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Recent exploration in synthetic frequency lattices has re-formed the methods of manipulating the light spec-
trum by analogizing the diffraction management in real space, which can be created by employing electro-optic
modulation (EOM) in dielectric waveguides or ring resonators. In the presence of effective gauge potential, that
is, the accumulated phase of mode transfer between adjacent lattice sites, the frequency spectrum of incident
light can be flexibly tailored. However, the finite bandwidth and modulation depth of EOM vastly restrain
the frequency shift and efficiency of mode transfer. Here we experimentally demonstrate that the synthetic
frequency lattice can be created with the nonlinear process of four-wave-mixing Bragg scattering. The bandwidth
of frequency manipulation is expanded up to terahertz and the frequency shift can be larger than 200 GHz.
Furthermore, we can realize effects such as negative refraction and perfect imaging in frequency dimension by
changing the effective gauge potentials. The study provides a powerful and promising approach to precisely
control light frequency in broadband and may benefit all-optical modulation in optical telecommunication
systems.
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I. INTRODUCTION

Precise and broadband frequency control of light is gen-
erally a crucial technique in optical science and engineering.
With the invention of optical frequency combs (OFCs) [1–5],
which describe the spectra of phase-coherent evenly spaced
frequency lines, versatile methods for manipulating light fre-
quencies have been explored. For example, controlling the
intensity and phase modulations of individual comb lines
can benefit line by line phase shaping in optical arbitrary
waveform generation [6]. So far OFCs have found great ap-
plications ranging from time and frequency metrology [7–9]
to optical telecommunication [10–12] and molecular spec-
troscopy [13–15], where the manipulation of OFCs has always
played the key role in basic technology.

In terms of the frequency spectrum, OFCs are constituted
by a series of discrete modes with identical frequency spacing
and phase difference between the comb lines [16]. For an OFC
with unlimited bandwidth and uniform amplitude of comb
lines, its spectrum is well defined by a Bloch wave func-
tion in frequency dimension, which can evolve in synthetic
frequency lattices (SFLs) as eigenmodes, analogous to their
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spatial counterparts in optical waveguide arrays [17,18]. Syn-
thetic lattices expand the concept of spatial lattices to arbitrary
parameter spaces and offer unique platforms to manipulate
light in various dimensions such as time [19–21], frequency
[22–25], and angular momentum [26–29]. The SFLs were
originally created in ring resonators and dielectric waveguides
under dynamical modulation based on the electro-optical ef-
fect, where the modes with distinct frequencies could transfer
to each other [30–32]. The accumulated phase change during
mode transfer corresponds to an effective gauge potential for
photons. In analogy with vector potential applied to electrons,
the effective gauge potential provides great opportunities to
control the frequency of light [33–35].

Apart from electro-optic modulation, the SFLs can also
be created by using the nonlinear effect [36–40]. Comparing
with the electro-optical effect possessing a typical modulation
frequency of 10 GHz, the nonlinear approach provides an
all-optical scheme to manipulate frequency, which manifests
a much faster optical response [41]. Furthermore, the modu-
lation frequency could increase remarkably by several times
higher than the electromagnetic effect, leading to a broadband
control of light frequencies [42].

In this paper, we shall experimentally construct a SFL in
an optical fiber communication system based on the nonlin-
ear effect of four-wave-mixing Bragg scattering (FWM-BS).
The lattice has a frequency spacing larger than 100 GHz and
benefits broadband and precise control of light frequency. By
introducing the gauge potential via adjusting the phase delay
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FIG. 1. (a) Generation of SFL by FWM-BS process in nonlinear fiber system. ωp1,2 and ω0 represent the frequency of the incident pumps
and signal. The frequency difference � of the two pumps provides the frequency interval of the lattice. �φ is the phase difference of two
pumps. The distinct coupling direction is denoted by the blue and red arrows. (b) Photon picture of the FWM-BS process. ωi is the idler
frequency. (c) Phase-match condition. The wavelength of zero group velocity dispersion (z-GVD) needs to be between the optical signal and
the pump. (d) Band structures of the lattice for �φ = −π/2 and �φ = π . The red arrows denote the direction of group velocity at Bloch wave
vector kω = 0.

of pumping light, we can conveniently realize frequency shift
for incidence of OFCs, although the frequency diffraction
occurs for a truncated bandwidth. The shift of the spectrum
approaches as large as 200 GHz, which is five times larger
than that achieved by electro-optic modulations. The direction
of the shift is controllable by employing two processes of
FWM-BS with different gauge potentials. For a single fre-
quency incidence, the frequency scaling and imaging are both
achieved. The study provides another powerful and promising
approach to control precisely light frequency over a broad-
band using a nonlinear process.

