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We present a detailed study of the fields and propagation characteristics around the focus of ultrashort radially
polarized laser beams (RPLBs) having low-order spatiotemporal couplings (STCs). The three STCs considered
are the focusing of the different frequencies to different positions along the longitudinal coordinate, the focusing
of the frequencies to different positions along one transverse coordinate, and the beam waist or Rayleigh range
having a dependence on frequency. The STCs considered are deemed low-order because they are primarily linear
in frequency. The combination of a low-order vector beam, ultrashort pulse duration, and the three different
STCs shows promise for exotic applications in dielectric or charged particle manipulation and potentially other
strong-field phenomena. The STCs presented are all developed in a standard frequency-domain model where
each case involves a different chromatic term. We present the results unique to the vector nature of the RPLBs
and compare them to the linearly polarized cases, opening up opportunities for control of the electric field around
the focus with the additional element of polarization.
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I. INTRODUCTION

Radially polarized laser beams (RPLBs), a unique solution
to Maxwell’s equations with primarily radial polarization,
are a low-order vector beam (having spatially varying po-
larization) that can have a very tight focus [1,2] and have
applications in microscopy [3–5] and manipulation of mi-
croparticles [6–9] for example. Ultrashort RPLBs require
additional modeling due to their broad bandwidth and can
be applied to particle acceleration [10–15] and potentially
high-harmonic generation and other realms of high-field
nano-optics [16]. Combing these ultrashort RPLBs with
spatiotemporal couplings (STCs), aberrations that lead to un-
separable space-time or space-frequency electric fields [17],
results in interesting properties. In this paper we present
frequency-domain models to describe RPLBs having different
STCs and investigate potentially valuable phenomena unique
to the vector nature of RPLBs.

We first describe the standard ultrashort RPLB in fre-
quency space, and describe its basic properties. Then we
compare certain properties of the RPLB when it has three
different low-order STCs (i.e., generally linear in frequency
dependence). The three STCs considered are as follows: the
focusing of the different frequencies to different positions
along the longitudinal coordinate, longitudinal chromatism;
the focusing of the frequencies to different positions along
one transverse coordinate, spatial chirp; and the beam waist
or Rayleigh range having a power-law frequency dependence;
referred to as frequency-dependent beam parameters.

*spencer.jolly@vub.be

In the case of each STC there are general effects around
the focus, which often involve an increase in the integrated
beam size or an increase in the pulse duration (and equiv-
alently a decrease in the intensity), similar to with linearly
polarized pulses [18]. But in addition to those general effects
there are more nuanced effects in each case, which can in-
volve the pulse temporal profile, spatial intensity profile, or
its behavior during propagation away from the focus. In the
case of longitudinal chromatism there is an effective increase
in the Rayleigh range due to the longitudinal separation of
the frequencies, and an additional effect when combined with
temporal chirp where the velocity of the intensity peak can
be different than the speed of light c, called the flying focus.
For spatial chirp there can be wavefront rotation, where the
wavefront in focus points in different directions over time, and
there can also be a tilt in the arrival time of the pulse when
combined with temporal chirp. In the case of the frequency-
varying beam parameters we consider the evolution of the
carrier-envelope offset phase, which differs from the Gouy
phase in a nontrivial fashion.

Indeed all of the above phenomena have been described
and measured experimentally for linearly polarized ultrashort
laser pulses. In the case of the RPLBs which we describe theo-
retically here, there is first the fact that the model for the fields
is different, resulting in different precise descriptions for each
phenomenon. But there is also the crucial fact that RPLBs
are vector beams and the different polarization components
of the electric field not only have different basic properties
that influence how to look at the effect of STCs on each po-
larization, but the different components are also described via
different equations resulting in different behavior. In each case
we develop the model for the RPLB with STCs using the same
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frequency-space model as for the standard ultrashort RPLB,
but clearly explain the modified or added terms which result
in the fundamental changes in beam properties or propaga-
tion effects. Because the STCs add nontrivial space-frequency
terms in our model we do not have the ability to solve for the
fields in time, but can present results in time based on our
model using numerical Fourier transforms.

II. STANDARD ULTRASHORT RPLB

In the following model we use pulses that have Gaussian
spatial and spectral or temporal profiles, with characteristic
widths s0 and τ0, respectively, at a central wavelength λ0

(ω0 = 2πc/λ0) and the Rayleigh range zR = ω0s2
0/2c. The

fields of the focused ultrashort RPLBs are modeled in the
frequency domain as in Refs. [19–21] using the proper form
for the longitudinal fields including only paraxial terms. With
Aω = exp(−δω2/�ω2), �ω = 2/τ0, and δω = (ω − ω0) we
have the solutions for the radial electric field Er , longitudinal
electric field Ez, and azimuthal magnetic field Bθ ,

Ẽr (ω) = AερC2, (1)

Ẽz(ω) = Aε2[S2 − ρ2S3], (2)

B̃θ (ω) = Ẽr (ω)

c
, (3)

where the tilde denotes frequency space, ρ = r/s0 and ε =
s0/zR, and

A = ω0

2c

√
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√
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e−r2/s2
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6
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24
+ · · · , (8)

ψG = tan−1

(
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)
, (9)

s = s0

√
1 +

(
z

zR

)2

, (10)

R = z + z2
R

z
. (11)

where P0 is the peak power of the pulse (in this case with
zero STCs), ε0 is the permittivity of free space, and c is the
speed of light in vacuum, however, for the rest of this work
we will present normalized fields since we are modeling their
properties in free space only. The spectral phase parameters
φ2, φ3, and φ4 are the group-delay dispersion, third-order
dispersion, and fourth-order dispersion, respectively, included
for completeness, but in our presented phenomena we will
only show results with nonzero φ2. The fields above are the

FIG. 1. Standard ultrashort RPLB in-focus with λ0 = 800 nm,
τ0 = 15 fs, and s0 = 4 μm. The integrated Ez (a) is strongly localized
on-axis, where the integrated Er (b) has a zero on-axis. The Ez and Er

fields in time, (c) and (d), respectively, show similar characteristics,
but as they diffract they change [shown at z = 5zR in (e) and (f),
respectively]. The fluence in (a) and (b) is normalized to the max
fluence of Ez, and the colorscale in each of panels (c)–(f) is relative
to the maximum in that panel.

complex fields, where for all visualizations we show the real
part of the fields in time corresponding to the physically rele-
vant quantities.

