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Multilayered density profile for noninteracting fermions in a rotating two-dimensional trap
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We compute exactly the average spatial density for N spinless noninteracting fermions in a 2d harmonic trap
rotating with a constant frequency � in the presence of an additional repulsive central potential γ /r2. We find
that in the large-N limit, the bulk density has a rich and nontrivial profile—with a hole at the center of the trap
and surrounded by a multilayered “wedding cake” structure. The number of layers depends on N and on the
two parameters � and γ leading to a rich phase diagram. Zooming in on the edge of the kth layer, we find that
the edge density profile exhibits k kinks located at the zeros of the kth Hermite polynomial. Interestingly, in the
large-k limit, we show that the edge density profile approaches a limiting form, which resembles the shape of
a propagating front, found in the unitary evolution of certain quantum spin chains. We also study how a newly
formed droplet grows in size on top of the last layer as one changes the parameters.

DOI: 10.1103/PhysRevA.103.033321

I. INTRODUCTION

Noninteracting spinless fermions in a confining trap is a
subject of much current theoretical and experimental interest
[1–7]. On one hand, this system is realizable in cold atom ex-
periments, and several techniques such as absorption imaging
[8–10] for collective density measurements and quantum gas
microscopes [3–5] for direct in situ imaging of the individual
fermions with remarkably high resolutions are available. On
the other hand, it is simple enough to be analytically tractable
and yet exhibits rich and nontrivial spatial fluctuations, even at
zero temperature, due to the Pauli exclusion principle [11–17].
While the bulk density is usually well described by the lo-
cal density approximation (LDA) [8,18], this approximation
breaks down near the edges of the Fermi gas, induced by
the trap. A number of recent studies have pointed out that
LDA is not sufficient to capture the density fluctuations and
correlations near the edges [12,14–16,19]. For certain one-
dimensional trapping potentials, such as the harmonic trap,
an exact mapping was found between the positions of the
fermions in the ground state and the eigenvalues of a suitable
random matrix ensemble [12,13]—for a recent review see
[20]. Using results from the random matrix theory (RMT),
the density correlations near the edges were computed ex-
actly and their universal properties (with respect to the shape
of the trapping potential) were elucidated [12,14–16,21–25].
The connection to RMT does not hold generically in higher
dimensions. However, using the determinantal properties of
the noninteracting fermions, the edge properties in higher
dimensions could still be computed analytically [15,16].

A particularly interesting situation corresponds to fermions
in a rotating trap in two dimensions, which has been stud-
ied recently both experimentally [26–28] and theoretically
[29–31]. In this system the single-particle Hamiltonian, in the

rotating frame, is given by [32,33]

Ĥ = p2

2m
+ V (r) − �Lz, (1)

where V (r) is a confining central potential, Lz = xpy − ypx =
−i(x∂y − y∂x ) is the z component of the angular momentum,
and � is the rotation frequency. For the harmonic trap V (r) =
(1/2)mω2r2, an important parameter is the ratio ν = �/ω,
which must satisfy 0 < ν < 1 to keep the fermions confined.
The limit ν → 0 corresponds to fermions in a non rotat-
ing harmonic trap, while in the opposite limit ν → 1, this
problem can be mapped to the celebrated Landau problem
of noninteracting fermions in a plane in the presence of a
perpendicular magnetic field [34]. Interestingly, in this ν → 1
limit, the positions of N fermions in the ground state map onto
the eigenvalues of the classical complex Ginibre ensemble of
RMT [31], where one considers a random N × N matrix with
independent complex Gaussian entries [35]. In this mapping
one assumes that the N fermions are confined in the lowest
Landau level, which can be realized by setting 1 − 2/N <

ν < 1. With this assumption, the bulk density for large N is
rather simple: it is just uniform over the disk of radius

√
N

centered at the origin [31].
This uniform bulk density emerges because, in the ground

state, the fermions are all in the lowest Landau level. A natural
question then is how the density may change if the many-body
ground state also contains single-particle states belonging to
higher Landau levels. Indeed, this is a generic situation for
fixed ν as one increases N . In addition, since the potential
V (r) is radially symmetric, it is convenient to solve the cor-
responding Schrödinger equation in polar coordinates, which
will automatically generate an effective repulsive interaction
∼1/r2 in the radial direction. Hence it is natural to consider a

2469-9926/2021/103(3)/033321(15) 033321-1 ©2021 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.103.033321&domain=pdf&date_stamp=2021-03-22
https://doi.org/10.1103/PhysRevA.103.033321


KULKARNI, MAJUMDAR, AND SCHEHR PHYSICAL REVIEW A 103, 033321 (2021)

more generic potential from the start:

V (r) = 1

2
mω2r2 + γ

2r2
, γ � 0 . (2)

For a plot of this potential V (r), see Fig. 4 in Appendix B. We
thus have two parameters 0 < ν < 1 and γ � 0. In this paper
we investigate the density profile in the ground state, for large
N , as a function of ν and γ and find an extremely rich phase
diagram in the (ν, γ ) plane.

Let us first summarize our main results. We find that in the
large-N limit the appropriate rescaled parameters are

c = γ

N
and M = (1 − ν2) N , (3)

which are both kept of order O(1) as N → ∞. We will
show later that this scaling is necessary to keep the average
density of fermions of order O(1) as N → ∞. The phase
diagram in the (M, c) plane is depicted in Fig. 1(a). There is
a series of critical lines c1(M ), c2(M ), . . . that separates the
regions labeled by k∗ where k∗ + 1 is the number of Landau
levels included in the ground state. As one crosses these
critical lines, the density profile undergoes abrupt changes, as
shown in Fig. 1(a). For a given k∗ the bulk density vanishes
for r <

√
l−(0), thus creating a hole around the origin [see

Fig. 1(b)]. Outside the hole the density is nonzero over an
annulus

√
l−(0) < r <

√
l+(0). On top of this annulus there is

a “wedding cake” structure [see Fig. 1(b)] with k∗ layers with
progressively smaller supports but with equal heights 1/π . For
example, the kth layer has support on

√
l−(k) < r <

√
l+(k)

(see Fig. 1). As shown later, l±(k) = O(N ). We also inves-
tigated the change in the density profile as one crosses the
critical lines in the phase diagram and found an interesting
“travelling front structure” in the density. Furthermore, if we
zoom in on the left boundary of the kth layer (and sym-
metrically on the right boundary), i.e., close to

√
l−(k) (and

symmetrically at
√

l+(k)), we find a nontrivial edge profile
of the density (11) with k kinks whose locations coincide
with the zeros of the kth Hermite polynomial Hk (−u) = 0,
with u denoting the scaled distance from

√
l−(k) [see inset of

Fig. 1(c)]. Finally, in the limit where k � 1, the edge profile
approaches a nontrivial limiting form, which we compute
exactly. Interestingly, the same limiting form has appeared in
completely different problems, such as in a propagating one-
dimensional fermionic front separating high- and low-density
phases and evolving unitarily in time [36–40].

