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Dimensional crossover in ultracold Fermi gases from functional renormalization
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We investigate the dimensional crossover from three to two dimensions in an ultracold Fermi gas across the
whole BCS-BEC crossover. Of particular interest is the strongly interacting regime as strong correlations and pair
fluctuations are more pronounced in reduced dimensions. Our results are obtained from first principles within the
framework of the functional renormalization group (FRG). Here, the confinement of the transverse direction is
imposed by means of periodic boundary conditions. We calculate the equation of state, the gap parameter at zero
temperature, and the superfluid transition temperature across a wide range of transversal confinement length
scales. Particular emphasis is put on the determination of the finite-temperature phase diagram for different
confinement length scales. In the end, our results are compared with recent experimental observations and we
discuss them in the context of other theoretical works.
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I. INTRODUCTION

Lower dimensional systems are of particular interest both
in condensed matter and statistical physics as they feature a
pronounced influence of fluctuations. Furthermore, they are
of experimental and technological importance with examples
ranging from high-temperature superconductors over layered
semiconductors to graphene. To disentangle the effects of the
dimensionality from other many-body physics effects con-
stitutes a key challenge in the study of systems of reduced
dimensionality.

With the recent progress in trapping ultracold atomic
gases in quasi-two-dimensional geometries [1,2], both zero-
[3,4,23] and finite-temperature effects [3,5–8,11,40] have
been measured. Here, strongly anisotropic trapping potentials
on the one hand and one-dimensional optical lattices one the
other hand allow for the experimental realization of quasi-
two-dimensional quantum gases.

For example, the algebraic correlations associated with
the Berezinskii-Kosterlitz-Thouless (BKT) phase transition
in (quasi-)two-dimensional systems have been observed in
bosonic [5,9–13] and fermionic systems [6,14]. In addition,
(quasi-)two-dimensional systems exhibit the breaking of the
scale invariance in the strongly interacting regime of the
BCS-BEC crossover. Here, extensive progress both in theory
[15–22] and experiment [23–25] has been achieved in recent
years.

Because of an insufficient degree of anisotropy in the ex-
perimental setup, one may not be restricted to a particular
dimension but find oneself in a dimensional crossover without
a well-defined dimensionality. Apart from being an undesired
effect for the investigation of pure two-dimensional systems,
the crossover may also lead to new materials with physically
interesting properties.

We concentrate here on ultracold Fermi gases. A com-
parable quasi-two-dimensional setup has been studied in

Refs. [26,27] in a mean-field approach, for a Fermi gas
at unitarity and zero temperature in Ref. [28], using the
Luttinger-Ward approach in two dimensions in Ref. [29],
and using Quantum Monte Carlo (QMC) calculations in
two dimensions in Ref. [30]. Furthermore, two-dimensional
fermionic systems have been addressed in Refs. [31–38].
Fermi gases, typically a system of 6Li or 40K, constitute a
rich physical system as their interatomic interactions may be
altered via a Feshbach resonance. For a large negative value
of the three-dimensional scattering length a3D, the fermions
form large spatially overlapping Cooper pairs below a critical
temperature (BCS limit). On the other hand, for large positive
scattering lengths, the fermions form tightly bound molecu-
lar dimers which condense into a Bose-Einstein condensate
(BEC) at sufficiently low temperatures.

Apart from featuring the transition to the superfluid phase,
the normal-state “pseudogap” behavior can also be studied
within the BCS-BEC crossover. Here, the onset of superflu-
idity and pairing occurs at different temperatures; i.e., the
density of states is partially gapped and the dispersion relation
is BCS-like for a range of temperatures above the critical
temperature. The system essentially retains some features of
the broken superfluid phase also in the symmetric normal
phase without exhibiting superfluidity. This pairing at high
temperatures has been studied both experimentally, e.g., in
Refs. [39,40], as well as theoretically, e.g., in Refs. [41–43].

Moreover, a BCS-BEC crossover can also be found in
confined superconducting systems, where the crossover is
induced by tuning the chemical potential to a band edge in
multiband superconductors. The size-induced molecule-like
pairing has been studied both theoretically [44–47] and ex-
perimentally [48]. Here, the confinement of superconducting
materials (e.g., in the form of monolayer systems) result in
shape resonances where an increased temperature, gap, as
well as intrapair correlation length are present. The step in the
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density of states gives rise to a change in the topology of the
Fermi surface, a so-called Lifshitz transition, and is another
factor in an increased critical transition temperature [49–54].
For a one- to two-dimensional crossover, see, e.g., Ref. [55].