Of course, in the case of the equations above, the fields
in time can be easily calculated. This is because the only
frequency dependence is in the Gaussian spectral profile Aω

and the term ωz/c in the phase, so the temporal profile is
simply a Gaussian envelope traveling in z at the speed of
light. However, for the rest of this work we will build off of
this standard case to consider pulses with nontrivial chromatic
terms, which cannot be expressed simply in time, so we leave
these fields in terms of frequency for reference. Because it is
often the electric fields that are most important, Bθ will not
generally be included in visualizations, except for in the case
of spatial chirp where calculating the magnetic field requires
a different coordinate transformation due to the breaking of
cylindrical symmetry. It must also be noted that modeling
an azimuthally polarized laser beam requires only a simple
transformation of these equations, so the work in the rest of
this paper will also apply.

Figure 1 shows the basic characteristics of the standard
ultrashort RPLB for a wavelength of 800 nm that we will
use throughout this paper. These characteristics include the
longitudinal field Ez being strongly localized on-axis and the
transverse field Er being zero on-axis, shown in Figs. 1(a)
and 1(b), respectively, with both having cylindrical symmetry.
As already mentioned, since this description does not yet
contain STCs, the fields are trivially extended to having an
ultrashort envelope that maintains these features in the focus,
shown in Figs. 1(c) and 1(d). Both the monochromatic RPLB
and the ultrashort RPLB become more complicated as they
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propagate away from the focus, shown for the ultrashort case
in Figs. 1(e) and 1(f), still without STCs.

Note as well that the nonparaxial form could be easily con-
structed by adding terms of higher order in ε as in Ref. [22],
for example. This will also be the case for all of the models
used in the following sections with STCs added, but we write
only the paraxial forms for simplicity in the main text to
emphasize the chromatic terms. For a more detailed discus-
sion of the nonparaxial description see the Appendix. An
accurate nonparaxial description is generally believed to be
necessary when the beam waist approaches the wavelength,
but for highly sensitive interactions such as high-field parti-
cle acceleration a nonparaxial description becomes important
even at larger beam waists [23].

III. LONGITUDINAL CHROMATISM

Longitudinal chromatism (LC) is a form of spatiotemporal
coupling that is when the different spectral components of
an ultrashort pulse are separated longitudinally, that is, along
the direction of propagation z. In the case in this section, we
model LC at the focus of an ultrashort RPLB. In fact, LC is the
result of two equivalent phenomenon on the collimated beam
before focusing, pulse-front curvature (PFC) and chromatic
curvature (CC). PFC is when the arrival time of the ultrashort
pulse varies quadratically with the radius. Due to the funda-
mental relationship between time and frequency in light waves
(via the Fourier transform), PFC is equivalent to the radius of
curvature of the pulse depending linearly on frequency, which
we refer to as chromatic curvature (CC). Because of this
equivalence, we refer to this phenomenon on the collimated
beam as CC/PFC, which is denoted by α [fs/m2].

Because the manifestation of the near-field couplings in
focus depends on the focusing geometry, the corresponding
near-field beam radius can be chosen as si with a focal length
of f , making s0 = 2c f /ω0si. However, if the collimated beam
were smaller and the focal length shorter so as to have the
same beam waist and Rayleigh range, then the relative ef-
fect of a certain CC/PFC α would be different. So, in fact,
it is the quantity τp = αs2

i [see Fig. 2(a)] that can properly
parametrize the effect of the CC or PFC coupling regardless
of the actual focusing geometry. So it is this τp that we use to
parametrize the LC in-focus (resulting from CC or PFC on the
collimated beam) for the rest of this section. The LC produces
a frequency-dependent longitudinal waist position z0 of

z0 = zRτpδω, (12)

where δω = (ω − ω0), i.e., describing linear LC.
The fields around the focus z = 0 are as before in Eqs. (1)

to (8), but with modified terms

ψG = tan−1

(
z − z0

zR

)
, (13)

s = s0

√
1 +

(
z − z0

zR

)2

, (14)

R = (z − z0) + z2
R

(z − z0)
. (15)

We must note that the waist s0 and Rayleigh range zR be-
ing constant values relies on the pulses being longer than

(a)

(b)

FIG. 2. Basic concept of longitudinal chromatism (LC) in the
focus. A beam in the near field (a) before being focused can have
pulse-front curvature (PFC) where the arrival time depends quadrat-
ically on the radius, and equivalently the frequencies have a linearly
varying convergence. When focused the frequencies focus to differ-
ent longitudinal positions and produce LC, shown on the right in (a).
The scenario relevant for modeling the RPLB is shown schematically
in (b), now with multiple components of the field.

few-cycle as mentioned earlier, but in the case of LC it
also relies on the difference in focal lengths between the
extreme frequencies of the pulse being negligible. This is
equivalent to the assumption that the extended Rayleigh range
zR

e = τp�ωzR is negligible compared to the focal length f :
τp�ωzR � f or τp/τ0 � f /2zR. If this were not the case, then
the focal length would also need to be treated as dependent on
frequency, resulting in a frequency dependence of the waist
and Rayleigh range independent of the assumption of the
pulse duration. After calculating the fields in frequency space
with the stated assumptions, they must be inverse Fourier
transformed to time.

