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Surface electromagnetic waves in bianisotropic superlattices and homogeneous media
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This paper analyzes the existence of surface electromagnetic waves (SEWs) at the interface of bianisotropic
bicrystals which are formed of half-infinite periodic superlattices or of homogeneous bianisotropic media. In
either case we assume no absorption. Properties of the impedance matrices characterizing such bianisotropic
media are established. On this basis, a series of statements is proved on the maximum total number of SEWs
in two bicrystals composed of two superlattices or homogeneous media in such a way that the upper (lower)
half of one bicrystal complements the lower (upper) part of the other to an infinite periodic superlattice or
homogeneous media, respectively. It is shown that in superlattices the maximum number of SEWs at a fixed
tangential wave number equals two in the lowest forbidden band (this band begins from zero frequency) and
four in any upper forbidden band. It is also proved that at most two SEWs emerge in homogeneous bianisotropic
media.
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I. INTRODUCTION

During the last few decades electrodynamics of bian-
isotropic media has attracted significant researchers’ attention
[1–6]. Substantial results have been obtained concerning bulk
wave propagation [1–5,7–10], optical activity and circular
dichroism [11–15], negative refraction [16–19], nonreciproc-
ity effects [20–22], and the derivation of the effective
constants of bianisotropic metamaterials [23–26].

The planar boundary of dielectric media, including bian-
isotropic ones, can support electromagnetic waves of which
the amplitude decays to zero with distance in depth [6]. To
some extent, such surface electromagnetic waves (SEWs) re-
semble surface plasmons at metal-dielectric interfaces [27]
which were extensively studied in different options, in par-
ticular, in stacks of two-dimensional materials, such as
metal-halide perovskites and MXenes [28,29], and widely
used, e.g., in sensors [30]. Unlike surface plasmons, SEWs in
dielectrics can have very small propagation losses, so they can
be utilized, e.g., in communication systems and sensors where
a long propagation path is necessary. The nonreciprocity of
SEW propagation in bianisotropic media could also be of
potential interest for applications.

SEWs in bianisotropic materials have been investigated by
explicit calculations in Refs. [31–33]. TE- and TM-polarized
SEWs have been found in Ref. [34] on the interface between
an isotropic homogeneous half-space and a periodic system
of uniaxial bianisotropic layers. In Ref. [35] the dispersion
equation for SEWs in bianisotropic media has been written
in a general form, but its solvability has been analyzed only
for SEWs in a bicrystal formed of an isotropic medium and a
bianisotropic uniaxial one with optical axis perpendicular to
the interface.

The aim of the present paper is to establish how many
SEWs can emerge at the interfaces between two periodic
superlattices formed of bianisotropic materials of arbitrary

symmetry and between two arbitrary bianisotropic homoge-
neous media. These problems cannot be solved either by
explicit calculations or numerically, but an analytical method
exists which has allowed the study of a similar problem for
surface acoustic waves in phononic crystal [36–41] and later
has been adapted for SEWs in nonbianisotropic magnetoop-
tically inactive superlattices [42]. In this work we will also
stick to this method, so that our analysis of the existence of
SEWs will rely on general properties of the impedances of
bianisotropic media. We assume no absorption. In this case
impedances have a few important properties, e.g., they are
Hermitian. Also, no absorption makes it possible to uniquely
break the frequency range into allowed and forbidden bands.
Otherwise the Bloch wave number would be complex-valued
at any frequency, and therefore a rigorous account for losses
proves to be a fairly intricate problem which is out of the scope
of the present work.

The results obtained below apply to nonbianisotropic
magnetooptically active media. Bearing this in mind, for
brevity, in what follows we use the terms “bianisotropic”
and “anisotropic” with the reservation that the former also
implies “nonbianisotropic magnetooptically active” and the
latter means “nonbianisotropic magnetooptically inactive.” In
other words, this paper assumes that materials, which are
called anisotropic, are characterized only by the dielectric per-
mittivity and magnetic permeability tensors, they both being
purely real.