II. MODEL AND PROPERTIES

We start with the single-particle Hamiltonian in (1) with
V (r) in Eq. (2). The model turns out to be integrable
in the sense that the Schrödinger equation Ĥψk,l (r, θ ) =
Ek,lψk,l (r, θ ) is exactly solvable in the polar coordinates (see
Appendix A for details). For convenience, we set m = h̄ = 1.
We get

ψk,l (r, θ ) = ak,l L
λ
k (r2)rλe−r2/2eilθ , with λ =

√
γ + l2 ,

(4)

where Lλ
k (x) are the generalized Laguerre polynomials and the

normalization gives a2
k,l = �(k+1)

π�(k+1+λ) . The associated eigen-
values, in units of ω, are given by (see Appendix B for details)
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FIG. 1. (a) Phase diagram in the (M, c) plane. It is divided into
regions labeled by k∗ = 0, 1, 2... denoting the number of bands (n)
that are below the Fermi level. The lines cn(M ) separate the regions
between k∗ = n − 1 and k∗ = n. In each of the regions, a typical
(representative) density profile is shown (blue). We see that every
new band creates a new layer in the density. (b) A 3D representation
of the exact density in (6). A hole around the origin is surrounded
by a multilayered “wedding cake” structure. (c) Plot showing the
comparison between the exact density in (6) (red solid) and the large-
N asymptotic bulk density (10) (black dashed) for c = 1, M = 10,
and N = 8000 (this corresponds to k∗ = 1 in the phase diagram). We
zoomed in on the left edge of the k = 1 layer, and the inset shows the
scaling function f edge

1 (u) in (11) plotted vs u.

Ek,l = 2k + 1 +
√

γ + l2 − νl . (5)

The single-particle states are labeled by a pair of integers (k, l )
with k = 0, 1, 2... and l = 0,±1,±2, .... The energy levels
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μ

γ = 0

Ek,l

l

FIG. 2. Energy levels Ek,l in (5) vs l for k = 0, 1, 2, 3, for γ = 5
and ν = 0.9. The purple (dashed) horizontal line marks the Fermi
level, μ = 7.5. Only the states with energy below μ can contribute
to the ground state.

(5) are shown in Fig. 2. Different values of k correspond to
different bands or Landau levels.

We now consider N spinless noninteracting fermions in
their ground state. The many-body ground state is thus given
by a Slater determinant constructed from N single-particle
eigenfunctions associated to the lowest N eigenvalues. For
a given N , the eigenfunctions participating in the Slater de-
terminant may belong to multiple bands of the spectrum in
Fig. 2, with k∗ denoting the label of the highest band which is
at least partially filled. We also denote by μ the Fermi energy,
i.e., the energy of the highest occupied single-particle energy
level. The Fermi energy μ can be tuned by varying N . As
μ increases one sees from Fig. 2, where μ is indicated by a
horizontal line, that more and more states with energy levels
below μ contribute to the ground state since k∗ also increases.

The average number density, normalized to N , at a point
r = (r, θ ) is given by ρ(r, θ, N ) = ∑N

i=1〈δ(r − ri)〉, where
〈· · · 〉 denotes the expectation value in the ground state. For
noninteracting fermions, it can be computed explicitly in
terms of single-particle eigenfunctions

ρ(r, θ, N ) =
∑
k,l

|ψk,l (r, θ )|2 =
k∗∑

k=0

ρk (r, θ, N ) , (6)

where ρk (r, θ, N ) denotes the density from the kth band and
is given by

ρk (r, θ, N ) = �(k + 1) e−r2

π

l+(k)∑
l=l−(k)

[
Lλ

k (r2)
]2

r2λ

�(λ + k + 1)
. (7)

Here l∓(k) are the locations where the Fermi level μ inter-
sects the kth band, i.e., Ek,l±(k) = μ. Solving this equation
using (5) (shifting energy by 1, effectively absorbing it in μ)
gives

l±(k) = ν(μ − 2k) ±
√

(μ − 2k)2 − γ (1 − ν2)

1 − ν2
. (8)

For a given k, Ek,l [Eq. (5)] has a minimum at l = l∗
where l∗ = ν√

1−ν2

√
γ . Note that l∗ is independent of k, and

the energy of the kth band at this minimum is given by
Ek,l∗ = 2k +

√
(1 − ν2)γ . If the Fermi level has to intersect

at least one band, we must have E0,l� < μ, which implies
μ >

√
(1 − ν2)γ . For a fixed μ, the number of bands k∗ below

μ can be obtained by simultaneously requiring Ek∗,l� = 2k∗ +√
(1 − ν2)γ < μ and Ek∗+1,l� = 2k∗ + 2 +

√
(1 − ν2)γ > μ,

which yields k∗ = Int[
μ−

√
(1−ν2 )γ
2 ], where Int(x) denotes the

integer part of x (see Appendix B for details). The rela-
tion between the Fermi energy μ and N can be obtained
by counting the total number of single-particle levels with
energy below μ. This gives

∑k∗
k=0 [l+(k) − l−(k)] = N , which

fixes μ in terms of N (see Appendix B for details). For
large N , it turns out that μ ∼ O(1). So far the results are
exact for arbitrary N , ν ∈ (0, 1), and γ > 0. To make further
progress we now work in the large-N limit and rescale the
two parameters ν and γ as in Eq. (3). Thus c and M are
the new rescaled parameters. It turns out that this scaling is
necessary to keep ρ(r, θ, N ) = O(1) for large N . In terms
of c and M, we have from Eq. (8), l±(k) = λ±(k)N , where

λ±(k) = (μ−2k)±
√

(μ−2k)2−cM
M and k∗ = Int[μ−√

cM
2 ].

III. CRITICAL LINES IN THE (M, c) PLANE

The (M, c) plane is divided into different regions labeled
by k∗ = 0, 1, 2, . . . separated by critical lines [see Fig. 1(a)].
For there to be k∗ bands, we require 2k∗ + √

cM < μ <

2(k∗ + 1) + √
cM. Setting the upper bound, μ = 2(k∗ + 1) +√

cM, one gets 4
M

∑k∗+1
q=1

√
q(q + √

cM ) = 1 (see Appendix
C for details). Solving this equation for c as a function of M
gives the critical line ck∗+1(M ). Thus, in the (M, c) plane we
get different regions labeled by k∗ = 0, 1, 2 . . . . The region
between cn(M ) and cn+1(M ) corresponds to the region with
k∗ = n, i.e., the Fermi level includes n bands below it. For
instance, c1(M ) and c2(M ) can be explicitly computed (see
Appendix C for details) and are plotted in Fig. 1(a), e.g.,
c1(M ) = (1/M )(M2/16 − 1)2

�(M − 4), where �(x) is the
Heaviside step function.

IV. DENSITY IN THE LARGE-N LIMIT

We start by analyzing the large-N limit of ρk (r, θ, N ) in
Eq. (7) upon setting r = z

√
N . Since l±(k) = λ±(k)N , we

can replace the discrete sum over l by an integral. We show
(see Appendixes D and E for details) that it converges to the
following form:

ρk (z
√

N, θ, N ) ≈ 2−k

π3/2k!

∫ a+(k)

a−(k)
dx e−x2

[Hk (x)]2, (9)

where a±(k) = (λ±(k)−z2 )
√

N
z
√

2
, and Hk (x) is the kth Hermite

polynomial. For fixed z, as N → ∞, the two bounds a+(k) →
∞ and a−(k) → −∞ iff

√
λ−(k) < z <

√
λ+(k). If z is out-

side this interval, both bounds tend to either +∞ or −∞
simultaneously. In the latter cases, the integral in (9) van-
ishes as N → ∞. In contrast, in the former case, the integral
approaches a finite value

∫ ∞
−∞ dx e−x2

[Hk (x)]2 = 2kk!
√

π .
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Hence we conclude that the density from the kth band at a
fixed rescaled distance z = r/

√
N converges to

ρbulk
k (r, θ, N ) ≈ 1

π
I√

λ−(k))<z<
√

λ+(k) , (10)

where the function I takes value 1 if the inequality in the
subscript is satisfied and 0 otherwise. Thus the bulk density
is flat (with value 1/π ) inside the kth annulus

√
λ−(k) < z <√

λ+(k) [see Fig. 1(b)]. We find in Fig. 1(c) an excellent
agreement between the results obtained from the exact evalu-
ation of the sum in Eqs. (6) and (7) for k∗ = 1 and the large-N
bulk density in Eq. (10). For a fixed k∗ � 1, the sum in Eq. (6)
gives a superposition of contributions of the type (10) for each
k � k∗, leading to the “wedding cake” structure in Fig. 1(b).