II. THEORETICAL MODEL

The FWM-BS process is implemented in a highly non-
linear fiber (HNLF), as shown in the schematic diagram of
Fig. 1(a). An optical signal at frequency ω0 is scattered by
two pumps with frequencies ωp1 and ωp2 resulting in the
generation of idlers with frequencies ωi = ω0 ± �. After suc-
cessive FWM-BS processes, the signal will undergo a series
of up- or downshifts, forming a SFL with lattice constant
� = ωp1 − ωp2. Specially, in the FWM-BS process, each idler
photon is generated from an annihilated signal photon and
the power directly transfers from the signal to the idler, as
depicted in Fig. 1(b). This avoids the amplification of vacuum
fluctuation caused by the additional noise during the paramet-
ric gain process. Therefore, the FWM-BS process enables us
to achieve a low-loss frequency conversion [43–45].

The total electric field in the nonlinear medium can be
written as [46]

U=
∞∑

n=−∞
an(z)e−iωnt + A1e−i(ωp1+φ1 ) + A2e−i(ωp2+φ2 ), (1)

where an(z) is the amplitude of the idlers at frequency ωn. φ1,2,
respectively, represent the initial phases of the pumps. The

amplitudes of the two pumps are denoted by A1,2(z). To satisfy
the phase-match condition, the frequencies of the two pumps
and signal should be close to the equidistant sides of the zero
dispersion wavelength, as shown in Fig. 1(c). In this case, the
pumps and signal will move at the same group velocity and the
group velocity dispersion can be ignored. Taking advantage
of the undepleted pump approximation in the process and
substituting Eq. (1) into the nonlinear Schrödinger equation,
we could obtain the coupled-mode equation with respect to
the idlers,

∂an

∂z
= iC[an−1(z)ei�φ + an+1(z)e−i�φ], (2)

where C = 2γ A1(0)A2(0) denotes the coupling strength, and
A1,2(0) are the amplitudes of the incident pumps. �φ = φ1 −
φ2 denotes the phase difference between the pumps. We note
that the additional phase has the opposite signs for upward and
downward transitions of photons. This nonreciprocal phase is
the photonics analog of the electronic Peierls phase in the
Aharonov-Bohm effect and is associated with the effective
photonic gauge potential Aeff in SFL through [33–35]

�φ=
∫ ωn+1

ωn

Aeffdω, (3)

where ω represents the frequency of the idler and the gauge
potential could be expressed as Aeff = �φ/�.

An infinite-width OFC can be regarded as the eigen Bloch
mode in SFL an(z) = a0exp(inφ0)exp(ikzz) with a0 the ampli-
tude for the nth modes, kz the propagation constant along the
z direction, and φ0 the initial Bloch momentum in frequency
dimension. By substituting an(z) into Eq. (2), we can obtain
the dispersion relation for the SFL:

kz(φ0) = 2C cos(φ0 − �φ). (4)

Denoting φ0 = kω�, kω the initial Bloch wave vector,
and considering Aeff = �φ/�, the band structure can read
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FIG. 2. (a) Experimental setup. PS MLL, picosecond mode-locked laser; OSC, oscilloscope; EDFA, erbium-doped fiber amplifier; HNLF,
highly nonlinear fiber; OP, optical processor (Finisar WaveShaper 4000A and 1000S); PC, polarization controller; DL, delay line; VOA,
variable optical attenuator; WDM, wavelength division multiplexer; ISO, isolator; OSA, optical spectrum analyzer. All the couplers in this
system are 50/50 couplers. The red and blue lines represent the first and second FWM-BS processes. (b) Optical spectrum of the mode-locked
laser. (c) Optical spectrum after HNLF1. (d) Optical spectrum for incidence of a single frequency. (e) Optical spectrum for incidence of OFC.
The blue and pink areas in (c,d,e) indicate the ranges of the pumps and signal. λs and λp1,p2 are the wavelengths of signal and pumps.

kz(kω ) = 2Ccos[(kω − Aeff )�]. For a finite-width OFC, the
group velocity which is perpendicular to the band structure
in the frequency dimension can be expressed as

vg,ω(z) = −∂kz(kω )

∂kω

= 2C� sin(φ0 − �φ), (5)

which leads to an accumulated frequency shift,

�ω=
∫ L

0
vg,ωdz′ = 2md� sin(φ0 − �φ), (6)

where md = CL with L the propagation length.
It is apparent from Eq. (4) that the band structure undergoes

a shift in the presence of the effective gauge potential. Thus,
the propagation direction of group velocity will be different at
the same Bloch momentum, as shown in Fig. 1(d). This moti-
vates us to achieve the directional transmission and arbitrary
refraction phenomena in the frequency dimension by cascad-
ing two FWM-BS processes with different pump phases.