Our paper is organized as follows. The transfer matrix
is discussed in Sec. II, and the necessary properties of
impedances are derived in Sec. III. The statements concern-
ing the number of SEWs in biansotropic bicrystals are given
in Sec. IV. The conclusions are formulated in Sec. V. The
Appendix derives important expressions which are utilized in
our considerations. The Supplemental Material contains some
details omitted in the main text.
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II. TRANSFER MATRIX

Consider an electromagnetic wave
(

E(r, t )
H(r, t )

)
=

(
EEE(z)
HHH(z)

)
ei(kx−ωt ), (1)

which propagates in the plane XZ of a lossless bianisotropic
medium. If its material parameters either are coordinate inde-
pendent or depend only on z, then the x- and y-components
of EEE(z) and HHH(z) obey a system of ordinary differential equa-
tions, viz.,

dξ

dz
= iN̂ξ. (2)

The vector ξ(z) is defined differently; see, e.g.,
Refs. [6,35,43,44]. As in Ref. [42], we put

ξ(z) =
(

u
v

)
, u(z) =

(−Ey

Hy

)
, v(z) =

(
Hx

Ex

)
. (3)

The matrix N̂ in the form convenient for subsequent use is
derived in the Appendix. Here we only note that

N̂ = T̂N̂NN, (4)

where N̂NN is a Hermitian matrix (A8),

N̂NN
† = N̂NN, (5)

T̂ =
(

0̂ Î
Î 0̂

)
, (6)

where 0̂ and Î are 2×2 zero and identity matrices. Note that
in the case of anisotropic media considered in Ref. [42], i.e.,
when in constitutive relations (A4) κ̂ = 0 and ε̂ and μ̂ are real,
N̂NN turns out to be a real symmetric matrix.

Assume a medium periodically stratified along the axis
Z . The unit cell consists of n layers of thicknesses hi, and
the period is H = ∑n

i=1 hi, each layer is characterized by the
matrix N̂i. We define the transfer matrix M̂ through unit cell
by the relation ξ(H ) = M̂ξ(0), where z = 0 and z = H are the
boundaries of a unit cell, so M̂ is representable as a product
of the transfer matrices M̂i = exp (ihiN̂i ) of individual layers
and, by virtue of Eqs. (4) and (5), fulfills the equality

M̂−1 = T̂M̂†T̂. (7)

Due to Eq. (7), the four eigenvalues γα of M̂ are spilt in pairs
|γα| = |γα+2| = 1 or γα = 1/γ ∗

α+2, |γα| �= 1 (α = 1, 2), and,
in consequence, the (ω, k)-plane is partitioned into allowed
and forbidden bands. We are concerned with forbidden bands,
i.e., areas of the (ω, k)-plane in which |γα| �= 1 for all α. Let

|γα| < 1 < |γα+2|, α = 1, 2, (8)

and ζα , α = 1, 2, 3, 4, be corresponding eigenvectors. In ac-
cordance with our definition of M̂, the solutions ξ+(z) and
ξ−(z) to Eq. (2), which are specified at z = 0 by the conditions
ξ+ = ∑2

α=1 cαζα and ξ− = ∑4
α=3 cαζα , where cα are con-

stants, decay to zero as z → +∞ and z → −∞, respectively.
This fact is taken into account in the definition of impedances.

III. IMPEDANCES AND THEIR PROPERTIES

Let us define the 2×2 impedance matrices Ẑ and Ẑ′ by
relations

Vα = iẐUα, Vα+2 = −iẐ′Uα+2, α = 1, 2, (9)

where the vectors Uα and Vα are the first two and second
two components of ζα = (Uα Vα )t . Hence, at z = 0, Ẑ and
Ẑ′ relate the components u and v of those wave fields which
decay, respectively, in half-spaces z > 0 and z < 0.

The impedances Ẑ and Ẑ′ have the following properties in
forbidden bands. First, since the z-component of the averaged
energy flux is to vanish,

Ẑ = Ẑ†, Ẑ′ = Ẑ′†. (10)

Second,

Ẑ and Ẑ′ are positive definite matrices at ω → 0. (11)

The proof is similar to that given in Ref. [42]; see also the
Supplemental Material [45].