If z is close to one of the two edges, say the left edge√
λ−(k), we can estimate the limiting form of the edge density

when N → ∞ from the same Eq. (9). For this we set z2 =
λ−(k) +

√
2λ−(k)√

N
u, where u ∼ O(1). In this case, the lower

limit in the integral in Eq. (9) becomes a−(k) ≈ −u (with u
measuring the scaled distance from the left edge), while the
upper limit still approaches +∞ as N → ∞. Hence, we get

ρ
edge
k (r, θ, N ) ≈ f edge

k (u), (11)

where f edge
k (u) = 2−k

π3/2k!

∫ ∞
−u dx e−x2

[Hk (x)]2. Note that when

u → ∞, f edge
k (u) → 1/π , and the edge density matches

smoothly with the bulk density. In Fig. 1 we have zoomed
in on the left edge of k = 1 layer and plotted the scaling func-
tion f edge

1 (u) in the inset, which clearly shows a kink where
df edge

1 /du = 0. For the kth layer, setting df edge
k (u)/du = 0

[which implies Hk (−u) = 0], it follows that there will be k
kinks in f edge

k (u) whose locations coincide with the k zeros
of Hk (−u). The scaling function f edge

k (u) is actually universal
in the sense that it does not depend on c and M explicitly. In
fact, in the special case γ = 0 and ν = 1, but with fixed N
(the classical Landau problem)—and hence not in the scaling
limit discussed here—the edge density ρk for the kth Landau
level was studied in [41] and similar kinks were found for
finite N , but the scaling function f edge

k (u) was not computed
(see also [42] in the mathematics literature in the context of
polyanalytic Ginibre ensembles).

Furthermore, an interesting limiting shape emerges for
f edge
k (u) in the scaling limit of k large and u large but with

the ratio y = u/
√

2k fixed. In this case we find (see Appendix
E for details)

lim
k→∞

f edge
k (

√
2k y) = 1

π2
cos−1(−y) I−1<y<1 , (12)

and for y > 1 it takes a value of 1/π . Interestingly, a similar
shape appeared in the description of a propagating front in the
quantum evolution of a spin chain (equivalent to free fermions
on a lattice) [36–40]. It turns out that there is yet another inter-
esting scaling regime close to the two endpoints u ≈ ±√

2k.
For example, setting u = −√

2k + w√
2k1/6 with w = O(1),

lim
k→∞

k1/3π f edge
k

(
−

√
2k + w√

2k1/6

)
= F (w), (13)

where F (w) = ([Ai′(−w)]2 + wAi2(−w)), with Ai(z) de-
noting the Airy function. Interestingly, the same scaling

s

t
=

1
t
=

10
t
=

15

t
=

25

v1v1

π ρ1(r, θ,N)

FIG. 3. Density profile in Eq. (14) for M = 5 plotted as a func-
tion of the scaled distance s [45] for increasing values of t =
1, 10, 15, and 25. As t increases, the scaled density approaches the
constant value 1 for |s| < v1t and decays rapidly to 0 for |s| > v1t .
For t � 1, the forward and backward fronts separating the constant
density 1/π and the zero density outside move ballistically in oppo-
site directions with a constant speed v1.

function describes the tail of the density of eigenvalues (cen-
tered and scaled) in the Gaussian unitary ensemble of RMT
[43,44].

V. CROSSING THE CRITICAL LINE IN THE (M, c) PLANE

When k∗ changes from k∗ = 0 to k∗ = 1 (which means a
new band is included below the Fermi level), one may wonder
how the density profile changes from a one-layered structure
to a two-layered structure. When one crosses this critical line
c = c1(M ) ≡ c1, the second layer appears on top of the first
layer (Fig. 1). Here we describe the evolution of the density
profile of this newly formed droplet as a function of the
distance c1 − c below the critical line c1 for fixed 4 < M < 12
(see Appendix F for details).

As k∗ changes from 0 to 1, the Fermi level μ exceeds the
value μ = 2 + √

c1M by a small amount δ: μ = 2 + √
c1M +

δ, where δ � 1. As k∗ jumps from 0 to 1, we find that the ad-
ditional macroscopic density in the second layer appears over
the scaled region

√ c1
M − v1

√
δ < z2 <

√ c1
M + v1

√
δ, where

v1 =
√

2
M (c1M )1/4 and z = r/

√
N . Therefore the center of the

second layer appears at zc = (c1/M )1/4. Here we give a scal-
ing description of this density in the second layer just after
its appearance, i.e., in the limit δ → 0. Let z2 = √ c1

M + ε,
where ε measures the distance from the center of the second
layer. We analyze Eq. (7) with k = 1 by replacing, for large
N , the sum by an integral and evaluating it by the saddle-
point method (see Appendix F for details). This leads to the
following density profile of the droplet (for a plot see Fig. 3):

ρ1(z
√

N, θ, N ) ≈ 1

π
[F1(s + v1t ) − F1(s − v1t )] , (14)

where F1(z) = 1
2 [erfc(z) − 2√

π
z e−z2

], with erfc(z) being the

complementary error function. Here s = ε
√

N/2(M/c1)1/4 is
the scaled distance measured from the center of the droplet,
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while t = √
N/2(M/c1)1/4

√
δ is proportional to c1 − c > 0,

measuring the deviation from the critical line. If we interpret s
and t as space and time, the density profile in Eq. (14) has an
interesting interpretation: the two edges of this profile move
ballistically away from the droplet center with a constant
speed v1. At large t , the widths of these “solitonic” fronts
remain of O(1) while the height of the density behind the
fronts approaches a constant value 1/π (see Fig. 3). This
picture can be easily generalized to other critical lines in the
(M, c) plane (see Appendix F for details).

VI. CONCLUSIONS

To conclude, we have shown analytically that the aver-
age density profile in the ground state of N noninteracting
fermions in a rotating trap exhibits a rich multilayered
“wedding cake” structure, as more and more Landau levels
participate in the ground state by increasing N , leading to
a highly interesting phase diagram in the parameter space.
This nontrivial density profile owes its origin entirely to
quantum effects and cannot be obtained from a simple local
density/Thomas-Fermi approximation. It would be interest-
ing to study the effect of the inclusion of more and more
Landau levels on other observables, going beyond the one-
point function studied in this paper, such as the number
variance and the entanglement entropy (see, e.g., [31,46–
48]). We note that strongly interacting bosons and fermions
have been studied experimentally in rotating traps, leading in
particular to the formation of vortex lattices [49,50]. In our
case there is a hole in the density at the center of the trap, but
this is due to the repulsive inverse-square interaction γ /(2r2)
and it is not related to a vortex. It will be challenging to see
how interactions can change the above scenario, in particular,
leading to the generation of vortices.
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APPENDIX A: MODEL AND BASIC PROPERTIES

As mentioned in the main text, our starting Hamiltonian is

Ĥ = p2

2
+ 1

2
ω2r2 + γ

2r̂2
− �Lz, (A1)

where Lz = xpy − ypx = −i(x∂y − y∂x ) is the z component
of the angular momentum, γ characterizes the repulsivelike
potential at the center (inverse-square type), ω is the trap
frequency, and � is frequency at which the trap rotates around
the vertical axis. For convenience, we have set the mass m = 1
and also h̄ = 1. Throughout the work we will consider the
case in which the inverse-square central potential is very large
(see Fig. 4), i.e.,

γ = cN, c ∼ O(1), regime of interest. (A2)

In polar coordinates (r, θ ), the Hamiltonian reads

Ĥ = −1

2

(
∂2

r + 1

r̂
∂r

)
+ p2

θ

2r̂2
+ 1

2
ω2r̂2 + γ

2r̂2
− �Lz, (A3)

where

Lz = pθ = −i∂θ . (A4)

The first goal is to find eigenstates and eigenvalues of
Eq. (A3). Let us substitute

ψ (r, θ ) = ψ (r)eilθ , (A5)

where l = 0,±1,±2, . . . are integers because the wave func-
tion needs to respect 2π periodicity in the angular direction.
Then we get

Ĥψ (r)=
[

− 1

2

(
∂2

r + 1

r
∂r

)
+ 1

2
ω2r2+ γ + l2

2r2
−l�

]
ψ (r).

