)p = 0, (30)

where the phase-dependent propagation constant of
the probe field is defined as β(ω,�) = ω

c − κ
Dp(ω)

D(ω,�) .

The analytical solution of Eq. (30) can be readily
obtained as

p(z, ω) = p(0, ω)eiβ(ω,�)z. (31)

The propagation constant β(ω,�) in Eq. (31) is a function of
frequency ω and phase �. It is the linear dispersion relation
of the probe field with central angular frequency ωp. The
propagation constant β(ω,�) can be expanded into a rapidly
converging power series around the central frequency ωp of
the probe field, which corresponds to ω = 0. Note that an
identical procedure has been widely used in the literature
[12,13,20]:

β(ω,�) = β(0,�) + β1(0,�)ω + β2(0,�)
ω2

2

+β3(0,�)
ω3

6
+ β4(0,�)

ω4

24
+ · · · , (32)
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FIG. 5. Variations of the real part of the third-order susceptibility [(χ (3) )] as a function of normalized probe detuning (
p) for different
values of the relative phase �, while the Rabi frequencies of three control fields have been fixed at �c = 2γ ′

41, �d = 3γ ′
41, and �b = 4γ ′

41,
respectively. Here the values of detunings are 
d = 
b = 0, and the normalizing factor γ ′

41 = 1 ps−1.

where βn(ω,�) = dnβ(ω,�)
dωn |ω=0 and β(0,�) = φ + i α

2 , and φ

and α are the phase shift per unit length and linear absorption
of the probe beam, respectively. β1(0,�) is related to the
group velocity vg[= Re(1/β1(0,�))] of the probe field, and
β2(0,�) represents the group velocity dispersion (GVD) of
the probe. Likewise, β3(0,�) and β4(0,�) are respectively
the third- and fourth-order dispersion terms. The mathemati-
cal expressions of β(0,�), β1(0,�), β2(0,�), β3(0,�), and
β4(0,�) are as follows:

β(0,�) = −κ
Dp(0)

D(0,�)
, (33)

β1(0, φ) = 1

c
− κ

D12(0)

[D(0,�)]2
+ κ

Dp(0)D11(0)

[D(0,�)]2
, (34)

β2(0,�) = − 2κ

D(0,�)
+ 2κ

D12(0)D11(0)

[D(0,�)]2

+ κ
Dp(0)D21(0)

[D(0,�)]2
− κ

2Dp(0)[D11(0)]2

[D(0,�)]3
, (35)

β3(0,�) = 6κ
D11(0)

[D(0,�)]2
− 6κ

D12(0)[D11(0)]2

[D(0,�)]3

+ 3κ
D12(0)D21(0)

[D(0,�)]2
− 6κ

Dp(0)D21(0)D11(0)

[D(0,�)]3

+ 6κ
Dp(0)

[D(0,�)]2
+ 6κ

Dp(0)[D11(0)]3

[D(0,�)]4
, (36)
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FIG. 6. Variation of the real part of the third-order susceptibility
(χ (3) ) as a function of the relative phase � between the applied
fields for different values of the probe detuning (
p), while the Rabi
frequencies of the three control fields have been fixed at �c = 2γ ′

41,
�d = 3γ ′

41, and �b = 4γ ′
41, respectively. Here the values of detun-

ings are 
d = 
b = 0, and the normalizing factor γ ′
41 = 1 ps−1.