A third important property is that

∂Ẑ
∂ω

and
∂Ẑ′

∂ω
are negative definite matrices

in forbidden bands. (12)

It follows from the inequality

−i
d

dz

(
ξ†T̂

∂ξ

∂ω

)
> 0, (13)

where ξ(z) is a solution to system (2); see the Supplemental
Material [45]. In order to prove (13), we use a formula which
generalizes to bianisotropic media the Brillouin formula for
the average energy density W of electromagnetic fields in
anisotropic media with dispersion [8,46,47]:

W = 1

4

(
EEE
HHH

)†
∂ (ω�̂)

∂ω

(
EEE
HHH

)
, (14)

where �̂ is matrix (A4). Let us write (14) in the form

W = 1

4

(
ξ

φ

)†
∂ (ω�̂)

∂ω

(
ξ

φ

)
, (15)

where (ξ φ)t is the vector on the right-hand side of (A5) and
�̂ is matrix (A6). Further, we expand (15) and substitute (A7)
for φ. This yields

W = 1

4
ξ†

[
∂ (ω�̂1)

∂ω
− P̂1 − P̂†

1 + P̂2

]
ξ, (16)

where

P̂1 = ∂ (ω�̂2)

∂ω
�̂−1

4

(
�̂†

2 + k

ω
Ĵt

)
, (17)

P̂2 =
(

�̂2 + k

ω
Ĵ
)

�̂−1
4

∂ (ω�̂4)

∂ω
�̂−1

4

(
�̂†

2 + k

ω
Ĵt

)
, (18)

and, by regrouping the terms in (16) with due account for
Eqs. (A8)–(A11), we obtain that

W = 1

4
ξ† ∂N̂NN

∂ω
ξ. (19)
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Owing to Eqs. (2), (4), and (5),

−i
d

dz

(
ξ†T̂

∂ξ

∂ω

)
= ξ† ∂N̂NN

∂ω
ξ, (20)

so positiveness of W proofs inequality (13) and hence state-
ment (12) holds true.

Let the replacement of a material constant c by c + i�c,
where �c takes on a small real value, result in absorption.
Denote sgn(�c) = s and then

s
∂Ẑ
∂c

and s
∂Ẑ′

∂c
are negative definite matrices

in forbidden bands. (21)

This property stems from an expression of the time-averaged
heat power density Q released because of absorption of a
harmonic wave [46,47],

Q = 1

2
Re

(
E† ∂D

∂t
+ H† ∂B

∂t

)
, (22)

which, due to (A4), transforms to

Q = iω

4

(
EEE
HHH

)†

{�̂† − �̂}
(
EEE
HHH

)

≈ ω�c

2

(
EEE
HHH

)†
∂�̂

∂c

(
EEE
HHH

)

= �c

2

(
ξ† ∂N̂NN

∂c
ξ

)
= −i

�c

2

d

dz

(
ξ†T̂

∂ξ

∂c

)
, (23)

and the fact that Q > 0.
Thus, we have four properties of Ẑ and Ẑ′ at our dis-

posal. These properties turn out to be the same as those of
the impedances of anisotropic structures. The counterparts
of properties (10)–(12) for the case of anisotropic media
were used in Ref. [42]. However, we note that according to
Ref. [42] the counterpart of inequality (13) holds true, and
consequently ∂Ẑ/∂ω and ∂Ẑ′/∂ω are negative definite matri-
ces in anisotropic lossless materials provided that either (a)
k = 0, (b) there is no dispersion, or (c) the stratification axis
is either parallel to a symmetry axis or perpendicular to the
plane of symmetry. Derivation (14)–(20) removes these three
extra restrictions.

Let us discuss briefly the case of homogeneous bian-
isotropic media. Given k, there is a critical frequency ωL

below which all four eigenvalues of N̂ are complex-valued,
and, in view of Eqs. (4) and (5), they form complex conjugate
pairs. Thus the interval 0 < ω < ωL is a counterpart of the
lowest forbidden band of superlattices in the sense that within
it all partial solutions of Eq. (2) either decrease or increase
in a half-infinite medium. The counterparts Ẑh and Ẑ′

h of
impedances Ẑ and Ẑ′, respectively, are defined in terms of
the eigenvectors ξα of N̂, and in the interval 0 < ω < ωL they
possess properties (10)–(12) and (21).