(A6)

Hence the equation we need to solve is Ĥψ (r) = Eψ (r),
which gives us[

− 1

2

(
∂2

r + 1

r
∂r

)
+ 1

2
ω2r2+ γ + l2

2r2
− l�

]
ψ (r)=Eψ (r).

(A7)

To reduce the above eigenvalue equation [Eq. (A7)] to a stan-
dard form, we make the following transformation:

ψ (r) = e−ωr2/2r
√

γ+l2
G(ωr2) . (A8)

It is then easy to see that G(z) satisfies the differential equation

zG′′(z) + (b − z)G′(z) − a G(z) = 0 , (A9)

where

⎧⎨
⎩

a = 1
2

[
1 +

√
γ + l2 − E+� l

ω

]
,

b = 1 +
√

γ + l2 .

(A10)

This is a standard confluent hypergeometric differential
equation whose general solution is given by the linear com-
bination of two independent solutions as follows [51]:

G(z) = A1 z1−b M(a − b + 1, 2 − b, z) + A2 M(a, b, z),

(A11)

where A1 and A2 are two arbitrary constants and

M(a, b, z) =
∞∑

p=0

(a)p

(b)p

zp

p!
= 1 + a

b
z + a(a + 1)

b(b + 1)

z2

2!
+ · · ·

(A12)
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is the Kummer confluent hypergeometric function. Here
(a)p, (b)p are Pochhammer symbols, i.e., (a)p = �(a+p)

�(a) ,
where �(x) is a Gamma function. Note that the arguments
of the two functions in (A11) are different. The function
M(a, b, z) has the following asymptotic behaviors:

M(a, b, z) ≈

⎧⎪⎪⎨
⎪⎪⎩

1 + a

b
z + O(z2) , z → 0

ez za−b

�(a)
, z → ∞.

(A13)

Hence the most general solution for the eigenfunction ψ (r) in
Eq. (A8) reads

ψ (r) = e−ωr2/2r
√

γ+l2

× [A1 (ω r2)1−b M(a − b + 1, 2 − b, ω r2)

+ A2 M(a, b, ω r2)] , (A14)

where a and b are given in Eq. (A10).
To fix these unknown constants A1 and A2, we first consider

the behavior of ψ (r) as r → 0. Using Eq. (A13) we see that

as r → 0, ψ (r) ∼ A1ω
−
√

γ+l2
r−

√
γ+l2

. However, the eigen-
function must be square integrable, i.e., 2π

∫ ∞
0 ψ2(r)r dr

should be finite. Substituting the small r behavior, we see that

the integral behaves as r2(1−
√

γ+l2 ) in the lower limit r → 0.
Hence, since l = 0,±1, . . . , the integral is divergent for all
γ > 1. And this is indeed the case in our problem where
γ is scaled as γ = cN , where c = O(1) and N → ∞ [see
Eq. (A2)]. Hence we must have A1 = 0. Therefore the solution
now reads

ψ (r) = A2 e−ωr2/2r
√

γ+l2
M(a, b, ω r2) . (A15)

We now consider the other limit r → ∞. Substituting the
asymptotic behavior given in Eq. (A13) in Eq. (A15), we find
that

ψ (r) ≈ A2

�(a)
ωa−br2a−b−1eωr2/2 . (A16)

Clearly, the integral 2π
∫ ∞

0 ψ2(r)r dr diverges at the upper
limit r → ∞, provided �(a) is finite. Hence to cure this
divergence we must choose |�(a)| = +∞, which means that
a = −k where k = 0, 1, 2, . . . is a non-negative integer. In
fact, this is the quantization condition, and when a = −k the
function M(a = −k, b, z) is a polynomial of degree k and the
wave function is square integrable. The quantization condition
a = −k, using Eq. (A10), reads√

γ + l2

2
− l�

2ω
− E

2ω
+ 1

2
= −k . (A17)

The normalization condition fixes the constant A2 = ck,l ,
which depends on both quantum numbers k and l . Hence,
summarizing, the complete set of eigenfunctions is given by

ψk,l (r, θ ) = ck,l r
λe−ωr2/2M(−k, 1 + λ, ωr2)eilθ , (A18)

where λ =
√

γ + l2 with the associated eigenvalues from
Eq. (A17):

Ek,l = ω[2k + 1 +
√

γ + l2] − �l . (A19)

Without loss of generality, we will set ω = 1 (i.e., the ener-
gies are expressed in units of ω) and introduce ν ≡ �/ω < 1.
Note also that Kummer’s confluent hypergeometric functions
are related to generalized Laguerre polynomials as

M(−k, 1 + λ, r2) = �(k + 1)�(1 + λ)

�(1 + k + λ)
Lλ

k (r2) . (A20)

Therefore, expressing Eq. (A18) in terms of generalized La-
guerre polynomials is preferable, since these functions have
an orthonormality condition that turns out to be useful:∫ ∞

0
dx xλe−xLλ

k (x)Lλ
k′ (x)dx = �(k + λ + 1)

�(k + 1)
δkk′ . (A21)

The normalization requirement 2π
∫ ∞

0 rdr|ψk,l (r)|2 = 1 fi-
nally gives

ψk,l (r, θ ) = ak,l L
λ
k (r2)rλe−r2/2eilθ , (A22)

with

a2
k,l = �(k + 1)

π�(k + 1 + λ)
. (A23)

The associated eigenvalues are now expressed as

Ek,l = 2k + 1 +
√

γ + l2 − νl. (A24)

Equations (A22) and (A24) form the complete solution of our
system. In what follows we will analyze the energy levels
[Eq. (A24)] of the system.

APPENDIX B: ANALYSIS OF ENERGY LEVELS AND THE
GROUND STATE

In this section we will analyze the energy levels
[Eq. (A19)] and discuss the ground state for a system which
has N fermions. To start with, let us recap the γ = 0 case.