The basic results of the model of an ultrashort RPLB with
LC is shown in Fig. 3 for one value of τp = 60 fs in the focus
at z = 0. The pulse retains cylindrical symmetry, but both
Ez and Er have much longer-tailed transverse distributions,
shown in Figs. 3(a) and 3(b). This is seen very clearly when
comparing Figs. 3(a) and 3(b) directly to Figs. 1(a) and 3(b),
where the only difference is the LC.

In addition to the effect on the transverse profile of both po-
larization components, there is also a significant change in the
temporal profile. As shown in Figs. 3(c) and 3(d) the temporal
intensity profiles of both Ez and Er are no longer symmetric
in time, and have significant interference effects at the outer
portions of the transverse distributions. The asymmetry and
interferences are common characteristics of LC, and in this
case are manifested in both polarization components, while
each component maintains the basic characteristics of the ul-
trashort RPLB (Ez is localized on-axis and Er is zero on-axis).

Another feature of the ultrashort RPLB with LC is an
extended Rayleigh range, defined earlier as zR

e = τp�ωzR.
This can be simply reasoned from the fact that different colors
have their waist position at different z positions. So, although
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FIG. 3. Basic results with longitudinal chromatism τp = 60 fs
(λ0 = 800 nm, τ0 = 15 fs, s0 = 4 μm). The integrated Ez and Er

fields in-focus, (a) and (b), respectively, show larger tails as r in-
creases. The Ez and Er fields in time, (c) and (d), respectively,
now have a time asymmetry and fringes at larger r characteristic of
chromaticity, but the qualitative characteristics stay the same. The
fluence in (a) and (b) is normalized to the max fluence of Ez without
any LC and the intensity in (c) and (d) is normalized to the max
intensity of Ez without any LC.

the waist is larger due to the LC, the pulse retains that slightly
larger waist within an increased longitudinal distance zR

e,
larger than the basic Rayleigh range by both the amount of
LC τp and the bandwidth of the pulse �ω.

This increased Rayleigh range, effectively beating diffrac-
tion, has already been shown for linearly polarized pulses
[24]. We confirm in Fig. 4 that it is also valid for ultrashort
RPLBs having LC for both Ez and Er . Comparing Figs. 4(a)

FIG. 4. Increased Rayleigh range due to the longitudinal chro-
matism of both the longitudinal field Ez, (a) with no LC and (c) with
τp = 60 fs, and transverse field Er , (c) with no LC and (d) with
τp = 60 fs (τ0 = 15 fs, s0 = 4 μm).

and 4(b) without LC to Figs. 4(c) and 4(d) with τp = 60 fs the
Rayleigh range is roughly 2τp/τ0 = 8 times larger in the latter
case. What is not shown in Figs. 4(c) and 4(d), of course, is
the temporal behavior of the electric field at each z position,
as it is only showing the integrated intensity. Because the LC
separates the colors then at the different points within the
extended Rayleigh range the central wavelength will evolve,
which can be thought of as the price paid for “beating” diffrac-
tion. Two-dimensional STC wave packets [25,26] have been
shown to remain localized for orders of magnitude beyond the
diffraction limit without separating the frequencies [27,28],
but have other limitations and are not vector beams, so can be
considered a uniquely different phenomenon.

Flying focus effect

Longitudinal chromatism combined with linear temporal
chirp (or quadratic spectral phase φ2) results in the intensity
of the ultrashort laser pulse traveling at velocities significantly
different than c, referred to as the flying focus [19,29]. This
has been implemented with either diffractive optics [24] or
specially produced lens doublets [30] to produce the LC, and
has also been used to create ionization waves in a plasma
at such superluminal and even negative velocities [31,32].
Theoretical work shows potential applications in laser-plasma
Raman amplification [33], plasma-based photon acceleration
[34], and vacuum electron acceleration [35]. All of the past
work has dealt with scalar electric fields, so we discuss and
simulate the same effect with the fields of an ultrashort RPLB.

The velocity of the intensity peak in the flying focus sce-
nario v f f has been shown to obey a simple formula [19,29,30]

v f f

c
= 1

1 + cφ2

τpzR

. (16)

This simple formula is derived based on only the varying
central frequency along the longitudinal direction and concur-
rent varying arrival time for the different frequencies resulting
from the spectral phase. We expect that it holds similarly for
the RPLB having chirp and LC since the relevant phase terms
are the same.

The results for the combination of LC and chirp are shown
in Fig. 5 for Ez only, with r = 0, confirming that the flying
focus phenomenon occurs as well with ultrashort RPLBs. The
maps of the on-axis intensity profile for z positions through
the focus is shown for Ez with a single value of τp = 60 fs
and three chirp values in Figs. 5(a) and 5(c). These specific
combinations of LC and chirp produce negative superlumi-
nal, positive superluminal, and positive subluminal v f f in
Figs. 5(a), 5(b) and 5(c), respectively. The dependence of
v f f on the chirp from the simulations agrees very well with
that predicted from the simple relationship in Eq. (16), shown
in Fig. 5(d). The transition chirp where the velocity tran-
sitions from purely positive to negative occurs at roughly
φ2 = −τpzR/c, the same as for linear polarization. The peak
intensity of the longitudinal field decreases significantly al-
ready with the LC, and decreases further with added chirp
[Fig. 5(e)], which is qualitatively similar to the intensity re-
duction for linear polarization [19].
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FIG. 5. Flying focus effect with the longitudinal field Ez at r = 0.
An RPLB with an LC of τp = 60 fs (τ0 = 15 fs, s0 = 4 μm) is simu-
lated with varying linear chirp (φ2) to produce an intensity envelope
that travels at velocities much different than c (a)–(c). The depen-
dence of the intensity peak velocity v f f on chirp (d) in the analytical
equation Eq. (16) (black dashed line) agrees with the full simulations
(red solid line). The intensity decreases (e) from the case with no
STCs with different values of τp and with increasing chirp.