The BCS-BEC crossover has been studied extensively
in three dimensions using functional renormalization group
(FRG) techniques [56–70]. Finite-size effects have been in-
vestigated in both cold-atom systems [28,71] and in quantum
chromodynamics (QCD) [72–74].

In this work, we study the dimensional crossover from
three to two spatial dimensions for ultracold Fermi gases by
means of the functional renormalization group; for a study of
nonrelativistic bosonic systems, see Ref. [75]. In particular,
we are interested in the critical temperature for the superfluid
transition over the BCS-BEC crossover in dependence of the
dimensionality.

The dimensional crossover is achieved by compactifying
the “transverse” z direction by a potential well of length L.
We discuss (anti)periodic boundary conditions, as well as a
confinement to a box with boundaries fixed to zero. The com-
pactification leads to a discrete momentum spectrum in the
z direction. The choice of the boundary conditions is crucial
for a well-defined two-dimensional limit. It also influences the
mapping between three- and two-dimensional parameters of
the Fermi gas. Both aspects are discussed in detail in Sec. II C.

This paper is organized as follows: In Sec. II, we introduce
the ultracold Fermi gas and the functional renormalization
group (FRG) in the dimensional crossover. In particular, we
discuss the aspect of boundary conditions for a dimensional
reduction. The truncation used within the FRG and the initial
conditions are presented in Sec. III. In Sec. IV, the results
for the equation of state and the gap parameter in the di-
mensional crossover at zero temperature are discussed. The
finite-temperature phase diagrams with respect to the dimen-
sionality are addressed in Sec. V. We conclude in Sec. VI.
Some technical details are deferred to Appendixes A–C.

II. MODEL AND FUNCTIONAL RENORMALIZATION

A. Model

Close to a broad Feshbach resonance, as found in quan-
tum gases consisting of 6Li and 40K, details of the atomic
interactions in ultracold Fermi gases become irrelevant for
the description of the macrophysics. The system can then be
described by a universal action

S[ψ] =
∫

X

[ ∑
σ=1,2

ψ∗
σ (∂τ − ∇2 − μ)ψσ + λψψ∗

1 ψ∗
2 ψ2ψ1

]
,

(1)

where ψσ and ψ∗
σ denote Grassmann fermions in the hyperfine

state σ = 1, 2. We introduce X = (τ, �x) with τ being the
Euclidean time and

∫
X = ∫ β

0 dτ
∫

dd x with spatial dimension
d . Moreover, the chemical potential μ and the four-Fermi cou-
pling λψ → λψ = 8 π a3D are related to the physical chemical
potential and the scattering length through an appropriate
vacuum renormalization.

We use h̄ = kB = 2M = 1 with M being the mass of the
fermionic atoms. For sufficiently low temperatures, the ultra-
cold Fermi gas may develop many-body instabilities resulting

in the formation of a macroscopic anomalous self-energy
	 which is related to the nonvanishing expectation value
〈ψ1 ψ2〉. This is signaled by a divergence of the frequency-
and momentum-dependent four-Fermi vertex at lower mo-
mentum scales and causes the breaking of the global U(1)
symmetry. In particular, in the strongly coupled regime, i.e.,
for a diverging three-dimensional s-wave scattering length
a3D, the quantitative determination of this phase transition is
complicated by the frequency and momentum dependence of
the vertex. In order to resolve this difficulty, a scale-dependent
treatment in the path integral formulation is appropriate.

The starting point is the grand canonical partition function
of the system

Z[η, η] =
∫

Dψ Dψ e−S[ψ,ψ]−ηψ+ψη. (2)

In order to exclude redundancies included in the grand
canonical partition function, the effective action may be in-
troduced as the Legendre transform of the Wigner functional
W [η, η] = ln Z[η, η]

�[ψ,ψ] =
∫

X
(ψX ηX + ηX ψX ) − W [η, η]. (3)

B. Functional renormalization

The nonperturbative functional renormalization group
(FRG) allows for a scale-dependent study of physical systems
and theoretical models. It is a modern implementation of
Wilson’s RG and enables one to go beyond perturbative meth-
ods; i.e., it is also applicable in strongly correlated regimes.
The FRG is based upon an exact functional flow equation
of a coarse-grained effective action (or Gibb’s free energy,
in the language of statistical physics), which allows for in-
cluding (thermal and quantum) fluctuations on all scales. It
encompasses both Bogoliubov theory and the hydrodynamic
approach of Popov and is inherently free of divergences [76].
Functional renormalization proceeds in the same spirit as
other functional methods used for the problem of dimensional
crossover, e.g., in Refs. [29,32–34,37]. It has the advantage
that several effects can be included simultaneously, and all
known limits are directly realized.