1. γ = 0 case

For γ = 0, Eq. (A1) reduces to the Hamiltonian consid-
ered in Refs. [26,27,31]. The corresponding eigenfunctions
were computed not in the polar coordinates but rather in the
coordinates (z, z̄) where z = x + iy. In this representation the
eigenfunctions read (see, e.g., Refs. [26,27,31,46])

ψn1,n2 (z, z̄) = An1,n2 ezz̄/2∂
n1
z̄ ∂n2

z e−zz̄ , (B1)

with the associated eigenvalues (in units such that ω = 1)

En1,n2 = 1 + (1 − ν)n1 + (1 + ν)n2 , (B2)

where n1 = 0, 1, 2, . . . and similarly n2 = 0, 1, 2, . . . , where
0 < ν = �/ω � 1. This last condition follows from the fact
that for ν > 1 the system is “unstable” in the sense that the
fermions can “fly away.” Another important point one can
observe is that if ω = �, then it becomes the Landau problem
(free electrons in a perpendicular magnetic field) with energy
levels given by

ELandau
n1,n2

= 1 + 2�n2, Landau problem. (B3)

The lowest Landau level (LLL) is given by n2 = 0. For
a given n2, there is an N-fold degeneracy. We do not want
degeneracy and therefore it can be lifted by choosing � < ω.
This problem can also be alternatively solved in the polar
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HHole

FIG. 4. (Left) The external potential V (r) = 1
2 ω2r2 + γ

2r2 from Eq. (A1) is plotted for visualization purposes. We took c = 100 and N =
400. We see the highly repulsive central potential that eventually causes a hole/empty region. (Right) Here we show a schematic figure (top
view) showing the fermions in 2D. The formation of the central hole and multiple layers and multiple edges is the key finding and property of
the underlying Hamiltonian [Eq. (A1)]. This is certainly missed via a traditional local density approximation (see also Fig. 7).

coordinates discussed in the previous section. To see the con-
nection between these two representations, we put γ = 0 in
Eq. (A19) and get

Ek,l = (2k + 1 + |l|) − νl, (B4)

where k = 0, 1, 2 . . . and l = 0,±1,±2 . . . . Comparing
Eqs. (B4) and (B2), we get

n1 − n2 = l, n1 + n2 = 2k + |l|, (B5)

which implies

n1 = k + l + |l|
2

, n2 = k + |l| − l

2
. (B6)

Therefore the LLL n2 = 0 and n1 = 0, 1, 2 . . . corresponds
to k = 0, l = 0, 1, 2 . . . . Note that when k = 0, we have two
branches (positive and negative l),

Ek=0,l = (1 + |l|) − νl. (B7)

Thus the LLL (n2 = 0 and n1 = 0, 1, 2, . . . ) corresponds to
the right branch (l � 0) and k = 0 in the polar representation
of the eigenfunctions. The left panel of Fig. 5 shows the
energy levels for the case of γ = 0.

2. γ �= 0 case assuming γ = cN where c ∼ O(1)

We now discuss the case with γ �= 0. This case turns out to
be quite nontrivial. We recap that the energy levels are given
by [Eq. (A19)]

Ek,l = 2k + 1 +
√

γ + l2 − νl. (B8)

For a given k, Ek,l [Eq. (B8), with energy shifted by 1 for
convenience] has a minimum at l = l∗, where

l∗ = ν√
1 − ν2

√
γ . (B9)

Note that l∗ is independent of k and the energy of the kth
band at this minimum is given by

Ek,l∗ = 2k +
√

(1 − ν2)γ . (B10)

We fix the Fermi level at μ. By varying μ, we can intersect
the energy spectrum Ek,l at different points. As μ increases,
more and more k bands of the spectrum become lower than the
Fermi level and hence should be included in the construction
of the many-body ground state. The right panel of Fig. 5
shows the energy levels for the case of γ �= 0. It intersects
the kth band at two points l±(k) along the l axis which can be
easily computed by setting Ek,l = μ and we get

l±(k) = ν(μ − 2k) ±
√

(μ − 2k)2 − γ (1 − ν2)

1 − ν2
. (B11)

Note that if the Fermi surface has to intersect at least one band,
we must have E0,l� < μ, which indicates that

μ >
√

(1 − ν2)γ . (B12)

For a fixed μ, the number of bands k∗ + 1 below μ can be
obtained by setting

Ek∗,l� = 2k∗ +
√

(1 − ν2)γ < μ ,

Ek∗+1,l� = 2k∗ + 2 +
√

(1 − ν2)γ > μ . (B13)

Hence k∗ is given by

k∗ = Int

[
μ −

√
(1 − ν2)γ

2

]
, (B14)

where Int(x) denotes the integer part of x. Finally, the rela-
tion between the Fermi energy μ and N can be obtained by
counting the total number of single-particle levels with energy
below μ. This gives

k∗∑
k=0

[l+(k) − l−(k)] = N . (B15)

Using Eq. (B11), this gives

2

1 − ν2

k∗∑
k=0

√
(μ − 2k)2 − γ (1 − ν2) = N . (B16)
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μ

γ = 0

Ek,l

l

μ

γ = 0

Ek,l

l

FIG. 5. (Left) Energy levels for the case γ = 0, ν = 0.9, and μ = 6.2 [Eq. (A24)]. (Right) Energy levels for the case γ = 5, ν = 0.9, and
μ = 7.5 [Eq. (A24)]. For both figures, the purple (dashed) line shows the Fermi level up to which we are allowed to fill fermions. The black,
red, green, and blue curves represent k = 0, 1, 2, 3 bands, respectively. The figures show that if one fixes the Fermi level appropriately, then
only three energy bands (k = 0, 1, 2) play a role. Instead of fixing the Fermi level, one can alternatively fix the number of fermions N . These
figures demonstrate the dramatic difference between γ = 0 and the γ �= 0 case.

It is important to note that all the above results until now are
valid for arbitrary N , arbitrary parameters ν ∈ [0, 1], and γ >

0.
We will now work in the large-N limit and set

γ = cN , (1 − ν2)N = M, Large-N limit. (B17)

Note that we are taking the limit ν → 1, N → ∞, keeping
(1 − ν2)N = M fixed. Therefore we have just two parameters,
c and M, left, and we want to calculate the average density in
the ground state in the limit of large N , for fixed c and M. We
will see that in the (M, c) plane there is a series of critical lines
separating phases with different density profiles. In terms of c
and M we thus have

l±(k) = λ±(k)N , (B18)

where

λ±(k) = (μ − 2k) ±
√

(μ − 2k)2 − cM

M
,

k∗ = Int

[
μ − √

cM

2

]
. (B19)

Similarly, the relation between μ and N in Eq. (B16) be-
comes

2

M

k∗∑
k=0

√
(μ − 2k)2 − cM = 1 . (B20)

For fixed c and M, we have μ ∼ O(1). Note that if we need
λ±(k) in Eq. (B18) to be O(1), then we have to choose the
scaling γ = cN . This justifies a posteriori the scaling γ = cN
for large N used in Eq. (B17). Next we will discuss this (M, c)
plane and critical lines in this plane.

APPENDIX C: (M, c) PLANE AND CRITICAL LINES

The (M, c) plane gets divided into different regions, each
labeled by k∗ = 0, 1, 2, . . . . For example, if k∗ = 0 (only the

first band k = 0 is included in the ground state) we must have

√
cM < μ < 2 +

√
cM . (C1)

The upper inequality gets violated when μ = 2 + √
cM. Sub-

stituting this value of μ in Eq. (B20) with k∗ = 0, we get the
first critical line c = c1(M ) in the (M, c) plane (see Fig. 6),

c1(M ) =

⎧⎪⎨
⎪⎩

1
M

(
M2

16
− 1

)2

, M � 4

0 M < 4.

(C2)

Hence if c � c1(M ), the ground state contains only the k = 0
band (i.e., k∗ = 0).

Next let us consider the case k∗ = 1, i.e., two bands k =
0 and k = 1 are below the Fermi level μ. From the equa-

tion for k∗ in Eq. (B18) we see that k∗ = Int( μ−√
cM

2 ) = 1

c c1(M) c2(M)

k∗ = 0 k∗ = 1 k∗ = 2
M

FIG. 6. Phase diagram in the (M, c) plane. It is divided into
regions labeled by k∗ = 0, 1, 2 . . . denoting the number of bands (n)
that are below the Fermi level. The lines cn(M ) separate the regions
between k∗ = n − 1 and k∗ = n. In each of the regions, a typical
(representative) density profile is shown (blue). We see that every
new band creates a new layer in the density.
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implies

2 +
√

cM < μ < 4 +
√

cM . (C3)

The lower limit corresponds to the critical line c = c1(M )
discussed before. The upper limit gives a new critical line c =

c2(M ) obtained by substituting μ = 4 + √
cM in Eq. (B20)

with k∗ = 1, i.e.,

2

M
[
√

(4 +
√

cM )2 − cM +
√

(2 +
√

cM )2 − cM] = 1.