IV. SURFACE ELECTROMAGNETIC WAVES

We are interested in SEWs in two bicrystals formed of
the halves of two infinite periodic bianisotropic superlattices
1 and 2 cut along a plane perpendicular to the periodicity

FIG. 1. Example of direct (a) and complementary (b) bicrystals
composed of two-layer half-infinite superlattices J = 1 (layers 1 and
2) and J = 2 (layers 3 and 4) and the band structure of bicrystals at a
fixed k (c). Frequency interval (0, ωu0) is the lowest forbidden band,
and frequency intervals (ωl1, ωu1) and (ωl2, ωu2) are upper forbidden
bands.

direction. The bicrystal consisting of the upper half of super-
lattice 1 and the lower half of superlattice 2 will be called
direct [Fig. 1(a)]. By joining the upper half of superlattice 2
and the lower half of superlattice 1 we get the complementary
bicrystal [Fig. 1(b)]. Such two bicrystals can be called a com-
plementary bicrystal pair since the upper (lower) half of one
of them complements the lower (upper) half of the other to an
infinite periodic superlattice.

SEWs emerge within overlapping areas of forbidden bands
of superlattices forming bicrystals. Both bicrystals have an
identical set of such areas, and we will call them forbidden
bands of bicrystals. The forbidden band 0 < ω < ωu which
goes from 0 to a frequency ωu will be called the lowest
one. The other forbidden bands ωl < ω < ωu (ωl �= 0) will
be called upper ones [Fig. 1(c)].

Let Ẑ(J ) and Ẑ′(J ) denote the impedances defined by (9) for
superlattices J = 1 and J = 2. Following this definition the
dispersion equations are reduced to

det(Ẑ(1) + Ẑ′(2) ) = 0 (24)

in the direct bicrystal and

det(Ẑ(2) + Ẑ′(1) ) = 0 (25)

in the complementary one. By utilizing properties (10)–(12)
of Ẑ(J ) and Ẑ′(J ) it proves to be possible to establish the total
number of roots of Eqs. (24) and (25) in a forbidden band
of a complementary bicrystal pair. Insofar as these properties
are the same as properties of impedances of anisotropic media
[42], the conclusions regarding SEWs are derivable analo-
gously, so we formulate only the final statements, namely,

Given k, at most two SEWs can exist in total in the lowest
forbidden band of a complementary bianisotropic bicrystal
pair.
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Given k, at most four SEWs can exist in total in an upper
forbidden band of a complementary bianisotropic bicrystals
pair.

[Some details of the derivation of these statements can be
found in the Supplemental Material [45].]

Numerical examples provided in Ref. [42] show that two
SEWs in the lowest forbidden band and four SEWs in an
upper forbidden band of a pair of anisotropic complemen-
tary bicrystals may exist. Since bianisotropy, when treated
as a small perturbation, cannot remove any SEWs found in
Ref. [42], we conclude that the predicted allowable numbers
of SEWs in bianisotropic bicrystals are exact maxima, i.e.,
two SEWs and four SEWs actually may emerge in forbidden
bands of a pair of bianisotropic complementary bicrystals.

Weak absorption does not remove SEWs either. For in-
stance, assume that with no absorption a SEW exists in the
direct bicrystal at a frequency ω = ω0, i.e., an eigenvalue χα

of ẐB = Ẑ(1) + Ẑ′(2) vanishes at this frequency. Let absorption
be describable via the change of a material constant c to
c + i�c. Due to Eqs. (12) and (21) the dispersion equation
necessarily has a root ω ≈ ω0 + iω′, and the sign of ω′ corre-
sponds to attenuating wave (1),

ω′ = −e†
α

∂ẐB
∂c eα

e†
α

∂ẐB
∂ω

eα

�c < 0, (26)

where eα is the eigenvector of ẐB associated with χα at ω =
ω0 and no absorption.