For the scale-dependent treatment, the integration is
grouped in frequency and momentum shells according to

q2
0 + (�q 2 − μ)2 � k4 (4)

with external momentum scale k. The full grand canonical
partition function is obtained by successively integrating over
the corresponding frequency and momentum shells starting at
k = ∞ and arriving in the end at k = 0.

The microscopic action in (1) is related to an ultraviolet
(UV) momentum scale k = � at length scales much smaller
than the van der Waals length vdW. However, the relevant
physics takes place at scales 
�, where the thermal and
quantum fluctuations are included. To incorporate these fluc-
tuations and furthermore to obtain results in the strongly
coupled regime, the above scale-dependent procedure is im-
plemented via the functional renormalization group (FRG),
which includes these fluctuations successively at each mo-
mentum scale k. Introducing the scale-dependent partition
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function

Zk[η, η] =
∫

Dψ Dψ e−S[ψ]−	S[ψ]−ηψ+ψη, (5)

we incorporate the suppression of the low-momentum fluc-
tuations ω, �q 
 k2 via a masslike infrared modification of
the dispersion relation. In practice, a regulator or cutoff
term 	Sk[ψ] is added to the microscopic action S[ψ] being
quadratic in the fields

	S[ψ] =
∫

Q

∑
σ=1,2

ψσ (−Q) Rψ (Q) ψσ (Q). (6)

The regulator Rk (Q) may be chosen freely with the require-
ments

lim
q2/k2→0

Rk (Q) = k2, lim
q2/k2→∞

Rk (Q) = 0. (7)

The scale-dependent effective action �k can be defined ac-
cordingly. Starting at �� = S, the full effective action is
reached after the inclusion of all fluctuations where �k

smoothly interpolates between the microscopic action �� and
the full effective action �k=0 = �. Each infinitesimal change
of the average effective action is described by a flow equation
∂k �k depending on the correlation function of the theory
and a way to suppress infrared modes with momenta smaller
than k. In the end, fluctuations with large wavelengths are
included. Since the functional renormalization group includes
the fluctuations stepwise, there are no infrared divergences
when approaching the inclusion of long wavelength modes.
Analogous to defining the quantum theory by means of the
classical action in the path integral formulation, the initial
effective action �� together with the flow equation (8) de-
termines the full quantum theory.

The infinitesimal change of the effective action �k with
respect to the momentum scale k is governed by the flow
equation [64,76–85]

∂k �k = 1
2 STr

[(
�

(2)
k + Rk

)−1
∂k Rk

]
, (8)

where �
(2)
k is the second functional derivative of �k with

respect to the fields. As the flow equation (8) is an inte-
grodifferential equation, its full solution is in most cases out
of reach. One therefore relies on approximation schemes to
the full effective action �k which should incorporate the ex-
amined physics already at lower order of the approximation
and reduce the number of flow equations to a manageable
set of couplings. Furthermore, it is convenient to rewrite the
four-Fermi interaction λψ at a large cutoff � in terms of
a bosonic degree of freedom φ via a Hubbard-Stratonovich
transformation.

In this work, we choose a three-dimensional Litim-type
regulator [86–88] for the cutoff function R(Q) in three spatial
dimensions. It is given for bosons and fermions, respectively,
by

Rφ,k (q2) = (k2 − q2/2) θ (k2 − q2/2),
(9)

Rψ,k (q2) = k2 (sgn(z) − z) θ (1 − |z|),
where θ (x) represents the Heaviside-θ function, sgn(x) is the
sign function, and we used z = (q2 − μ)/k2. Note that only
spatial momenta q2 = |�q|2 are regularized for this type of

regulator. However, a particular neat property of (9) is that
the finite-temperature Matsubara sums can be performed ana-
lytically.