The situation of LC and chirp in the transverse polariza-
tion, Er , is more complicated both because the field is only
nonzero off-axis, and because as the pulse diffracts away from
the focus the position of maximum intensity is increasingly
off-axis. However, as already shown in Fig. 4(d), within the
extended Rayleigh range the position of maximum intensity
is relatively constant. Therefore we look at the velocity of the
intensity peak of Er at r = s0 (ρ = 1). The results for the same
nonzero chirps as for Ez is shown for Er in Fig. 6.

The result of the analysis of the flying focus off-axis with
Er is that it is only slightly different than that of Ez, both
in terms of the quantitative results and the qualitative de-
pendence on φ2. This is due to the additional phase term
dependent on r in Eq. (7), the curvature term, that due
to the transformation of z to z − z0(ω) introduces a non-
trivial frequency dependence when r �= 0. When comparing
the simulated temporal intensity profiles of Ez at r = 0 in
Figs. 5(a) to 5(c) and for Er at r = s0 in Figs. 6(a) to 6(c),
the results are therefore slightly different. However, this is
most apparent around the transition chirp. For example with
φ2 = −15 000 fs2 the velocity is −5.93c for Ez on-axis and
−7.4c for Er off-axis. The difference in the dependence on
the chirp is seen clearly in Fig. 6(d) near the transition chirp
of −12 500 fs2 when compared to Fig. 5(d). It is interesting
that the phase term due to curvature is in the phase both for Ez

and Er , meaning that as r increases the velocity changes for Ez

as well, which we confirmed via numerical calculations, but

FIG. 6. Flying focus effect with the transverse field Er at the off-
axis position r = s0. An RPLB with an LC of τp = 60 fs (τ0 = 15 fs,
s0 = 4 μm) is simulated with varying linear chirp (φ2) to produce
an (a)–(c) intensity envelope that travels at velocities much different
than c, slightly different than those for Ez on-axis. The dependence
on φ2 (d) is slightly different in this case as well (red solid line),
diverging more from the simple prediction (black dashed line) based
on Eq. (16).

this difference is less important for Ez because the intensity
decreases rapidly off-axis.

As a last observation, both for Ez and Er , producing a
changing velocity (i.e., accelerating, decelerating, or non-
monotonic) of the intensity peak is also possible with higher
orders of spectral phase φ3, φ4, and so on as already predicted
for linear polarization [19].

It is important again to emphasize the difference from STC
wave packets [26] that have been shown as well to have tun-
able velocities [36–38]. The flying focus shown here, besides
being with a cylindrical vector beam, is limited to a region
around the focus defined by ze

R and the different frequencies of
the initial laser pulse are separated longitudinally within that
region. Therefore, the flying focus for both linear polarization
and with ultrashort RPLBs is most relevant to phenomena
that are purely intensity-dependent, otherwise this separation
of the frequencies must be taken into account. The tunable
velocity STC wave packets, shown so far only for linear po-
larization, do not have the separation of frequencies and can
have localized propagation orders of magnitude longer than as
predicted by diffraction, but for reasons already discussed can
be considered significantly different than the case discussed
in this paper. Besides these STC wave packets, more com-
plex examples with programmable group velocities involving
Bessel beams have recently been described [39], which could
also theoretically be adapted to RPLBs.

IV. SPATIAL CHIRP

In this section we model spatial chirp in the focus of an
RPLB. Spatial chirp around the focus is due to angular dis-
persion (AD) in the near field, where different frequencies
have different pointing directions, or equivalently the pulse
front of the beam is tilted from the wavefront (pulse front tilt,
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(a)

(b)

(c) (d)

FIG. 7. Basic concept of spatial chirp (SC) in the focus. A beam
in the near field (a) before being focused can have pulse-front tilt
(PFT) where the arrival time depends linearly on one spatial co-
ordinate, and equivalently the frequencies have a linearly varying
pointing direction, or angular dispersion (AD). When focused (b) the
frequencies separate along the same axis as the AD/PFT and produce
spatial chirp (SC). Due to the breaking of cylindrical symmetry both
Er and Bθ require a frequency-dependent transformation to Cartesian
coordinates, shown in (c) and (d), respectively.

PFT), see Fig. 7(a). Because these are equivalent, it can be
referred to as AD-PFT to be unambiguous. When focused the
different pointing directions of different frequencies result in
the frequencies being spatially separated in the focal region,
as in Fig. 7(b), along the axis where there was AD-PFT in the
near field. This transverse spatial separation of frequencies is
exactly spatial chirp (SC).

As it was with LC, the in-focus manifestation of the near-
field AD-PFT, represented by the tilt angle η = dt/dx [fs/m],
depends on the focusing geometry. So, similar to the case of
LC it is the time delay at the outer edge of the near field
(with beam size si) due to AD-PFT τt = ηsi [see Fig. 7(a)] that
can properly parametrize the effect of the near-field AD-PFT
coupling regardless of the actual focusing geometry. So it is
this τt that we use to parametrize the SC in-focus (resulting
from AD-PFT on the collimated beam) for the rest of this
section. Linear SC is described by a best-focus position x0

of

x0 = s0τtδω/2, (17)

which is clearly linear in frequency and proportional to τt

representing the AD-PFT.
The key difference between the modeling of SC is that

there is no longer cylindrical symmetry as in the previous

section. This is because with AD-PFT on the collimated beam,
the different frequencies are focused to different positions
along one transverse axis, chosen to be x here [see Fig. 7(b)].
This not only affects the spectral content at any given posi-
tion, but it affects the direction of the fields, which depends
nontrivially on frequency.