β4(0,�) = −24κ
[D11(0)]2

[D(0,�)]3
− 48κ

Dp(0)D11(0)

[D(0,�)]3

+ 24κ
D12(0)[D11(0)]3

[D(0,�)]4
+ 24κ

D12(0)

[D(0,�)]2

− 6κ
D12(0)D11(0)D21(0)

[D(0,�)]3
− 6κ

[D11(0)]4

[D(0,�)]5

+ 12κ
D21(0)

[D(0,�)]2
− 6κ

Dp(0)[D21(0)]2

[D(0,�)]3

+ 36κ
Dp(0)D21(0)[D11(0)]2

[D(0,�)]4
, (37)

FIG. 7. Variations of the real part of the fifth-order susceptibility Re(χ (5) ) as a function of normalized probe detuning (
p) for different
values of the relative phase �, while the Rabi frequencies of three control fields have been fixed at �c = 2γ ′

41, �d = 3γ ′
41, and �b = 4γ ′

41,
respectively. Here the values of detunings are 
d = 
b = 0, and the normalizing factor γ ′

41 = 1 ps−1.
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FIG. 8. Variations of (a) second-order (β2), (b) third-order (β3), and (c) fourth-order (β4) dispersion parameters as a function of relative
phase between the applied fields for three different values of probe detuning (
p/γ

′
41), while the Rabi frequencies of three control fields

have been fixed at �c = 2γ ′
41, �d = 3γ ′

41, and �b = 4γ ′
41, respectively. Here the values of detunings are 
d = 0.5γ ′

41, 
b = 0.25γ ′
41, and

normalizing factor γ ′
41 = 1 ps−1.

where

D11(ω) = {Y (ω)Z (ω) + Z (ω)X (ω) + X (ω)Y (ω)

− |�c|2 − |�d |2 − |�b|2}, (38)

D12(ω) =
(

2ω + 2
p − 
d − 
b + i
γ21

2
+ i

γ31

2

)
, (39)

and

D21(ω) = (6ω + 6
p − 2
b − 2
d + iγ21iγ31 + iγ41).

(40)

To examine the influence of the relative phase � on dispersion
properties, we have demonstrated the variations of β2, β3, and
β4 with the relative phase � for three different values of the
probe detuning in Fig. 8. Note that all three dispersion terms

change with the change in the values of �. It should be pointed
out that Eq. (30) is obtained using only the linear response
of the probe beam by ignoring nonlinearity associated with
this system. In order to investigate nonlinear evolution of the
probe beam, we need to incorporate appropriate nonlinear
terms in the propagation equation. These higher-order nonlin-
ear terms are responsible for various interesting phenomena,
such as self-phase modulation (SPM), cross-phase modulation
(XPM), modulation instability (MI), soliton propagation, su-
percontinuum generation (SC), etc. Therefore, to proceed fur-
ther, we take the nonlinear version of Eq. (30) and rewrite it as

∂p

∂z
− iβ(ω,�)p − (NLT )ρ̃ (1)

41 = 0. (41)

By virtue of Eqs. (25), (31), and (32), the above equation
reduces to

{
∂

∂z
+ iβ1(0,�)ω − iβ2(0,�)

ω2

2
+ iβ3(0,�)

ω3

6
+ β4(0,�)

ω4

24

}
p(0, ω)eiβ(0,�)z

= iκ
Dp(ω)

D(ω,�)
p(0, ω)eiβ(0,�)z

{(∣∣ρ̃ (1)
21

∣∣2 + ∣∣ρ̃ (1)
31

∣∣2 + ∣∣ρ̃ (1)
41

∣∣2
) − (∣∣ρ̃ (1)

21

∣∣2 + ∣∣ρ̃ (1)
31

∣∣2 + ∣∣ρ̃ (1)
41

∣∣2)2}
. (42)

Here we have taken terms up to ω4 in the expansion of β(ω,�). By virtue of the substitution of expressions of ρ̃
(1)
21 , ρ̃

(1)
31 , and

ρ̃
(1)
41 , and the inverse Fourier transformation of Eq. (42), we immediately obtain

i
∂�p

∂z
+ iβ1(0,�)

∂�p

∂t
− β2(0,�)

2

∂2�p

∂t2 − i
β3(0,�)

6

∂3�p

∂t3 + 1

24
β4(0,�)