C. Function space and boundary conditions

The choice of the boundary conditions plays a crucial
role in arriving at the correct two-dimensional physics. The
dimensional crossover is implemented by compactifying the
“transverse” z direction by a potential well of length L,

Vbox(z) =
{

0 0 � z � L

∞ else
. (10)

One may choose (anti)periodic boundary conditions

ψ (x, y, z = 0) = ±ψ (x, y, z = L), (11)

or restrict oneself to a box

ψ (x, y, z = 0) = ψ (x, y, z = L) = 0. (12)

The compactification leads to a discrete momentum spectrum
in the z direction. For periodic boundary conditions, the re-

spective energies, Ez = h̄ q2
z

2 M , are discrete with qz → kn

kn = 2 π n

L
, n ∈ Z, (13)

which includes a zero mode k0 = 0 with vanishing energy
Emin = 0. In turn, for antiperiodic boundary conditions, one
finds kn = (2 n + 1) π/L with n ∈ Z and with a lowest mode
|k0| = π/L with a finite energy Emin = h̄π2/(2ML2). Finally,
confining the Fermi gas inside a box leads to kn = π n/L with
a vanishing energy Emin = 0.

The nonvanishing zero point energy for antiperiodic
boundary conditions results in a gap in the evaluation of
the the (discrete) mode sum at zero temperature. Conse-
quently, antiperiodic boundary conditions do not yield the
two-dimensional limit for vanishing length L → 0. For a rela-
tivistic system, the dispersion relations allows one to identify
the length of the potential well L with the inverse temperature
1/T in the evaluation of the discrete mode sum at zero temper-
ature. As a result, T = 0 and L = L0 gives the same result as
T = 1/L0 and L = 0; i.e., the zero length limit L → 0 at zero
temperature T = 0 corresponds to the limit of infinite tem-
perature T → ∞ at zero length L = 0. For a nonrelativistic
system, the situation is less simple, since the dispersion rela-
tion allows no clear mapping between the temperature and the
length of the system. Nevertheless, it is clear that antiperiodic
boundary conditions do not admit a two-dimensional limit for
L → 0.

Here we choose periodic boundary conditions, which result
in a two-dimensional limit for vanishing length L → 0. Since
all modes with n �= 0 have for L → 0 a large gap, they can
be integrated out. In general, the three-dimensional system
with finite L can be viewed as a two-dimensional system
with infinitely many fermions as “modes,” one for each n.
Integrating out the modes with n �= 0 reduces the system to
a single two-dimensional fermion, the one for n = 0.

The map from the three-dimensional system to the two-
dimensional system proceeds by integrating out the n �= 0
modes. This maps the parameters of the three-dimensional
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theory to the ones of an effective two-dimensional theory. For
L → 0, this map may induce large changes for characteristic
quantities as the chemical potential μ or the scattering length
a. This can lead to shifts in fractions including εF and TF , as
well as in the crossover parameter. For experiment, the three-
dimensional quantities are generally the ones available, and
we will typically use them for our discussion. When compar-
ing to results obtained from computations in two-dimensions,
the matching between three- and two-dimensional parameters
becomes important, however. In the present paper, we do not
deal with this issue, but the reader should keep it in mind when
comparing with two-dimensional results.

Experimentally realistic confinement potentials, used in
most ultracold atom experiments, such as in Refs. [6,7] are
implemented by using harmonic trapping potentials. Here, the
function space consists of Hermite polynomials. Heuristically,
our choice is a limiting case. In particular, observables that
do not show an impact of the different boundary conditions
studied here should be the same for the harmonic trap.

D. Dimensional reduction

In order to obtain a system within the dimensional
crossover from three to two dimensions, we initialize the
renormalization group (RG) flow at ultraviolet cutoff scale
k = � where the effective action �� coincides with the mi-
croscopic action of a three-dimensional ultracold Fermi gas.
By delimiting the z direction of the system via a potential
well of length L, we introduce an additional scale to the
three-dimensional system. By following the RG as a func-
tion of k for a given length scale L, one observes that the
contribution of modes with k2

n  k2 is suppressed by powers
of k2/k2

n . These modes decouple and effective dimensional
reduction is achieved automatically once k 
 2π/L. This is
very similar to the effective dimensional reduction in finite-
temperature quantum field theory realized by solutions of the
flow equations [89]. Following the RG from k = � to k = 0,
the flow always makes a transition from a three-dimensional
regime to a two-dimensional one. For this purpose, the
UV scale is always chosen such that �  (L−1, μ1/2, T 1/2).
The flow equations become effectively two-dimensional for
k 
 2π/L, while the physical system is effectively two-
dimensional if L−1 is much larger than all other many-body
scales [75].