(C4)

Solving for c = c2(M ) we get

c2(M ) =
⎧⎨
⎩

17M5 − 416M3 − 12
√

2
√

M10 − 48M8 + 768M6 − 4096M4 + 2304M

256M2
, M > 12

0, 4 < M < 12.

(C5)

This second critical line [Eq. (C5)] is also plotted in Fig. 6. For
higher values of k∗, one can obtain a similar formula for the

critical line. For general k∗, the condition k∗ = Int( μ−√
cM

2 )
indicates that

2k∗ +
√

cM < μ < 2(k∗ + 1) +
√

cM . (C6)

Setting μ = 2(k∗ + 1) + √
cM in Eq. (B20) and simplifying,

one gets

4

M

k∗+1∑
q=1

√
q(q +

√
cM ) = 1 . (C7)

Solving this equation for c as a function of M gives the critical
line ck∗+1(M ). For k∗ = 0 and k∗ = 1 the explicit solutions
are given respectively in Eqs. (C2) and (C5). However, one
can easily work out the asymptotics. For example, the line
ck∗+1(M ) starts from M∗ = 2(k∗ + 1)(k∗ + 2). For k∗ = 0 and
k∗ = 1, this gives M∗ = 4 and M∗ = 12, respectively. For
large M, it is easy to show from Eq. (C7) that

ck∗+1(M ) ≈ M3

28
[∑k∗+1

q=1
√

q
]4 . (C8)

Thus in the (M, c) plane we get different regions labeled
by k∗ = 0, 1, . . . . The region between cn(M ) and cn+1(M )
corresponds to the region with k∗ = n, i.e., the Fermi level
has exactly n + 1 bands below it. In Fig. 6 we show the (M, c)
plane and some critical lines that demarcate various regions.
In each region we have also sketched a typical/representative
density profile. Next we will discuss the density in the ground
state.

APPENDIX D: DENSITY AS A FUNCTION OF SPACE
(EXACT EXPRESSION FOR FINITE N)

We recap [Eq. (A22)] that the single-particle wave func-
tions can be written as

ψk,l (r, θ ) = ak,l L
λ
k (r2)rλe−r2/2eilθ , (D1)

with

a2
k,l = �(k + 1)

π�(k + 1 + λ)
and λ =

√
γ + l2 . (D2)

Lα
k (x) are the generalized Laguerre polynomials. The average

density in the ground state is given by the general formula

ρ(r, θ, N ) =
∑
k,l

|ψk,l (r, θ )|2

= e−r2

π

k∗∑
k=0

l+(k)∑
l=l−(k)

�(k + 1)
[
Lλ

k (r2)
]2

r2λ

�(λ + k + 1)

=
k∗∑

k=0

ρk (r, θ, N ), (D3)

where l±(k) are given in Eq. (B18), with μ determined from
Eq. (B20). The contribution to the density from the kth band
is given by

ρk (r, θ, N ) = �(k + 1) e−r2

π

l+(k)∑
l=l−(k)

[
Lλ

k (r2)
]2

r2λ

�(λ + k + 1)
. (D4)

The above expression for density [Eqs. (D3) and (D4)] is
valid for any N (see Fig. 7). In what follows we will take the
large-N limit and provide further analytical insight into the
form of the density.

APPENDIX E: DENSITY AS A FUNCTION OF SPACE IN
THE LARGE-N LIMIT

In the large-N limit, noting that both l±(k) scale as N , we
set l = Ny and replace the discrete sum over l by an integral
over y. Furthermore, we scale r = z

√
N . With this change of

variable, we want to first express the integrand as a function
of y for fixed z in the limit of large N . Let us start with the
quantity λ =

√
γ + l2. Recollecting that γ = cN and setting

l = Ny, we get for large N ,

λ � Ny + c

2y
. (E1)

Approximating the � function in Eq. (D4) by the Stirling

formula �(z + 1) ∼ √
2π e(z+ 1

2 ) ln(z)−z for large z and setting
r = z

√
N , we find to leading order for large N ,

ρk (r, θ, N ) ≈
√

N�(k + 1)

π
√

2π

∫ λ+(1)

λ−(1)

dy√
y

× eN[y ln(z2/y)+y−z2](Ny)−k
[
LNy

k (z2N )
]2

, (E2)
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z

f edge
k (u)

u

λ−(0) λ−(1) λ+(1) λ+(0)

ρ
(z
√ N

,θ
,N

)

x

y

x

y

ρ
(z
√ N

,θ
,N

)

FIG. 7. (Left) Plot showing the comparison between the exact expression for density [Eq. (D3), red solid] and the bulk density expression
at large N [Eq. (E8), black dashed]. We chose c = 1, M = 10, and N = 8000, and we are in the k∗ = 1 region of Fig. 6. We also notice the two
kinks (red solid) which stem from the zeros of the Hermite polynomial of degree k = 1 in our case. We have zoomed the location of the kink
for the left edge and shown f edge

1 (u). (Right) A 3D representation of exact expression for density [Eq. (D3)]. We can see the nontrivial layered
structure (z = √

x2 + y2).

where λ±(k) has been defined in Eq. (B18). In the large-N
limit, the integral over y is dominated by a saddle point at
y = z2. Therefore it is natural to make the change of variable,

y = z2 +
√

2

N
x z . (E3)

Therefore Nz2 ≈ Ny − x
√

2Ny. We can now use the follow-
ing remarkable limiting formula for the generalized Laguerre
polynomials:

lim
λ→∞

λ−k/2Lλ
k (λ −

√
2λx) = 2−k/2

�(k + 1)
Hk (x) , (E4)

where Hk (x) is the Hermite polynomial of index k. Substi-
tuting λ ≈ Ny and using Nz2 ≈ Ny − x

√
2Ny we find, using

Eq. (E4), that

lim
N→∞

(N y)−k
[
LNy

k (Ny − x
√

2Ny)
]2 = 2−k

[�(k + 1)]2
H2

k (x) .

(E5)

Thus the integral in Eq. (E2) reads

ρk (r, θ, N ) ≈ 2−k

π3/2�(k + 1)

∫ a+(k)

a−(k)
dx e−x2

[Hk (x)]2 , (E6)

where

a±(k) = (λ±(k) − z2)
√

N

z
√

2
. (E7)

Therefore the density in the kth band is supported on the in-
terval

√
λ−(k) < z <

√
λ+(k). It turns out that this expression

for the density has very interesting bulk and edge properties.
In the subsequent sections we analyze these properties.

1. Bulk

If z is in the bulk, i.e., far away from these two edges,
then in the large-N limit, the two limits a±(k) → ±∞. Hence
the integral becomes simply

∫ ∞
−∞ du e−u2

[Hk (u)]2 = 2k�(k +
1)

√
π . This gives the bulk density

ρbulk
k (r, θ, N ) ≈ 1

π
I√

λ−(k))<z<
√

λ+(k) , (E8)

where I√
λ−(k))<z<

√
λ+(k) is an indicator function that takes

value 1 if the inequality in the subscript is satisfied and 0
otherwise.

Let us summarize the results of the above Sec. E 1. The
total density is obtained by summing over all the bands below
the Fermi energy and is given by its large-N scaling form,

ρ(r, θ, N ) ∼ f

(
r√
N

)
, (E9)

where the scaling function f (z) is given by

f (z) = 1

π

k∗∑
k=0

I√
λ−(k)<z<

√
λ+(k) , (E10)

and λ±(k) is given in Eq. (B18). One can check that f (z)
in Eq. (E10) is normalized, i.e., 2π

∫ ∞
0 f (z) z dz = 1, upon

using the definition of λ±(k) from Eq. (B18) and the relation
in Eq. (B20).