∂4�p

∂t4 + ωph̄2

2c|μ41|2 χ (3)(�)|�p|2�pe−αz

+ ωph̄4

2c|μ41|4 χ (5)(�)|�p|4�pe−2αz = 0. (43)
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Introducing the moving frame ξ = z and T = t − zβ1(0,�), Eq. (43) can be recast in the following form:

i
∂A

∂ξ
− 1

2
β2(0,�)

∂2A

∂T 2 − i

6
β3(0,�)

∂3A

∂T 3 + 1

24
β4(0,�)

∂4A

∂T 4 + γ (�)|A|2Ae−αξ + δ(�)|A|4Ae−2αξ = 0, (44)

where A = h̄�p

μ41
( n0cε0S

2 )
1
2 is the normalized envelope of

the probe beam. γ (�) = ωp

n0c2ε0S χ (3)(�) and δ(�) =
2ωp

n2
0c3ε2

0 S2 χ
(5)(�) are respectively the phase-dependent Kerr and

quintic nonlinear coefficients. Here n0 and S are respectively
the linear refractive index and cross section area of the
probe beam. Equation (44) represents the modified form of
nonlinear Schrödinger equation which describes the evolution
of the CW or quasi-CW probe beam in coupled QW systems.
Since further investigation has been carried out within the EIT
window where the absorption of the probe beam is sufficiently
weak, i.e., α ≈ 0, therefore without loss of generality we can
set e−αξ ≈ e−2αξ ≈ 1.

V. MODULATION INSTABILITY OF THE PROBE BEAM

In this section we now proceed to investigate the modula-
tion instability of the CW or QCW probe field [25,53]. The
steady-state solution of Eq. (44) can be written as

A(ξ, T ) = √
P0ei{γ (�)P0+δ(�)P2

0 }ξ . (45)

To examine whether the continuous wave (CW) probe beam
is stable under small perturbation, we introduce a small per-
turbation in the following form:

A(ξ, T ) = {√P0 + a(ξ, T )}ei{γ (�)P0+δ(�)P2
0 }ξ , (46)

where |a(ξ, T )| � √
P0. Here

√
P0 and a(ξ, T ) are respec-

tively the amplitudes of the CW probe beam in the steady
state and small perturbation. Therefore the steady state be-
comes unstable if the perturbation grows exponentially. The
substitution of Eq. (46) in Eq. (44) and subsequent lineariza-
tion leads to the following equation for the perturbation
a(ξ, T ):

i
∂a

∂ξ
− β2(0,�)

2

∂2a

∂T 2 − i

6
β3(0,�)

∂3a

∂T 3 + 1

24
β4(0,�)

∂4a

∂T 4

+ {
γ (�)P0 + 2δ(�)P2

0

}
(a + a∗) = 0. (47)

We assume the following ansatz for the perturbation a(ξ, T ):

a(ξ, T ) = Cei(Kξ−�T ) + De−i(Kξ−�T ), (48)

where C and D represent the amplitude of small perturba-
tion; K and � are complex wave number and modulation
frequencies, respectively. The use of Eq. (48) in Eq. (47)
yields two homogeneous equations of C and D, which are as

follows:

C(−K + G) + {γ (�)P0 + 2δ(�)P2
0 }D = 0, (49){

γ (�)P0 + 2δ(�)P2
0

}
C + (K + G̃)D = 0, (50)

where G = [β2(0,�)�2

2 + β3(0,�)�3

6 + β4(0,�)�4

24 +
{γ (�)P0 + 2δ(�)P2

0 }] and G̃ = [β2(0,�)�2

2 − β3(0,�)�3

6 +
β4(0,�)�4

24 + {γ (�)P0 + 2δ(�)P2
0 }]. The nontrivial solution

of Eqs. (49) and (50) leads to the following dispersion
relation:

K = 1

6
β3(0,�)�3 ±

{{
β2(0,�)�2 + β4(0,�)

�4

24

}

× {
γ (�)P0 + 2δ(�)P2

0

} −
{
β2(0,�)

�2

2

+β4(0,�)
�4

24

}2
} 1

2

. (51)