To incorporate the effects of the compactification in
transversal z direction given by the potential well in (10), the
regulators in (9) are modified according to

�q2 = q̂2 + q2
z → q̂2 + k2

n , (14)

where kn is chosen according to the boundary conditions and
q̂2 denotes the square of the x and y components of the mo-
mentum. Note that while in three dimensions all couplings
tend to saturate quickly at sufficiently small k scales [67], the
saturation behavior is much slower for d < 3. As a conse-
quence, we choose a much smaller final k scale in the infrared
(cf. Appendix A), while in three dimensions it is possible to
stop the RG flow earlier.

III. RUNNING OF COUPLINGS

A. Truncation

After a Hubbard-Stratonovich transformation, the full mi-
croscopic action is given by

S =
∫

X

[ ∑
σ=1,2

ψ∗
σ (∂τ − ∇2 − μ)ψσ

+ m2
φ φ∗φ − h (φ∗ ψ1 ψ2 − φ ψ∗

1 ψ∗
2 )

]
, (15)

with λψ = −h2/m2
φ , which can be seen via a Gaussian in-

tegration over the bosonic field φ. The Feshbach coupling
h accounts for the interconversion of two fermionic atoms
ψ with different spin to a bosonic dimer φ. Connecting the
above action to the experimental setup, we explicitly intro-
duce the closed channel via the bosonic field φ. The physical
detuning ν = ν(B), which depends on the external magnetic
field of the trap in the experiment, denotes the distance of the
closed-channel bound state from the scattering threshold. In
the kinetic term of the bosonic dimer φ, the factor of ∇2/2 re-
flects the composite mass of the dimer, while this composition
also yields twice the chemical potential for the bosons

S[ψ, φ] =
∫

X

[
ψ∗(∂τ − ∇2 − μ)ψ

+ φ∗
(

∂τ − ∇2

2
+ ν − 2μ

)
φ

− h (φ∗ ψ1 ψ2 − φ ψ∗
1 ψ∗

2 )

]
. (16)

Our ansatz for the effective average action can be divided into
a kinetic part and an interaction part

�k = �kin + �int. (17)

The kinetic part describes the fermion and boson dynamics
and is given by

�kin =
∫

X

[ ∑
σ={1,2}

ψ
∗
σ Pψ,σ (Q) ψσ + φ

∗
Pφ (Q) φ

]
, (18)

with unrenormalized (unrescaled) fields ψ , φ and inverse
propagators

Pψσ (Q) = Zψσ i q0 + Aψσ q2 − μ,

Pφ (Q) = Zφ i q0 + Aφ q2/2. (19)

In terms of the renormalized (rescaled) fields ψ = A1/2
ψ ψ and

φ = A1/2
φ φ, the kinetic part can be formulated as

�kin[ψ, φ] =
∫

X

[ ∑
σ={1,2}

ψ∗
σ (Sψ ∂τ − ∇2 − μ) ψσ

+ φ∗
(

Sφ ∂τ − 1

2
∇2

)
φ

]
. (20)

We normalized the coefficients of the gradient terms by means
of the wave function renormalizations Aψ and Aφ which enter
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F

+

B

FIG. 1. (F) and (B) truncation schemes of the flow equations. The
flow of the inverse boson propagator incorporates both fermionic and
bosonic diagrams. Bosonic propagators correspond to dashed and
fermionic propagators to solid lines, while the distinct vertices are
shown in different shapes. The regulator insertion is denoted by a
cross.

the renormalization group flow via the anomalous dimensions

ηψ = − ∂t ln Aψ, ηφ = − ∂t ln Aφ. (21)

Moreover, we defined Sψ,φ = Zψ,φ/Aψ,φ and the renormalized
chemical potential μ = μ/Aψ,σ . For a more detailed descrip-
tion, we refer to Appendix C.

Due to the renormalization of the fields, the expectation
value 	 = (h2 ρ)1/2 can be nonzero, even in the two-
dimensional limit [75], where the Mermin-Wagner theorem
[90,91] forbids true long-range order. However, algebraically
decaying correlation functions with a nonvanishing superfluid
density can be found [92–95].