III. RESULTS AND DISCUSSION

A. Experimental setup

The experimental setup for the two cascaded FWM-BS
processes is shown in Fig. 2(a). The pumps and signal lights
are generated by a picosecond mode-locked laser (MLL)
driven by a sinusoidal radiofrequency (rf) signal. The repeti-
tion frequency and amplitude of the rf signal are 18 GHz and
7 dBm. The optical spectrum after MLL is shown in Fig. 2(b).
During the experiment, the optical signal and pump both ex-
perience frequency conversion. For preventing the sidebands
generated by the FWM-BS process from overlapping, the
pumps and signal should be fully separated. To satisfy this
condition, the spectrum of the mode-locked laser is expanded
to more than 30 nm by self-phase modulation and FWM
process in HNLF1 of 400 m. The wavelength interval be-
tween optical pump and signal reaches 20 nm, as presented in
Fig. 2(c). The incident pumps and signal lights, whose spectra
are shown in Figs. 2(d) and 2(e), are filtered out by OP1. OP2
is utilized to filter the pumps used in the second nonlinear
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FIG. 3. (a), (b) Experimental results for �ψ = 0 and �ψ = π in the case of single frequency input. �ψ = �φ1 − �φ2. The frequency
evolution varies with the total modulation depth md1 + md2. The dashed covers and dots, respectively, represent the experimental and
simulated results at the total modulation depth md = 0, 1, and 2. (c) Band structure of the frequency Bloch mode for �φ = 0 and �φ = π .
(d) Experimental and simulated conversion efficiency of the total FWM-BS process with increasing modulation depth in the case of �ψ = 0.
(e) Output spectrum as a function of �ψ for single frequency input. (f) Experimental and simulated spectrum width when �ψ varies.

process. According to the zero-dispersion wavelength of the
HNLF, the wavelength of the signal is λs = 1563.79 nm, the
pump lights in the two nonlinear processes are all around
1544 nm, and the frequency difference of the two pumps is
� = 108 GHz. The two FWM-BS processes, respectively,
occur in nonlinear fibers with lengths of 400 and 500 m.
The final spectrum is detected by an optical spectrum ana-
lyzer (OSA). In the experiment, the signal and pumps are
amplified by the erbium-doped fiber amplifier (EDFA). The
power and phase difference of the two pumps are controlled
by the variable optical attenuator (VOA) and delay line (DL),
respectively. Three polarization controllers (PCs) are utilized
for controlling the light polarization states in the HNLF to
optimize the conversion efficiency of the FWM-BS process.
During the measurement, we first only consider the FWM-BS
process in HNLF2 and the modulation depth md1 linearly
increases from zero to its maximum. Then, we fix md1 and
increase the modulation depth md2 to the same value as the
md1 in the second FWM-BS process. The modulation depths
md1,d2 are controlled by varying the power of two pumps.

B. Discrete diffraction and perfect imaging
in the frequency dimension

Figure 3(a) shows the experimental output spectrum when
�ψ = �φ1 − �φ2 = 0. With the total modulation depth
md = md1 + md2 linearly increasing, the power of the optical
signal gradually transfers to the idlers and the spectrum ex-
hibits discrete diffraction. However, as �ψ = �φ1 − �φ2 =
π the frequency spectrum will be broadened first and then
recover to its origin, as shown in Fig. 3(b). The dots and
dashed lines in Figs. 3(a) and 3(b), respectively, denote the
experimental and simulated results at md = 0, 1, and 2. The
phenomena can be explained according to the band structure,
as illustrated in Fig. 3(c). As �φ1 and �φ2 is in phase dur-
ing the propagation, the band structure of the two FWM-BS
processes always remains the same. Therefore, the direction
of group velocity at the same Bloch momentum will be
unchanged during the propagation, giving rise to “spectrum
broadening.” On the other hand, when �φ1 − �φ2 = π , the
band structure of the second process undergoes a shift to
the left in the Brillouin zone relative to the first process.
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FIG. 4. (a)–(c) Experimental output spectrum vs total modulation depth as φ0–�φ1 = 0, −π /2, and π /2 for �ψ = 0. φ0–�φ1 is the
variation of the effective gauge potential with φ0 the phase difference between two frequencies of the incident OFC and �φ1 the phase
difference of two pumps. (d)–(f) Experimental output spectrum vs total modulation depth as the initial phase φ0–�φ1 = 0, −π /2, and π /2
for �ψ = π . The blue dashed curves and pink dots, respectively, represent the experimental and simulated results at the total modulation
depth md = 0, 1.08, and 2.16. The red arrows represent the direction of frequency shift. The insets in (b), (c), (e), (f) show the calculated band
structure for the first (green) and second (purple) FWM-BS processes. The arrows in the insets denote the direction of group velocity.