The implication is that the initial fields Ẽr , Ẽz, and B̃θ must
be transformed to Cartesian coordinates, and all fields Ẽx, Ẽy,
Ẽz, B̃x, and B̃y (B̃z = 0 still) must be calculated at all x, y,
and z positions. However, because the frequencies are shifted
a different amount along x in the focal plane, the coordinate
transformation is also frequency dependent. This concept is
sketched in Fig. 7(c) for Ẽr and in Fig. 7(d) for B̃θ . The results
are

Ẽx(ω) = Ẽr (ω)

(
x − x0

r′

)
= Ẽr (ω)√

1 + ( y
x−x0

)2
, (18)

Ẽy(ω) = Ẽr (ω)

(
y

r′

)
= Ẽr (ω)√

1 + ( x−x0
y

)2
, (19)

B̃x(ω) = B̃θ (ω)

(−y

r′

)
= −B̃θ (ω)√

1 + ( x−x0
y

)2
, (20)

B̃y(ω) = B̃θ (ω)

(
x − x0

r′

)
= B̃θ (ω)√

1 + ( y
x−x0

)2
, (21)

where r′ =
√

(x − x0)2 + y2. The Ẽz field does not require
any transformation, but it is still distributed along x according
to x0.

As before we use pulses that have Gaussian spatial and
temporal profiles, with characteristic widths s0 and τ0, respec-
tively, at a central wavelength λ0 (ω0 = 2πc/λ0). The fields of
the focused RPLB with SC are modeled similarly in the fre-
quency domain as in Refs. [19,20] and the previous sections.
We first must simply have the new frequency-dependent co-
ordinate ρ ′ = r′/s0 =

√
(x − x0)2 + y2/s0. However, a more

complicated step is to apply the transformation to Cartesian
coordinates from Eqs. (18) to (21) as follows:

Ẽx(ω) = ASC

⎛
⎝ ερ ′C2√

1 + ( y
x−x0

)2

⎞
⎠, (22)

Ẽy(ω) = ASC

⎛
⎝ ερ ′C2√

1 + ( x−x0
y

)2

⎞
⎠, (23)

Ẽz(ω) = ASCε2[S2 − ρ ′2S3], (24)

B̃x(ω) = ASC

c

⎛
⎝ −ερ ′C2√

1 + ( x−x0
y

)2

⎞
⎠, (25)

B̃y(ω) = ASC

c

⎛
⎝ ερ ′C2√

1 + ( y
x−x0

)2

⎞
⎠, (26)
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FIG. 8. The intensity of the different electric field components
(a) |Ex|2 (b) |Ey|2 and (c) |Ez|2 are shown with an SC in the x direction
of τt = 30 fs (λ0 = 800 nm, τ0 = 15 fs, s0 = 4 μm). These show the
asymmetry and elongation along x due to the SC. The total intensity
(d), which one would see on a standard camera, is also elongated
along x and is asymmetric. The fluence in all panels is normalized to
the max fluence of Ez without any STC.

where Cn and Sn are as in Eqs. (5) and (6), with the modified
r′ replacing r in the amplitude and phase

ASC = ω0

2c

√
8P0

πε0c

√
2Aω

�ω
e−r′2/s2

, (27)

ψ = �0 − ωr′2

2cR
− ωz

c
− ψspec. (28)

After calculating the fields in frequency space they must be
inverse Fourier transformed to time as before.

The first most basic result is shown in Fig. 8 via the fluence
of the different polarization components with a single value of
τt at the focus z = 0. The simulated data are shown to replicate
what would be seen on a camera when rejecting orthogonal
polarizations in Figs. 8(a) and 8(b), and shows only the lon-
gitudinal component in Fig. 8(c). The total intensity shown in
Fig. 8(d) replicates what would be seen on a standard camera
with no analysis optics.

The qualitative results of Fig. 8 agree with our expectations
that with SC along x, Ey and Ez will be simply elongated along
x. However, nontrivially, Ex is extended along x but also loses
its zero at x = y = 0, seen in Fig. 8(a). Therefore, not only
is the total electric field in Fig. 8(d) extended along x, but it
has more nuanced asymmetries and no longer a polarization
singularity on axis at x = y = 0.

However, beyond the simple asymmetry, there are effects
on the temporal evolution of the electric field and the intensity
that have potential applications and require a closer look.

A. Wavefront rotation

Wavefront rotation is a phenomenon with many applica-
tions with linearly polarized laser pulses [40] including the
attosecond lighthouse technique for generating isolated at-
tosecond pulses [41–44]. The wavefront rotation, defined as a

FIG. 9. Varying wavefront rotation (WFR) with different spatial
chirp values, parametrized by τt , of (a) 5 fs, (b) 15 fs, and (c) 30 fs
(τ0 = 15 fs, s0 = 4 μm). The WFR is clearly visible and increasing
in Ez (left), but is less clear in Ex (right), discussed in more detail in
the text.

changing wavefront plane in time at one point in a laser pulses
propagation, is a result of SC in a focus.

Mathematically, if we follow the definition of Ref. [44],
the angle of the wavefront is β = [∂φ(x, t )/∂x](c/ω0) and the
rate of change of this angle, the WFR velocity vr = dβ/dt
[rad/s], for a linearly polarized pulse is

v(lp)
r = cτt

2ω0s0

�ω2

1 + (τt�ω/2)2 , (29)

with z = y = 0 and using the notation of this paper.
It can be shown that this WFR velocity can be calculated

directly from the fields in frequency space using the mean
frequency ω̄ (which depends on the transverse coordinate x
in the case of SC) such that vr = (∂ω̄/∂x)(c/ω0). This results
in exactly the same relationship for RPLBs as that in Ref. [44]
and Eq. (29) for linearly polarized pulses.