Hence the limiting density has a compact single support
over

√
λ−(0) < z <

√
λ+(0). For k∗ = 0, it is just a simple

flat density over this support. However, for k∗ > 0 the density
has a nontrivial layered shape. For example, for k∗ = 1, the
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f edge
1 (u)

u

fedge
2 (u)

u

FIG. 8. The edge density scaling functions f edge
k (u), i.e., Eq. (E13), is plotted vs u for k = 1 (left panel) and k = 2 (right panel). We see

that the location of the kinks is at Hk (u) = 0.

density is given by (see Fig. 7)

f (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 , z <
√

λ−(0)

1

π
,

√
λ−(0) < z <

√
λ−(1)

2

π
,

√
λ−(1) < z <

√
λ+(1)

1

π
,

√
λ+(1) < z <

√
λ+(0)

0 , z >
√

λ+(0) .

(E11)

2. Edges

In contrast, if z is close to one of the two edges, say the left
edge

√
λ−(k), we can estimate the limiting form of the edge

density when N → ∞ from the same expression in Eq. (E6).
For this we set

z2 = λ−(k) +
√

2λ−(k)√
N

u , (E12)

where u ∼ O(1). In this case the lower limit in the integral in
Eq. (E6) becomes a−(k) ≈ −u (with u measuring the scaled
distance from the left edge), while the upper limit still ap-
proaches +∞ as N → ∞. Hence we get

ρ
edge
k (r, θ, N ) → f edge

k (u), (E13)

where

f edge
k (u) = 2−k

π3/2�(k + 1)

∫ ∞

−u
dx e−x2

[Hk (x)]2,

(E14)

and we recall that

u =
√

N

2λ−(k)

(
r2

N
− λ−(k)

)
. (E15)

Note that when u → ∞, f edge
k (u) → 1/π , and the edge den-

sity matches smoothly with the bulk density. In Fig. 8 we have
plotted the edge density functions f edge

k (u) vs u for k = 1 and

k = 2. One sees from these figures that the scaling functions
have kinks. For k = 1, there is only one kink at t = 0 while
for k = 2 there are two kinks. In general, for the kth band, the
function fk (u) will have k kinks as a function of u. The kinks
occur when the derivative vanishes, i.e., df edge

k (u)/du = 0. By
taking the derivative of Eq. (E13), we see that this happens
when Hk (−u) = 0. Thus the locations of the kinks in the edge
density of the kth band coincide with the zeros of the kth Her-
mite polynomial. For instance, for k = 2, the kinks are located
at u1 = −1/

√
2 and u2 = +1/

√
2. Note that the edge scaling

function fk (u) is actually universal, i.e., independent of the
system parameters c and M and depends only on the band
label k. The above nontrivial connection between f edge

k (u) and
Hermite polynomials naturally points to a possible connection
to RMT, which we elucidate below.

3. Edge density in the limit of high Landau levels (k � 1) and
connection to random matrix theory

It turns out that as k → ∞, the edge profile f edge
k (u) given

in Eq. (E13), property shifted and scaled, has a nice limiting
profile. This behavior comes from the asymptotic behavior of
the Hermite polynomials Hk (u) in the limit of large k (known
as Plancherel-Rotach asymptotics). To obtain this limiting
profile, we first set u = √

2ky, with y ∼ O(1), and also per-
form the change of variable in Eq. (E13), x = √

2k(v − y).
This leads to

f edge
k (t =

√
2ky)

= 2−k
√

2k

π3/2�(k + 1)

∫ ∞

0
dv [e−k(v−y)2

Hk (
√

2k(v − y))]2 .

(E16)

We can now use the Plancherel-Rotach asymptotic formula
for Hermite polynomials,

e−kX 2
Hk (

√
2kX ) =

(
2

π

)1/4 2k/2

(1 − X 2)1/4
k−1/4(k!)1/2

× gk (X )

[
1 + O

(
1

k

)]
, −1 < X < 1,

(E17)
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fedge
k (

√
2k y)

y

FIG. 9. Plot of f edge
k (

√
2k y), with f edge

k (y) given in Eq. (E13) as
a function of y for k = 20 (red solid line). The black-dashed line is
the exact limiting form given in Eq. (E21). It should be noted that the
positions of kinks are at zeros of the Hermite polynomial of degree
k = 20.

with

gk (X ) = cos[kX
√

1 − X 2 + (k + 1/2) sin−1 X − kπ/2].

(E18)

Inserting this expansion [Eqs. (E17) and (E18)] with X =
v − y in Eq. (E16), one finds

f edge
k (u =

√
2k y) ≈ 2

π2

∫ ∞

0
I−1<v−y<1

× 1√
1 − (v − y)2

g2
k (v − y) dv,

(E19)

where the indicator function comes from the fact that the
asymptotic behavior in Eqs. (E17) and (E18) holds only for
−1 < X < 1, while it is subleading (in k) for X outside the
region. Due to the identity cos2 x = 1/2 + cos (2x)/2, one can
replace [gk (v − y)]2, given in Eq. (E18), in the integral over
v in Eq. (E19) by 1/2 (the remaining cosine being highly
oscillating for large k and thus subleading). Therefore we get

f edge
k (u =

√
2k y) ≈ 1

π2

∫ max(y+1,0)

max(y−1,0)

dv√
1 − (v − y)2

,

(E20)

which finally yields (see also Fig. 9)

lim
k→∞

f edge
k (u =

√
2k y)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 , y < −1

1

π2

(π

2
+ sin−1(y)

)
, −1 < y < 1

1

π
, y > 1 .

(E21)

Close to u = ±√
2k there is an interesting edge region of

width O(k−1/6) where the density is described by Airy func-

tions, very similar to the well-known “Tracy-Widom” regime
at the edge of the Wigner semicircle in RMT belonging to the
Gaussian unitary ensemble (GUE). This is somehow expected
given the square-root singularity near the edges u = ±√

2k of
the limiting profile given in Eq. (E21). This edge behavior can
be derived from Eq. (E13) by using the asymptotic behavior
of the Hermite polynomial Hk (u) near u = √

2k where the
Hermite polynomial becomes an Airy function. By setting
u = −√

2k + w√
2k1/6 with w = O(1) one finds (for large k)

fk

(
−

√
2k + w√

2k1/6

)
∼ 1

k1/3
F (w), (E22)

where

F (w) = 1

π

∫ ∞

0
Ai2(v − w) dv = 1

π
([Ai′(−w)]2

+wAi2(−w)), (E23)

and Ai(z) denotes the standard Airy function. Note that a
similar computation could be carried out for the kernel, which
would lead (on the real line at least) to the well-known Airy
kernel.

APPENDIX F: EMERGENCE OF NEW DROPLET AS ONE
CROSSES CRITICAL LINES IN (M, c) PLANE

We want to look at the phase diagram in the (M, c) plane
and ask, When k∗ changes from k∗ = 0 to k∗ = 1 (which
means a new band is included below the Fermi energy), how
does the density profile change from a one-layered structure to
a two-layered structure? We have already seen that just when
one crosses this critical line c = c1(M ) ≡ c1, the second layer
appears on top of the first layer. In this section we describe the
density profile of this emerging blob in the second layer for c
slightly below c1 for fixed 4 < M < 12 (see Fig. 6), where c1

is given in Eq. (C2). We therefore set

c = c1 − � where 0 < � � 1 . (F1)

For each point in the (M, c) plane, μ is uniquely determined
from Eq. (B20). Therefore as we change the value of c from c1

to c1 − �, the value of μ also changes from μ = 2 + √
c1M

to

μ = 2 + √
c1M + δ , (F2)

where δ � 1. Inserting this value of μ in Eq. (B20) and
expanding for small δ gives a relation between � and δ:

� = (M2 − 16)3/2

64
√

2

√
δ . (F3)

Therefore one has just a single control parameter δ describing
the location of the system in the phase diagram, in the vicinity
of the critical line c = c1(M ). We now want to see how the
density changes as we vary δ.