The gain g(�) of the instability at perturbed frequency � is
obtained as

g(�) = 2Im(K ) = 2

{[
β2(0,�)�2 + β4(0,�)

�4

24

]

× [
γ (�)P0 + 2δ(�)P2

0

] −
[
β2(0,�)

�2

2

+β4(0,�)
�4

24

]2} 1
2

, (52)

where Im(K ) signifies the imaginary part of the wave number
K . The maximum gain of the instability is obtained at � =
�m, which turns out to be

�m = ±
[{

6

[{(
β2(0,�)

β4(0,�)

)2

+ 2

3

γ (�)P0 + 2δ(�)P2
0

β4(0,�)

}] 1
2

− 6
β2(0,�)

β4(0,�)

} 1
2
]
. (53)

We first examine the growth of the modulation instability in
the absence of the fourth-order dispersion, i.e., we set β4 = 0
in the beginning. For simplicity we fix the value of the Rabi
frequency of three control fields at �c = 2γ ′

41, �d = 3γ ′
41, and

�b = 4γ ′
41, respectively. The probe and control field detunings

are chosen as 
p = 0.75γ ′
41, 
d = 0.5γ ′

41, and 
b = 0.25γ ′
41.

In Fig. 9 we have demonstrated the variations of MI gain as
a function of perturbation frequency for different values of
relative phase �. The curves in the left panel represent MI dy-
namics in the absence of quintic nonlinearity, while the curves
in the right panel represent the MI dynamics in the presence
of quintic nonlinearity. One common characteristic of these
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FIG. 9. Variations of MI gain with the perturbed frequency and relative phase � for different values of pump peak power P0: (a) P0 =
50 mW, (b) P0 = 75 mW, and (c) P0 = 100 mW. In the left panel only Kerr nonlinearity is present, while in the right panels both Kerr and
quintic nonlinearities are present. Here in all the subplots β4 = 0, detuning frequencies are 
p = 0.75γ ′

41, 
d = 0.5γ ′
41, 
b = 0.25γ ′

41, and the
Rabi frequencies of three control fields have been fixed at �c = 2γ ′

41, �d = 3γ ′
41, and �b = 4γ ′

41, respectively.

curves is evident immediately, i.e., the incredible influences of
the relative phase on the gain of the instability. For example,
in the left panel of Fig. 9(a), the gain of the instability as well
as the bandwidth of unstable frequencies gradually decrease
with the increase in the value of relative phase � from zero to
π
2 , and the gain of the instability disappears at � = π

2 . How-
ever, the instability gain reappears for � > π

2 , and both the
instability gain and the bandwidth increase with the increase
in the value of � until it reaches a value π , beyond which once
again the gain and the bandwidth decrease with the increase in
� and finally disappear at � = 3π

2 . The gain of the instability
again reappears for � > 3π

2 . Both the instability gain and
the bandwidth of unstable frequencies vary periodically with
a period of � = 2π . An important feature of the instability
is that the instability could be completely suppressed by a
suitable choice of �. On the other hand, the system could
be made more susceptible to the modulation instability by an

appropriate choice of the value of phase �. For example, the
largest unstable frequency bandwidth is achievable at � = π .
Therefore � is an important parameter which could control
the growth of the instability. Another feature, which is usual in
optical systems, is the increase of the growth of the instability
as well as the bandwidth of unstable frequencies with the
increase in power of the probe beam when the instability is
driven by the Kerr nonlinearity alone.