The number of SEWs in bicrystals formed of two ho-
mogeneous bianisotropic media J = 1 and J = 2 can be
established analogously. SEWs emerge in the interval 0 <

ω < min(ω(1)
L , ω

(2)
L2 ), where ω

(J )
L are critical frequencies of

media 1 and 2. Equations (24) and (25), after the replace-
ment of Ẑ(J ) and Ẑ′(J ) by Ẑ(J )

h and Ẑ′(J )
h , determine SEW

frequencies. Since the interval 0 < ω < min(ω(1)
L , ω

(2)
L ) is a

counterpart of the lowest forbidden band, we conclude that

Given k, at most two SEWs can exist in total in a comple-
mentary bicrystal pair formed of homogeneous bianisotropic
media.

If media are anisotropic, then, by virtue of the fact that
the matrix N̂ is real in this case, Ẑ(J )

h = Ẑ′(J )t
h , so the disper-

sion equations for the direct and complementary bicrystals
coincide. According to Ref. [48], at most one root exists,
that is, each of the bicrystals of a complementary pair sup-
ports at most one SEW. Examples of SEWs in homogeneous
anisotropic bicrystals are well known [49,50] (see also ref-
erences in Refs. [6,42]). Bianisotropy leads to Ẑ(J )

h �= Ẑ′(J )t
h

but small values of the pseudotensor κ̂, which enters the
constitutive relations Eq. (A4), i.e., weak bianisotropy, cannot
remove existing SEWs and only changes their frequencies.
Hence two SEWs actually may emerge in a complementary
bianisotropic bicrystal pair, so the above statement yields the
exact maximum.

In particular, this statement allows the existence of two
SEWs in a given bianisotropic bicrystal. Let us exemplify
such a situation. Assume “model” media 1 and 2 having the

same dielectric permittivity

ε̂ =
⎛
⎝ε⊥ −ig 0

ig ε⊥ 0
0 0 ε‖

⎞
⎠ (27)

in the XY Z coordinate system and the same κ̂. The rotation
of media 1 and 2 through the angles ϕ and −ϕ, respectively,
around the axis X , makes their dielectric permittivities differ-
ent in the XY Z frame. By joining media 1 and 2 along a plane
perpendicular to the axis Z we get a pair of complementary
bicrystals one of which can support two SEWs. For instance,
if ε⊥ = 5, ε‖ = 4, g = 3, ϕ = 20o and κ̂ = 0, then two SEWs
exist in the positive direction of the axis X in the direct
bicrystal (medium 1 is on top medium 2) at ω1 = 0.485ω0

and ω2 = 0.494ω0, where ω0 = ck, c is the light velocity in
vacuum. Once two SEWs exist at κ̂ = 0, both SEWs exist at
least while κ̂ is small. In the negative direction of the axis X
two SEWs emerge in the complementary bicrystal, whereas
no SEWs exist in the direct one, and this is a manifestation of
the nonreciprocity [21,22].

V. CONCLUDING REMARKS

We have analyzed the existence of SEWs in bianisotropic
magnetooptically active media assuming arbitrary crystal-
lographic symmetry and no absorption. In the presence of
absorption the impedance matrices cease being Hermitian and
lose other properties, so that the SEW problem in absorb-
ing materials requires a separate investigation. Nevertheless,
we have demonstrated that sufficiently weak absorption can-
not decrease the number of SEWs. This work generalizes
Refs. [42] and [48] where SEWs have been studied in
nonbianisotropic magnetooptically inactive superlattices and
homogeneous media, respectively, and, as indicated in the
Introduction, we call such materials “anisotropic,” while it is
adopted that the term “bianisotropic” also implies “nonbian-
isotropic magnetooptically active.”

Specifically, we have established the maximum number of
SEWs which may exist in a forbidden band of a pair of com-
plementary bicrystals constituted of two half-infinite periodic
bianisotropic superlattices. It turns out that in the case of an
arbitrary unit cell bianisotropy does not change the maximum
number of SEWs as compared to the number of SEWs in
anisotropic superlattices [42].