The interactions can, after the Hubbard-Stratonovich trans-
formation, be written as

�int[ψ, φ] =
∫

X
[U (φ∗ φ) − h (φ∗ ψ1 ψ2 − φ ψ∗

1 ψ∗
2 )]. (22)

The effective average potential U (ρ) depends only on the
U (1)-invariant quantity ρ = φ∗ φ and describes bosonic scat-
tering processes. The U (1) symmetry is spontaneously broken
for a nonzero minimum ρ0 of the effective average potential
and thus describes superfluidity. In a Taylor expansion, we
write

U (ρ) = m2
φ (ρ − ρ0) + λφ

2
(ρ − ρ0)2 +

N∑
n=3

un

n!
(ρ − ρ0)n,

(23)

where we need to include at least up to the second order in
ρ to reproduce the second-order phase transition to superflu-
idity. In the symmetric regime, we therefore have ρ0 = 0 and
positive bosonic mass m2

φ > 0, whereas the symmetry-broken
regime is realized for ρ0 > 0 and vanishing bosonic mass
m2

φ = 0. In the following, we restrict this work to order φ4.
The truncation can be classified by the diagrams in Fig. 1

included on the right-hand side of the flow equation (8). By
including only fermionic diagrams (F), we arrive at the mean-
field result. Bosonic fluctuations enter the flow equation by
including diagrams with two internal bosonic lines (B).

Furthermore, the flow of the density of the Fermi gas is
calculated via a derivative of the effective action with respect
to the chemical potential

∂k nk = −∂k
∂ U (ρ)

∂ μ
. (24)

In practice, we approximate the dependence of the effective
average action on the chemical potential by an expansion in ρ

and μ [63]

U (ρ) =
2∑

n=1

un

n!
(ρ − ρ0)n − nk δμ + αk (ρ − ρ0) δμ. (25)

Here the chemical potential is split into a reference part μ0

and an offset δμ, such that μ = μ0 + δμ.

B. Initial conditions and universality

In three dimensions, the running couplings approach fixed
points in the renormalization group flow of the Fermi gas. As a
result, the macrophysics (on the length scales of the interpar-
ticle spacing) becomes independent of the microphysics (on
the molecular scales) to a large extent; cf., e.g., Refs. [63,67].

When reaching the fixed points, the system loses its
memory of the microphysics with its initial conditions. Con-
sequently, the initial conditions of the running couplings are
irrelevant and we may essentially start at the fixed point values
in the ultraviolet. Even if we had not done so, they would be
immediately generated.

An exception constitutes the bosonic mass term m2
φ whose

fixed point is unstable toward the infrared. Hence, for the
effective potential we set as initial condition in the ultraviolet

U�(ρ) = (ν� − 2 μ) ρ. (26)

Herein the chemical potential μ can be artificially split into
a vacuum component μv and a many-body contribution μmb

such that the vacuum part μv equals half the binding energy of
a bosonic dimer εB/2 in three spatial dimensions. The detun-
ing ν� is related to the physical detuning via an appropriate
vacuum renormalization [63].

Since the RG flow for a system in reduced dimension is
initialized at an UV scale where the Fermi gas is described
by the three-dimensional classical action, these considerations
can be applied to the study of systems inside the dimensional
crossover. We therefore choose the fixed point values of the
three-dimensional Fermi gas as our initial conditions.

IV. DIMENSIONAL CROSSOVER AT ZERO
TEMPERATURE

The flow equations underlying the results at zero and at
finite temperature shown below are obtained analytically with
periodic boundary conditions for both bosonic and fermionic
fields inside the potential well. They are given in Appendix C.
Imposing antiperiodic boundary conditions for fermionic
fields ψ (x) we find, as expected in Sec. II C, that for small
confinement length scales L

√
μmb ≈ 2 the fermionic flow is

strongly suppressed and no phase transition on the BCS side
of the crossover can be found. The BEC side, however, is not
affected by this choice.

As described in Sec. II D, all running couplings saturate
quickly in the infrared for the three-dimensional BCS-BEC
crossover, while we for d < 3 we chose for all observables a
final scale of tfinal = −17 in the infrared. It is chosen such that
for a small (quasi-)two-dimensional system of confinement
length of L

√
μmb = 0.7 the maximum temperature for the

BCS-BEC crossover converges; cf. Appendix A for a more
detailed comparison on the final IR scale of the RG flow.
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FIG. 2. Comparison of the equation of state at zero temperature
for different confinement length scales and the three-dimensional
case with respect to the 3D crossover parameter 1/(kF a3D) for
tfinal = −17. From top to bottom: 3D limit in solid red (solid gray),
L

√
μmb = 1000 in dashed black, L

√
μmb = 2 in long-dashed blue

(long-dashed line in dark gray), L
√

μmb = 1 in dashed green (dashed
line in grey), L

√
μmb = 0.5 in dotted yellow (dotted line in light

gray). The three-dimensional case is recovered for large L
√

μmb.