Being able to calculate this WFR velocity using only
frequency-space intuition is helpful for this work since we
model the ultrashort RPLB field in frequency space. However,
additional terms in the spectral amplitude for Ez and Er mean
that the WFR velocity will have a transverse dependence and
the meaning of it will be more complicated due to the minima
in the intensity. Rather than doing this calculation we visualize
the WFR.

Figure 9 shows the resulting WFR in the case of Ez and Ex

for three values of τt . One can see complexities in both Ez and
Ex. For example, the WFR in Ex reverses sign near the axis
for both τt = 5 fs and 15 fs, but disappears at larger values (see
right of Fig. 9). The sign of the WFR also briefly changes near
the off-axis intensity minima of Ez when τt = 5 fs and 15 fs,
but because it is so local it manifests rather as dislocations in
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the electric field. Away from the axis for Ex and away from the
intensity minima for Ez the WFR velocity is roughly uniform
corresponding to Eq. (29). Note as well the on-axis field and
amplitude is significantly modified, with a longer pulse for
both Ez and Ex as expected, but also the temporal structure
in Ex.

B. Pulse-front tilt

A beam that has linear SC combined with linear tempo-
ral chirp (quadratic spectral phase or group-delay dispersion,
GDD, φ2) also has pulse-front tilt [45]. This is simply due
to the fact that the frequencies are distributed along one spa-
tial axis and the arrival time is also linearly dependent on
frequency. This is pulse-front tilt of a different nature than
AD-PFT on the collimated beam as described earlier, and
since we are now looking in the focus the transverse dimen-
sion is rather s0.

The central frequency of a linearly polarized pulse has the
same behavior as in the previous section such that ω̄(x) =
ω0 + xζ . The temporal phase is, in general, not linearly de-
pendent on the GDD φ2, but if we assume that the chirp is
large, φ2�ω2 � 2, then ω̄(t ) = ω0 + t/φ2. This results in a
pulse-front tilt η = dt/dx = φ2ζ [s/m] of

η = τtφ2

2s0

�ω2

1 + (τt�ω/2)2 , (30)

which for linearly polarized pulses is accurate with the stated
assumption of large chirp.

However, as was the case with WFR, the PFT is also
influenced by the more complicated off-axis spectral envelope
of the RPLB such that Eq. (30) is not fully accurate. Figure 10
shows the developing tilt at z = 0 for a single value of τt =
30 fs as the chirp is increased, for both |Ez|2 and |Ex|2. The
agreement with Eq. (30) improves as the chirp is increased,
seen clearly comparing Figs. 10(a) and 10(d). The agreement
for |Ez|2 is still not great when φ2 = 600 fs2, Fig. 10(d),
however, for |Ex|2 the agreement is very good despite the
more complicated temporal intensity profile. Note counterin-
tuitively that the peak intensity of Ez is not decreasing as chirp
is added in the left column of Fig. 10, and is, in fact, slightly
increasing. We confirm that beyond 600 fs2 the peak intensity
does begin to decrease for the specific parameters of Fig. 10,
and that for larger values of τt the peak intensity is maximum
at a larger chirp. This interesting result potentially allows
for designed aberrations with a partially mitigated intensity
decrease.

V. FREQUENCY-DEPENDENT BEAM PARAMETERS

In the previous two models the beam width and Rayleigh
range have been approximated as constant values related
to the central frequency and the pulse duration was such
that the RPLB with no STCs had many cycles. However,
diffraction itself and especially tight focusing is a chromatic
phenomenon, and therefore the waist and Rayleigh range are
in reality frequency-dependent properties: zR = ωs2

0/2c is a
fixed relationship where either zR or s0 can have frequency
dependence according to the specifics of the physical situ-
ation. This phenomenon was known early on to effect the
reshaping of single-cycle pulses through the focus [46–49].

FIG. 10. Adding linear chirp (nonzero φ2) to an RPLB having SC
can lead to in-focus pulse-front tilt of a different nature than standard
AD/PFT on a collimated beam. This is shown with τt = 30 fs on all
beams and an increasing chirp of (a) 75 fs2, (b) 150 fs2, (c) 300 fs2,
and (c) 600 fs2 (τ0 = 15 fs, s0 = 4 μm). The PFT manifests in both
|Ez|2 (left) and |Ex|2 (right). The white dashed lines are the PFT
predicted by Eq. (30). The intensity in all panels is normalized to
the max intensity of Ez without any STC.

The detailed effect of a nonuniform spatiospectral beam width
on the phase in the focus of ultrashort pulses (the so-called
focal-phase) has been explored in-depth with linearly polar-
ized pulses [50–53] and shown to have an effect on photoelec-
tron production driven by such ultrashort laser pulses [54,55].
A model with RPLBs, similar to that presented here, was used
to show that the effect is significant as well in vacuum laser
acceleration [21].

The basics of the model are first that Eqs. (1) to (11) for
the standard RPLB are modified with frequency-dependent
Rayleigh range zR(ω) and waist s0(ω). To encapsulate the
frequency dependence we use the “Porras factor” g0:

g0 = −dzR(ω)

dω

∣∣∣∣
ω0

ω0

zR(ω0)
. (31)

We use the reference parameter of the beam waist at
the central frequency s0(ω0) = s00 (and the corresponding
Rayleigh range zR0), which results in the equations for the
beam parameters

zR(ω) = zR0

(
ω0

ω

)g0

= ω0s2
00

2c

(
ω0

ω

)g0

, (32)

s0(ω) = s00

(ω0

ω

) g0+1
2

. (33)

This is shown for three frequencies in the case of g0 = −1, 0,
and 1 in Fig. 11.