We now examine the role of quintic nonlinearity on the
instability gain using the right panel of Fig. 9. The qualitative
behavior of the variation of instability gain and bandwidth of
unstable frequencies with � is similar to the previous case
of Kerr-driven instability. However, the variation of insta-
bility dynamics with power in the present case is different
due to the saturating nature of the quintic nonlinearity. The
quintic nonlinearity becomes appreciable only at high power.
For example, at a low power of P0 = 50 mW, the instability
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FIG. 10. Variations of MI gain with the perturbed frequency and relative phase � for different values of pump peak power P0: (a) P0 =
50 mW, (b) P0 = 75 mW, and (c) P0 = 100 mW. In the left panel only Kerr nonlinearity is present, while in the right panels both Kerr and
quintic nonlinearities are present. Here in all the subplots β4 �= 0, detuning frequencies are 
p = 0.75γ ′

41, 
d = 0.5γ ′
41, 
b = 0.25γ ′

41, and the
Rabi frequencies of three control fields have been fixed at �c = 2γ ′

41, �d = 3γ ′
41, and �b = 4γ ′

41, respectively.

dynamics is identical to that of Kerr-driven instability in terms
of quality and quantity. However, at a power of P0 = 100 mW,
though the qualitative behavior remains unaffected, the mag-
nitude of the growth and the bandwidth decrease appreciably
with the increase in power of the probe beam.

To this end we investigate the instability dynamics in the
presence of fourth-order dispersion β4. The variations of the
instability gain as a function of perturbed frequency and rela-
tive phase between electromagnetic fields for different values
of probe power are depicted in Fig. 10. The left and right panel
of the figure respectively represent the dynamics of the MI in
the absence and presence of quintic nonlinearity. The quali-
tative behavior of the growth of the instability is very similar
to the previous case as depicted in Fig. 9 and is explained in
the previous paragraph with two notable differences. The first
one is the reduction in bandwidth of unstable frequencies and
magnitude of the gain. The second one is more interesting,

the appearance of discrete sidebands at certain values of �. In
order to have a better appreciation of the growth dynamics, in
Fig. 11 we have displayed the variations of instability gain us-
ing the contour plots. Note that secondary discrete sidebands
appear as dots in all six subplots.

At this stage it shall be worthy to investigate the role of
probe detuning on the instability dynamics. Figure 12 illus-
trates the variations of MI gain as a function of the perturbed
frequency and relative phase for four different values of probe
detuning. Without any loss of generality, we ignore the quin-
tic nonlinearity and only consider finite β4. For illustration
of the effect of probe detuning on the instability, we have
taken four different values, i.e., (a) 
p

γ ′
41

= 0, (b) 
p

γ ′
41

= 0.25,

(c) 
p

γ ′
41

= 0.50, and (d) 
p

γ ′
41

= 0.75. From Fig. 12(a) it is ev-
ident that the structure of the growth dynamics is very rich
for zero probe detuning (
p/γ

′
41 = 0). Initially, at �/π = 0
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FIG. 11. Contour plots of MI gain with the perturbed frequency and relative phase � for different values of pump peak power P0: (a) P0 =
50 mW, (b) P0 = 75 mW, and (c) P0 = 100 mW. In the left panel only Kerr nonlinearity is present, while in the right panel both Kerr and
quintic nonlinearities are present. Here, in all the subplots β4 �= 0, detuning frequencies are 
p = 0.75γ ′

41, 
d = 0.5γ ′
41, 
b = 0.25γ ′

41, and
the Rabi frequencies of three control fields have been fixed at �c = 2γ ′

41, �d = 3γ ′
41, and �b = 4γ ′

41, respectively.

the unstable frequencies appear within � = 1–2 THz. With
the increase in the value of �, the unstable band of fre-
quencies gradually decreases and shifts towards lower values,
and finally the instability disappears near �/π = 0.5. The
instability resurfaces for �/π > 0.5, and one can notice the
occasional appearance of sideband spikes near �/π close to
0.6. The unstable band of frequencies increases with the value
of � from 0.6, and a discrete sideband appears when �/π is
close to 1. For values of �/π > 1, the discrete sideband ap-
pears and a band of unstable frequencies decreases for further
increase of �. Again, several sideband spikes appear when
the value of �/π is close to 1.5, and once again the instability
disappears near �/π = 1.5. We now shift our attention to the
instability growth for probe detuning (
p/γ

′
41 = 0.25). Three

important differences from the previous case could be noticed.
The first one, unlike the previous case, initially at �/π =

0 the unstable frequencies appear within � = 0–1.7 THz.
The second one is, overall, the bandwidth in the unstable
frequencies is smaller in comparison to the previous case. The
third one is the disappearance of sidebands near �/π = 1.
At a larger probe detuning of 
p/γ

′
41 = 0.5, the behavior of

the MI gain is identical to the case when 
p/γ
′
41 = 0.25.