However, the situation is different when a unit cell consists
of 2n + 1 layers, ith and (2n + 2 − i)-th layers being identical
(symmetric unit cell). According to Ref. [42], in anisotropic
bicrystal with symmetric unit cells at most one SEW and at
most two SEWs may exist in the lowest forbidden band and
in an upper forbidden one, respectively. This is due to the fact
that the matrix N̂ proves to be real. In bianisotropic media N̂
is complex, and it occurs that the symmetry of unit cells plays
no role, so bianisotropy can increase the allowable maximum
of SEWs in a bicrystal with symmetric unit cells to two and
four in the lowest and upper forbidden bands, respectively.

We have also established that the maximum number of
SEWs at the interface between two homogeneous half-infinite
bianisotropic media is two. The example in the end of Sec. IV
confirms that two SEWs may exist. Note that the same model
shows that two SEWs may exist in the lowest forbidden band
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of a bicrystal composed of superlattices with symmetric unit
cells. Indeed, it can be observed that a weak periodicity is
unable to remove SEWs which exist in the bicrystal made
of homogeneous media, and the interval in which two SEWs
exist proves to be the lowest forbidden band.

Our results make it possible to refine some conclusions of
earlier papers. As pointed out in the end of Sec. III, from the
present work it follows that the absence of losses is sufficient
in order for the results of Ref. [42] to hold true. Another side
result is related to Ref. [48] where the existence of at most
one SEW in anisotropic media has been proved assuming no
dispersion. Our work shows that in such media with dispersion
there also emerges at most one SEW.
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APPENDIX

We substitute (1) in the Maxwell equations and bring the
resulting relations into the form

1

i

dξ

dz
= T̂

(
ωψ + kĴφ

)
, (A1)

−kĴtξ = ων, (A2)

where the vector ξ and the matrix T̂ are defined by Eqs. (3)
and (6), respectively, and ψ = (−Dy By Bx Dx )t ,

φ =
(
Hz

Ez

)
, ν =

(
Bz

Dz

)
, Ĵ =

(
Î
0̂

)
, (A3)

where the symbol t stands for transposition. Let us use the
bianisotropic constitutive relations(

D
B

)
= �̂

(
E
H

)
, �̂ =

(
ε̂ κ̂

κ̂† μ̂

)
, (A4)

where the Hermitian tensors ε̂ = ε̂† and μ̂ = μ̂† are, respec-
tively, the dielectric permittivity and magnetic permeability

tensors (magneto-optical activity is taken into account), and κ̂

is a complex nonsymmetric pseudotensor [4–6] and [21–24].
By regrouping Eq. (A4) we obtain

(
ψ

ν

)
= �̂

(
ξ

φ

)
, (A5)

where

�̂ = �̂�̂�̂t ≡
(

�̂1 �̂2

�̂†
2 �̂4

)
= �̂†, (A6)

�̂ is a 6×6 permutation matrix transforming vectors in-
volved in (A4) to those in (A5), �̂1 and �̂4 stand for the
upper 4×4 and lower 2×2 diagonal blocks of �̂, respec-
tively, and �̂2 is a 4×2 matrix with elements (�̂2)i j = (�̂)ik ,
i = 1, . . . , 4, j = 1, 2, k = j + 4.

The substitution of (A2) for ν in (A5) yields

φ = −�̂−1
4

(
�̂†

2 + k

ω
Ĵt

)
ξ. (A7)

Afterwards we substitute (A7) for φ in (A5), express ψ in
terms of ξ, insert the obtained expression of ψ and φ (A7)
in (A1), and arrive at Eq. (2) with matrix (4), where

N̂NN = ωÂ − kB̂ − k2

ω
Ĉ, (A8)

Â = �̂1 − �̂2�̂
−1
4 �̂†

2, (A9)

B̂ = �̂2�̂
−1
4 Ĵt + Ĵ�̂−1

4 �̂†
2, (A10)

Ĉ = Ĵ�̂−1
4 Ĵt . (A11)

Since �̂1 and �̂4 are Hermitian matrices, so are the matrices
Â, B̂, and Ĉ and hence N̂NN.

The representation of N̂NN in terms of the blocks of �̂, rather
than explicitly in terms of material constants like has been
done in Ref. [42] for nonbianisotropic media, proves to be
helpful in deriving relations (19) and (23).
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