The group velocity at the same Bloch momentum is opposite
in the lateral direction during the two FWM-BS processes.
Consequently, the spectrum exhibits the perfect imaging in
the frequency domain. Figure 3(d) depicts the conversion ef-
ficiency as a function of total modulation depth in the case of
�ψ = �φ1 − �φ2 = 0. The conversion efficiency is defined
as the converted idler photon at the fiber output divided by
the input signal photon at the fiber input. The measured and
simulated results both show that the conversion efficiency
gradually increases as md gets higher. When md is low, the
measured conversion efficiency is consistent with the simula-
tion. However, with further increasing md , the simulation is
going to be higher than the measured conversion efficiency
because of the loss of the fiber. Therefore, the signal cannot
convert to the idlers entirely which causes the power of the
signal and the nth idlers will not decrease to zero in the
experiment. Furthermore, we fix md1 = md2 = 1 in the two
processes and continually vary the delay lines to change �ψ

from 0 to 2π . The influence of �ψ on frequency evolution

is illustrated in Fig. 3(e). Obviously, the spectrum width is
gradually squeezed from the maximum to single frequency
and restored to the maximum expansion. The spectrum width
as a function of �ψ is shown in Fig. 3(f). When �ψ = 0,
the output spectrum width reaches its maximum of 7.06 nm.
As the value of �ψ is increased, the spectrum width grad-
ually decreases to zero as �ψ = π , and then recovers to
the widest state at �ψ = 0. This result validates that the
frequency imaging can be achieved by controlling the pump
phase.

C. Frequency shift and negative refraction
in the frequency dimension

Next, considering the OFC input, the effects of the syn-
thetic gauge potential on frequency evolution can be further
explored. In this case, � = 54 GHz and �ψ is fixed. Unlike
the case of a single frequency input, the spectrum evolution for
an OFC input is determined by the initial Bloch momentum.
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Figures 4(a)–4(c) show the experimental spectrum evolution
for �ψ = 0. In this case, the band structures of the two
processes are identical. Figure 4(a) depicts the measured spec-
trum for φ0–�φ1 = 0. With increasing md , the spectrum is
broadened the same as with the case of a single frequency in-
put. The bandwidth of OFC after the two FWM-BS processes
will be larger than 500 GHz. Interestingly, when we change
the initial phase φ0–�φ1 to −π /2 and π /2, the frequency
evolutions vs md manifest the red- and blueshift, shown in
Figs. 4(b) and 4(c). The maximum of the accumulated spectral
shift approximately reaches 216 GHz (�λ ≈ 1.7 nm), which
equals four frequency periods. If the gauge potential in two
FWM-BS processes is different, that is, �ψ = π , the fre-
quency evolution will not continually expand or directionally
shift. As φ0–�φ1 = 0, the OFC first experiences an expansion
and then is squeezed to the initial envelope, as shown in
Fig. 4(d). Besides, as φ0–�φ1 = −π/2 or π /2, the frequency
envelope experiences a red- or blueshift at first and then re-
covers to its origin, as depicted in Figs. 4(e) and 4(f), showing
a negative refraction effect in the frequency dimension. The
experimental and simulated spectra at md = 0, 1.08, and 2.16
are also depicted in Figs. 4(a)–4(f); obviously, they are in
excellent agreement.

Furthermore, we also investigate the spectrum evolu-
tion under different gauge potentials for the incidence
of OFC when only considering one FWM-BS process
in HNLF2 of 400 m. During the experiment, the total
power of the pumps has been modulated to 26.05 dBm by
EDFA to ensure the conversion efficiency. Through contin-
uously varying φ0–�φ1 from 0.5π to 4.5π , the trajectory
of the spectrum follows periodically the cosine oscilla-
tion, as shown in Fig. 5(a). In particular, the spectral red-
and blueshift always reach the maximum as φ0–�φ1 =
(2 j + 1)π/2 ( j = 0, 1, 2, · · · ) which agrees well with the
result of Eq. (6). In addition, the spectral center position ωc

and bandwidth ωd of the finite-width OFC can be calculated

by [47]

ωc =
∫ +∞
−∞ ωn|an|2dω∫ +∞

−∞ |an|2dω
, (7)