A further increase in the value of 
p/γ
′
41 to 0.75, however,

reduces the bandwidth of the gain when 0 < �/π < 1.0 and
increases the bandwidth of the gain when 1 < �/π < 1.5.
In addition, several discrete sidebands in the region of 1.0 <

�/π < 2.0 disappear. Before closing, note the results of an
important investigation by Kang et al. [54] on light switching
at low light levels based on quantum interference in a four-
level atomic system. The experiment was done using cold Rb
atoms confined in a magneto-optical trap. They have demon-
strated the phase control interference between three-photon
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FIG. 12. Variations of the MI gain with the perturbed frequency and relative phase � for different values of normalized probe detuning
(
p/γ

′
41): (a) 
p/γ

′
41 = 0, (b) 
p/γ

′
41 = 0.25, (c) 
p/γ

′
41 = 0.50, and (d) 
p/γ

′
41 = 0.75. Here, in all the subplots β4 �= 0, δ = 0, detuning

frequencies are 
d = 0.5γ ′
41, 
b = 0.25γ ′

41, probe power is fixed at P0 = 75 mW, and the Rabi frequencies of three control fields have been
fixed at �c = 2γ ′

41, �d = 3γ ′
41, and �b = 4γ ′

41, respectively.

and one-photon excitation and the resulting phase switching
of light absorption and/or transmission at very low light
powers (<10−7 W). It was observed that one weak control
field can be used to control another weak probe field and vice
versa at ultralow light levels. The phase control interference
could be implemented near single-photon levels, and the four-
level system may be used as an absorptive quantum switch
which turns on and off single-probe photons by single-control
photons at different frequencies. On the other hand, though
the present ACQW also possesses four energy levels, the the-
oretical premise of the present study covers a different range
of phenomena. For example, Kang et al. did not observe the
modulation instability of the probe or the control beam in their
experiment, which was performed with the probe and control
beam power levels <10−7 W (the intensity ∼0.1 mW/cm2).
At this power level one would not expect modulation instabil-
ity since the threshold of this instability is much higher, which
is predicted in the present investigation.

VI. CONCLUSION

In summary, we have examined the phase-dependent dis-
persive and optical nonlinear properties of asymmetrically
coupled quantum well systems under the regime of electro-
magnetically induced transparency. It is shown that though
the relative phase � has marginal influence over the electro-
magnetically induced transparency window, it has significant
influence on the behavior of the real part of the linear sus-
ceptibility and, hence, dispersive properties of the system. In
addition, the system exhibits very large Kerr and quintic non-
linearities, which could be also controlled by controlling the

relative phase between the applied electromagnetic fields. We
have shown that a propagating continuous or quasicontinuous
probe undergoes modulation instability whose dynamics is
primarily governed by the relative phase between the applied
electromagnetic fields. The gain and bandwidth of unstable
frequencies of the MI could be controlled by the relative
phase. An important feature of the MI is that by a suitable
choice of the phase, the instability could be completely sup-
pressed; on the other hand, by appropriate choice of the value
of phase the system could be made more susceptible to the
modulation instability as well. Both the fourth-order disper-
sion and quintic nonlinearity considerably reduce the growth
and bandwidth of unstable frequencies. In addition, the fourth-
order dispersion plays an important role in the creation of
discrete sidebands.
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APPENDIX

The derivation of the nonlinear term is based on the method
adopted in Ref. [49]. By virtue of the normalization condition,
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the density matrix elements obey