In order for the effects of the frequency-dependent param-
eters to be significant, the temporal duration must approach
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FIG. 11. The basic concept of g0 shown with three frequencies
and three g0 values. When g0 = −1 (left) all frequencies have the
same beam size in the focus, where in contrast when g0 = 1 (right)
all three frequencies diverge with the same opening angle outside of
the focus. g0 = 0 (middle) is an intermediate situation.

just a few optical cycles. In this regime the Gaussian spectral
envelope is no longer strictly valid. We use a Poisson-like
spectrum as follows:

Aω(ω) =
√

2

π

(
γω

ω0

)γ+1( 1

ω

)
e−γω/ω0

�(γ + 1)
, (34)

where γ is the parameter that now represents the pulse
duration, with τ0 = γ

√
4(1/(γ+1)) − 1/ω0

√
2 (1/e2 intensity

width) [56], and �(. . .) is the Gamma function for the purely
real argument γ + 1.

Using these frequency-dependent parameters [Eqs. (32)
and (33)] and Poisson-like spectral envelope [Eq. (34)] in
place of the relevant terms in Eqs. (1) to (11), and Fourier
transforming to time, produces the fields without the common
frequency-independent approximation.

The main result of properly modeling the frequency-
dependent beam parameters is that the carrier-envelope phase
(CEP) varies through the focus in a way nontrivially different
than the standard Guoy phase. The key difference with the
RPLB is that this behavior is not the same for the different
polarization components. The CEP evolution �� through the
focus is calculated using the relation �� = φ|ω0 − ω0

∂φ

∂ω
|ω0

(the difference between the pulse-front and the wavefront)
where φ is the total phase such that

��r (r, z) = g0[2 − 2r2/s2]
z

zR0
+ zR0

z

− 2 tan−1

(
z

zR0

)
, (35)

��z(r = 0, z) = ��r (r = 0, z). (36)

Note that s is the usual frequency-independent value as in
Eq. (10) and the last term in Eq. (35) is simply double the
frequency-independent Gouy phase as in Eq. (9). Due to the
complexity of the phase for Ez(r �= 0, z), the expression for
the CEP evolution is not solved for explicitly in that case
except for when r = 0, where it is, in fact, equal to that of
Er .

Besides the CEP evolution through the focus, the central
frequency also evolves. This is easy to visualize since, as
depicted in Fig. 11, the different colors are focused to different
waists depending on the g0 value. Regardless of the assumed
integrated spectral envelope Aω, the central frequency must
evolve through the focus since the colors that are larger out-
side of the focus are the smallest within the focus and vice
versa.

FIG. 12. On-axis CEP and central frequency evolution through
the focus with a duration of 3.5 fs (γ = 35). The CEP (top) varies
widely, showing a steep slope at g0 = −2 and an inflection when
g0 � 1. The central frequency (bottom) also varies through the focus
due to the reshaping of the frequency envelope as different frequen-
cies are focused more tightly. This figure is identical to one presented
in Ref. [21].

The on-axis (r = 0) CEP evolution, identical for Er and
Ez as in Eq. (36), is shown in Fig. 12 (top), and the central
frequency evolution for Ez is shown in Fig. 12 (bottom) for
τ0 = 3.5 fs (γ = 35). It is important to note that the CEP
evolution does not change with the pulse duration, it only has
a greater significance as the pulse duration decreases, but the
central frequency evolution does depend strongly on the pulse
duration [50].

These on-axis results in Fig. 12 were already reported
in the context of the application to vacuum acceleration of
electrons [21]. However, the off-axis CEP evolution has not
yet been reported and is shown here in Fig. 13 for Ez and Er

for both g0 = −1 and +1. The plotted results for Er are simply
that of Eq. (35), while the results for Ez are calculated via the
numerical differentiation of the phase of the field.

The first result to note is that the difference between the
phase for varying g0 clearly extends to off-axis positions as
well both for Ez and Er , most clear when comparing off-axis
positions in Figs. 13(b) to 13(d). The second notable result is
that for Ez there are significant discontinuities as r increases.
Specifically at r/s00 = 1 and z = 0 the discontinuity is due
to local reshaping of the field as shown in Fig. 13(e), which
exposes a weakness of the simple method to calculate the CEP
change. One could extend the analysis away from the implicit
nonreshaping assumption as in Ref. [51], but in this specific
region Ez becomes very small and is therefore less important,
and due to the very significant reshaping the meaning of the
CEP is less clear. We therefore leave a more nuanced analysis
to a further work.

VI. CONCLUSION

We presented the fields of ultrashort radially polarized
laser pulses when tightly focused and having three different
low-order spatiotemporal couplings: longitudinal chromatism,
spatial chirp, and frequency-dependent beam parameters. We
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FIG. 13. Off-axis CEP evolution through the focus. The CEP for
both (a), (c) Ez and (b), (d) Ez are shown through the focus for on-
and off-axis positions, with a g0 of (a), (b) −1 and (c), (d) +1. The
discontinuities in the CEP of Ez are due to pulse reshaping around
r/s00 = 1 and z = 0, shown in (e) for a pulse duration of 3.5 fs (γ =
35) with g0 = 1 at four z/zR0 positions of −1/4, −1/8, +1/8, +1/4
from left to right, with the field (blue solid line) and the amplitude
(orange dashed line).

presented results mostly directly in the focus, but also in-
cluded some propagation characteristics. This was presented
for all three cases using a model where the effect of the STCs
was developed by adding frequency dependence to parameters
of the description in frequency space and confirming the ex-
istence of important effects in the time domain via numerical
Fourier transformation. The lack of an analytical description
directly in the time domain is an important aspect of ongoing
work, and we hope that drawing upon the descriptions of other
fundamental ultrashort pulses that have interesting space-time
properties such as tilted beams [57], the flying donut [58–60],
or the previously mentioned space-time light sheets [26] may
address this issue. Still, we believe that developing this model
and recipe for describing low-order STCs and showing the
powerful effects that take place in the focus of ultrashort radi-
ally polarized laser beams is useful without the time domain
equations.