ωd =
√√√√2

∫ +∞
−∞ (ωn − ωc)|an|2dω∫ +∞

−∞ |an|2dω
, (8)

where ωn and an, respectively, denote the frequency and
amplitude of the nth-order idlers. The experimental and sim-
ulated calculation results are plotted in Figs. 5(b) and 5(c),
which also exhibit periodical oscillations with φ0–�φ1. As
shown in Figs. 5(b) and 5(c), the bandwidth varies between
0.56 and 1.54 nm and the maximum spectral shift can reaches
as large as 225 GHz (∼1.8 nm in wavelength). The ef-
fect of periodical red and blue spectral shift stems from the
band structure of an infinite-width OFC. As the initial Bloch
momentum φ0–�φ1 continuously varies along the whole
Brillouin zone, the direction of group velocity will change
periodically according to the shape of the band structure,
resulting in a periodical oscillation of the spectrum. In ad-
dition, if the initial Bloch momentum is fixed, the direction
of the group velocity will remain unchanged in the propaga-
tion. Thus, the spectrum will experience directional shift as
discussed in Fig. 4.

IV. CONCLUSIONS

In summary, we have theoretically established and experi-
mentally demonstrated the effects of diffraction and refraction
in frequency dimension by the FWM-BS process in the op-
tical fiber communication system. We have shown that the
evolution of the spectrum can be flexibly and efficiently ma-
nipulated through the photonic gauge potential introduced by
the phase difference of pumps. By varying the gauge potential,
we can obtain the directional frequency shift for a frequency
comb input and discrete diffraction for a single frequency in-
put. The maximum frequency shift is larger than 200 GHz and
the bandwidth expansion can be up to terahertz. Additionally,
by cascading two FWM-BS processes with opposite phase
differences between two pumps, the negative refraction for the
frequency comb and perfect imaging for a single frequency
can be achieved in the frequency dimension. Our study may
pave the way towards all-optical manipulation of the light
spectrum and may find applications in optical communication
and signal processing, such as a large bandwidth frequency
shifter and frequency multiplexing, temporal-spectral imag-
ing, and spectral domain stealth technology.
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APPENDIX: COUPLED-MODE EQUATION
IN THE FREQUENCY LATTICE

In this Appendix, we provide the detailed derivation of the
discrete frequency diffraction in the nonlinear fiber system.
We first assume that the wave functions of the signal and
pumps are given by

a(z, t ) =
∞∑

n=−∞
an(z)e−iωnt , (A1)

A(z, t ) = A1(z)e−i(ωp1t+φ1 ) + A2(z)e−i(ωp2t+φ2 )
, (A2)

where an(z) denotes the amplitudes of the nth-order idler.
A1,2(z) are the amplitudes of the two pumps whose incident
phases are φ1,2. The frequency of the nth-order idler can be
described by ωn = ω0 + n� (n = 0,±1,±2, . . .) where ω0

and � denote the frequency of the input signal and the lattice
constant. The frequency of the two pumps are ωp1 and ωp2,
and ωp1 − ωp2 = �. During the propagation, the total field in
the fiber can be expressed by

U = a(z, t ) + A(z, t ). (A3)

The FWM-BS process is governed by the nonlinear
Schrödinger equation [46],

∂U

∂z
= iγ |U |2U, (A4)

where γ is the nonlinear coefficient of the HNLF. Using
the undepleted pump approximation in which the ampli-

tudes of thepump lights are treated as constants. Substituting
Eqs. (S1)–(S3) into Eq. (S4), we can obtain the evolution of
signal along z according to the nonlinear Schrödinger equa-
tion,

∂a(z, t )

∂z
= 2iγ |A(t, 0)|2a(z, t ), (A5)

considering that the frequency interval between the two
pumps provides the lattice constant of the frequency lattice;
thus the right side of Eq. (S5) can be rewritten as

∞∑
n=−∞

[2A1(0)A2(0)ei(φ2−φ1 )an(z)e−iωn−1t

+ 2A1(0)A2(0)ei(φ1−φ2 )an(z)e−iωn+1t ]. (A6)

By substituting n ± 1 into n, we have

∂an(z)

∂z
= 2iγ A1(0)A2(0)[ei(φ2−φ1 )an+1(z) + ei(φ1−φ2 )an−1(z)].

(A7)
We then define C = 2γ A1(0)A2(0) and �φ = φ1 − φ2 as the
coupling strength between adjacent modes and the phase dif-
ference between the two pumps. Finally, we can obtain the
coupled-mode equation for the idlers:

∂an(z)

∂z
= 2C[an+1(z)e−i�φ + an−1(z)ei�φ]. (A8)
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