We start with the formula for the density in Eq. (D3). When
k∗ increases from 0 to 1, the additional density in the second
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layer is given by

ρ1(r, θ, N )= e−r2

π

l+(1)∑
l=l−(1)

r2
√

γ+l2

�(
√

γ + l2 + 2)

[
L
√

γ+l2

1 (r2)
]2

,

(F4)

with

L
√

γ+l2

1 (r2) = 1 +
√

γ + l2 − r2 (F5)

where

l±(1) = μ − 2 ±
√

(μ − 2)2 − c1M

M
N . (F6)

We can rewrite Eq. (F6) using Eq. (F2) (to leading order in δ

for small δ) as

l±(1) ≈ λ± N, λ± =
(√

c1

M
± v1

√
δ

)
, (F7)

with

v1 =
√

2

M
(c1M )1/4 . (F8)

In real space, the second layer of the macroscopic density
appears over the scaled region,√

c1

M
− v1

√
δ < z2 <

√
c1

M
+ v1

√
δ , (F9)

where z = r/
√

N . Therefore the center of the second layer is
located at zc = (c1/M )1/4, and we want to provide a scaling
description of this density in the second layer just after its
appearance, i.e., in the limit δ → 0. Hence we set

z2 =
√

c1

M
+ ε , (F10)

where ε is proportional to the distance from the center of the
second layer. Thus the density is just a function of ε and δ in
the vicinity of the critical line c = c1(M ), and below we work
out the dependence of the density on these two parameters in
the large-N limit.

To analyze the density Eq. (F4) in the limit of large N , we
set γ = c1 N and we introduce l = x N so that the sum over l
can be replaced by an integral over x, leading to

ρ1(r, θ, N ) ≈ e−r2

π

∫ λ+

λ−
dx

r2
√

cN+N2x2

�(
√

cN + N2x2 + 2)
[1 +

√
cN + N2x2 − r2]2 ≈ e−r2

π

∫ λ+

λ−
dx

r2Nx

�(Nx + 2)
(N x − r2)2, (F11)

where we kept the leading term in the arguments for large N . We can now approximate the � function by Stirling’s formula,
leading to

ρ1(r = z
√

N, θ, N ) ≈ e−Nz2

π
√

2πN

∫ λ+

λ−

dx

x3/2
e2Nx ln(z

√
N )−N x ln x+N x(Nx − Nz2)2 . (F12)

We now substitute z2 = √ c1
M + ε from Eq. (F10) and make the change of variable x = √

c1/M + v. Since |v| < v1

√
δ, we can

expand the integrand for small v and retain only up to O(v2) terms inside the exponential. After straightforward algebra, one
obtains

ρ1(r = z
√

N, θ, N ) ≈ 1

π
√

2πN

(M

c1

)3/4 ∫ +v1
√

δ

−v1
√

δ

dv e
−N

√
M

4c1
(v−ε)2

N2(v − ε)2 . (F13)

In order that this integral is of order O(1), we see that we
need to scale

√
δ ∼ t/

√
N , ε ∼ s/

√
N where t > 0 as well

as s are both of order O(1). Making the change of variable
w̃ = [N /2]1/2(M/c1)1/4(v − ε) in Eq. (F13), we get

ρ1(r = z
√

N, θ, N ) ≈ 2

N

1

π3/2

∫ w̃+

w̃−
dw̃ w̃2 e−w̃2

(F14)

with

w̃± =
√

N

2

(M

c1

)1/4

(±v1

√
δ − ε) . (F15)

In order that the integral remains of order O(1) in the large-N
limit, we see that both

√
δ and ε should scale as O(1/

√
N ).

We therefore set

√
δ =

√
2

N

( c1

M

)1/4
t and ε =

√
2

N

( c1

M

)1/4
s , (F16)

where t and s are both of order O(1). Therefore the density in
the large-N limit, a function of the original variables ε and δ,
can be reparametrized in terms of the scaled variables s and t
given in Eq. (F16),

ρ1(r = z
√

N, θ, N ) ≈ 1

π
[F1(s + v1t ) − F1(s − v1t )] ,

(F17)

where v1 =
√

2
M (c1M )1/4 and

F1(z) = 2√
π

∫ z

0
dw̃ w̃2e−w̃2 = 1

2

[
erf (z) − 2√

π
z e−z2

]
.

(F18)

Note that the scaled variables t and s can be expressed
in terms of � = c1 − c [which measures the location the
distance in the phase diagram with respect to the critical line
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s

t
=

1
t
=

10
t
=

15

t
=

25

v1v1

π ρ1(r, θ,N)

FIG. 10. Plot of the density profile π ρ1(r, θ, N ) as given in
Eq. (F17) for M = 5 as a function of the scaled distance s—we
recall that r = z

√
N ≈ √

N (c1/M )1/4 + s/
√

2—for different increas-
ing values of t = 1, 10, 15, and 25 (from bottom to top). As t
increases, the scaled density π ρ1(r, θ, N ) approaches the constant
value 1 for |s| < v1t and decays rapidly to 0 for |s| > v1t . The front
separating the constant density 1/π and the zero density outside
“moves with a constant speed v1” with increasing t , reminiscent of a
remarkable traveling front structure.

c = c1(M )] and the variable z = r/
√

N , where r measures the
distance from the center of the trap. The first relation can be
obtained by eliminating δ between Eqs. (F3) and (F16):

t =
( M

4c1

)1/4 64
√

2

(M2 − 16)3/2
[c1 − c]

√
N . (F19)

Similarly, the second relation is obtained by substituting ε =
z2 − √

c1/M in Eq. (F16). This gives

s =
( M

4c1

)1/4(
z2 − c1

M

)√
N , (F20)

where z = r/
√

N .
Interestingly, the scaled density profile in Eq. (F17) has an

interesting traveling front structure. To see this we consider
the density as a function of s for a fixed t . The density decays
to 0 very rapidly as |s| � v1t (see Fig. 10). Therefore the
two edges of this profile move “ballistically” with increasing t
with a “speed” given by v1. If we interpret t as a “time,” then at
late times the density profile develops a traveling front struc-
ture with velocity v1 and the width across the front remains
of O(1) as t increases. For large t , the density has a constant
value � 1/π for all |s| < v1t (see Fig. 10). Finally, the speed
v1 is given by v1 = √

2/M(c1M )1/4 can be expressed in terms
of M by using the expression for c1(M ) in Eq. (C2).

Note that here we analyzed the density profile near the
transition from k∗ = 0 to k∗ = 1 where the second layer just
appears over the first layer. One can do a similar analysis for
the transition from k∗ = n − 1 to k∗ = n across the critical
line c = cn(M ) for any n � 1. We do not repeat the analysis
here, but it is easy to show that the scaled density will again
be given by the difference of two functions, as in the k = 1
case in Eq. (F17),

ρn(r = z
√

N ) ≈ 1

π
[Fn(s + vnt ) − Fn(s − vnt )] , (F21)

where the speed vn can be computed from the critical curve
c = cn(M ) and the scaling function Fn(z) is given, up to an
overall constant, by

Fn(z) ∝
∫ z

0
dw̃ [Hn(w̃)]2 e−w̃2

, (F22)

where Hn(w̃) is the Hermite polynomial of degree n.
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