Further complexities can be imagined beyond what was
presented in this paper. The first possibility of course is
including higher-order STCs, such as LC or SC that are non-
linearly dependent on the frequency or frequency-dependent
beam width that cannot be described by one parameter, or
indeed a simple combination of the presented STCs. Or, for
example, combining the presented STCs with more realis-
tic near-field profiles for high-power laser beams such as
the super-Gaussian or flattened-Gaussian [61], or modeling
higher-order vector beams, or using the Richards-Wolf for-
malism [62,63] to model very nonparaxial beams or beams
diffracting from an aperture, important for the Guoy phase of

RPLBs [64]. Additionally, there may be nuanced behavior of
either the phase or the electric field when including a more
detailed analysis of the RPLBs outside of the focus. The
models presented here are general and provide the framework
for investigating these more complex situations.

We believe that the combination of vector beams and STCs
will become of increasing interest for ultrafast optical appli-
cations as the knowledge and understanding becomes more
advanced. The combination of the models and analysis pre-
sented in this work and the further development of methods
to control and characterize STCs [65] (also for vector beams
[66]) will enable this advancement.
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APPENDIX: NONPARAXIAL DESCRIPTION

Here we outline the description for nonparaxial beams ac-
cording to the method used in Ref. [22] to add to the paraxial
equations and results presented in the main text. The chosen
method, without STCs, expands the wave equation to higher
orders of the generally small parameter ε = s0/zR = λ0/πs0

to have more accurate descriptions of the fields, improving
upon Eqs. (1) to (3), with all of the same properties unchanged
from Eqs. (5) to (11). Specifically,

Ẽr = Anp

{
ε[ρC2] + ε3

[
−ρC3

2
+ ρ3C4 − ρ5C5

4

]

+ ε5

[
−3ρC4

8
− 3ρ3C5

8
+ 17ρ5C6

16
− 3ρ7C7

8
+ ρ9C8

32

]}
,

(A1)

Ẽz = Anp

{
ε2[S2 − ρ2S3]

+ ε4

[
S3

2
+ρ2S4

2
−5ρ4S5

4
+ ρ6S6

4

]}
, (A2)

B̃θ = Anp

c

{
ε[ρC2] + ε3

[
ρC3

2
+ ρ3C4

2
− ρ5C5

4

]

+ ε5

[
3ρC4

8
+ 3p3C5

8
+3ρ5C6

16
−ρ7C7

4
+ ρ9C8

32

]}
.

(A3)

The only additional correction is on the beam power, of the

form

Anp = ω0

2c

√
8Pnp

πε0c

√
2Aω

�ω
e−r2/s2

, (A4)

Pnp = P0

1 + 3
(

ε
2

)2 + 9
(

ε
2

)4 , (A5)

where P0 is the physical power of the beam, equal to the
power in the nonparaxial case (without STCs). It must be
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noted that while this description is more accurate in describing
the fields for moderate values of ε, the convergence is not well
understood as ε becomes comparable to 1 since it is based on
an expansion in ε as a small parameter.

When longitudinal chromatism (LC) is present z is re-
placed everywhere with z − z0(ω) which effects the same
terms ψG, s, and R as in Eqs. (13) to (15). This results in both
the amplitude and phase of all Cn and Sn being frequency de-
pendent, with the only difference being that in the nonparaxial
case there are many more terms of higher n.

In the case where spatial chirp (SC) is present the modi-
fications are also as before in the paraxial case, effecting the
amplitude of all of the fields as in Eq. (27) and the phase as in
Eq. (28) due to the modified r′, and also requiring a frequency-
dependent coordinate transformation as in Eqs. (18) to (21).
The main difference then for the nonparaxial case is the higher
orders of ρ that now need to be described by the frequency-
varying ρ ′, and as for LC the phase effects are present as well
in the higher orders of Cn and Sn.

For the third and final STC described in the main text,
frequency-varying beam parameters zR and s0 need to be re-
placed by their frequency-dependent form depending on the
g0 value as in Eqs. (32) and (33). This introduces frequency

dependence in ε, ρ, s, ψG, and R which in sum effect both
the phase and amplitude. And again, the primary additional
complexity in the nonparaxial case is the higher orders present
of ε, ρ, Cn, and Sn.

In summary, the nonparaxial equations have been pre-
sented in this Appendix and a recipe for adapting each of
the three STCs presented in the main text to the nonparaxial
form has been given here. However, this could only be in
a general matter since in all cases both the amplitude and
phase develop frequency dependence that is of much higher
order in the nonparaxial form and therefore nontrivial. It
must be noted that for the parameters presented in the main
text (λ0 = 800 nm, s0 = 4 μm, ε = 0.0637) the nonparaxial
results are qualitatively the same, confirmed by numerical
calculations, and the fields and intensity are very similar
quantitatively. Only for extremely sensitive interactions such
as vacuum electron acceleration would the nonparaxial fields
be important with such focusing [23]. Indeed for tighter
focusing (larger ε) the nonparaxial form becomes more im-
portant, and would begin to significantly effect especially
the field-based effects presented in the main text, specifically
wavefront rotation and the changing CEP through the focal
volume.
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