Tr(ρ̃) = ρ̃11 + ρ̃22 + ρ̃33 + ρ̃44 = 1. (A1)

It is well known that the probability amplitude and density
matrix formalisms yield identical expressions of susceptibility
in any physical system. Therefore we define the density matrix
elements in terms of probability amplitudes [55] and write the
density matrix element ρ̃nm as

ρ̃nm = C∗
mCn, (A2)

where Cn is the probability amplitude of finding the electron
in the eigenstate |n >. By virtue of (A2), Eq. (A1) is rewritten
as

|C1|2 + |C2|2 + |C3|2 + |C4|2 = 1. (A3)

We use the approximations

ρ̃11 	 1 and ρ̃ii 	 0 (i = 2, 3, 4). (A4)

In view of (A2), ρ̃11 = |C1|2 and |C1|2 	 1, since ρ̃11 	 1.
We now introduce the perturbation expansion

ρ̃i j =
∑

k

ρ̃
(k)
i j = ρ̃

(0)
i j + ρ̃

(1)
i j + ρ̃

(2)
i j + · · · , (A5)

ρ̃
(0)
i j = 0 (i �= j), ρ̃

(0)
ii = 0 (i = 2, 3, 4), ρ̃11 	 ρ̃

(0)
11 	 1.

(A6)

Therefore the probe coherence term ρ̃41 can be written as

ρ̃41 	 ρ̃
(1)
41

(
1 	 ρ̃

(1)
41

)|C1|2, since |C1|2 	 1

ρ̃41 	 ρ̃
(1)
41 {1 − (|C2|2 + |C3|2 + |C4|2)},

	 ρ̃
(1)
41 {1 − (|C2|2 + |C3|2 + |C4|2)|C1|2},

	 ρ̃
(1)
41 [1 − (|C2|2 + |C3|2 + |C4|2){1 − (|C2|2 + |C3|2

+ |C4|2)}],
	 ρ̃

(1)
41 [1 − (|C2|2 + |C3|2 + |C4|2) + (|C2|2 + |C3|2

+ |C4|2)2]. (A7)

From Eq. (A2) we can write

ρ̃21 = C∗
1C2, ρ̃31 = C∗

1C3, ρ̃41 = C∗
1C4,

|ρ̃21|2 = (C∗
1C2)(C∗

2C1) = |C2|2|C1|2 	 |C2|2,
|ρ̃31|2 = (C∗

1C3)(C∗
3C1) = |C3|2|C1|2 	 |C3|2,

|ρ̃41|2 = (C∗
1C4)(C∗

4C1) = |C4|2|C1|2 	 |C4|2.
Inserting the above in Eq. (A7) yields

ρ̃41 	 ρ̃
(1)
41 {1 − (|ρ̃21|2 + |ρ̃31|2 + |ρ̃41|2)

+ (|ρ̃21|2 + |ρ̃31|2 + |ρ̃41|2)2}. (A8)

By retaining only up to first-order terms in the perturbation
expansion, we get

ρ̃21 = ρ̃
(0)
21 + ρ̃

(1)
21 = ρ̃

(1)
21 ,

ρ̃31 = ρ̃
(0)
31 + ρ̃

(1)
31 = ρ̃

(1)
31 ,

ρ̃41 = ρ̃
(0)
41 + ρ̃

(1)
41 = ρ̃

(1)
41 ,

since ρ̃
(0)
i j = 0 from Eq. (A6). Therefore Eq. (A8) can be

rewritten as

ρ̃41 	 ρ̃
(1)
41

{
1 − (∣∣ρ̃ (1)

21

∣∣2 + ∣∣ρ̃ (1)
31

∣∣2 + ∣∣ρ̃ (1)
41

∣∣2)
+ (∣∣ρ̃ (1)

21

∣∣2 + ∣∣ρ̃ (1)
31

∣∣2 + ∣∣ρ̃ (1)
41

∣∣2)2}
. (A9)
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