In order to display the confinement in transversal direction,
we introduce the dimensionless length parameter L

√
μmb of

the potential well, where μmb = μ − εB/2 denotes the chemi-
cal potential for the three-dimensional gas with half the dimer
binding energy εB/2 being subtracted.

At zero temperature, a reduction of the dimensionless
confinement length parameter L

√
μmb leads to an increased

density and thereby to an increased Fermi energy εF = k2
F . As

a consequence, the equation of state (μ − εB/2)/εF in Figs. 2
and 3 is lowered for more confined systems.

Here the Fermi momentum is calculated using the three-
dimensional definition kF = (3 π2 n)1/3 as the initial condi-
tion for the flow of the density is explicitly given for a
three-dimensional system. This means that the Fermi mo-
mentum kF of the (quasi-)two-dimensional system has to be
calculated by using the functional form given in the ultravi-
olet, where the reduced dimension enters via the flow of the
density.

In Fig. 2, the equation of state is shown as a function of
the three-dimensional crossover parameter c−1 = (kF a3D)−1,
which can be interpreted as the inverse concentration of
the Fermi gas. For large confinement length scales L

√
μmb,

the three-dimensional result is recovered, while the equation
of state in dependence of the transversal extension starts
to saturate only at the order of L

√
μmb = 10−4 for a two-

dimensional limit.
For better comparison to experiment, the equation of

state is also displayed in Fig. 3 with respect to the
two-dimensional crossover parameter ln(kF a2D). Here the
(quasi-)two-dimensional scattering length a2D is calculated by
[75]

a(pbc)
2D = L exp

{
−1

2

L

a3D

}
(27)
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FIG. 3. Comparison of the equation of state for different con-
finement length scales to the experimental data from [3] with respect
to the 2D crossover parameter ln(kF a2D) for tfinal = −17. Here we
show L

√
μmb = 9 in dotted blue (dotted line in gray), L

√
μmb = 6

in dashed red (dashed line in dark gray), and L
√

μmb = 2.5 in solid
green (solid line in light gray). The experimental data are obtained
for the lowest attainable temperatures of T/TF ≈ 0.05 on the BEC
side and T/TF ≈ 0.1 on the BCS side. The orange and purple (light
gray and dark gray) squares denote measurements in the superfluid
and normal phase.

for our setup with periodic boundary conditions. Comparing
the result in Fig. 2 with the experimental data found in Ref. [3]
for a (quasi-)two-dimensional setup, we find a qualitatively
good agreement. Especially on the BEC side, where the mea-
surements were obtained in the superfluid phase, the equation
of state for lower values of the confinement length L

√
μmb in

our result yields the correct behavior. However, on the BCS
side, the equation of state for confinements L

√
μmb � 6 does

not give the quantitative correct result. This behavior might
be on the one hand attributed to an insufficient precision in
the determination of the density. For a more elaborate way
to obtain the density, see Appendix B. On the other hand, as
mentioned in Sec. II C, the two-dimensional limit for periodic
boundary conditions may feature parameters which do not
coincide with the ones in three dimensions.

Comparing the gap parameter 	 = (h2 ρ0)1/2 with respect
to the Fermi energy εF in Fig. 4 for different confinement
length scales, one finds a flattening of the curve for lower
dimensionality, while the three-dimensional case is recovered
for large length scales L

√
μmb. Interestingly, the gap sat-

urates much more quickly for small length scales, already
around L

√
μmb � 0.5 for a two-dimensional limit. Moreover,

depending on the (three-dimensional) scattering length a3D,
regions of an increased gap 	/εF can be found at intermediate
length scales within the dimensional crossover. This diplike
structure is a characteristic of the modes given by the bound-
ary conditions chosen and is also found at finite temperature.

V. SUPERFLUID TRANSITION

A. Dimensional crossover of the critical temperature

At finite temperature, we study the behavior of the crit-
ical temperature Tc/TF with respect to the spatial extension

033320-6



DIMENSIONAL CROSSOVER IN ULTRACOLD FERMI … PHYSICAL REVIEW A 103, 033320 (2021)

- 4 - 2 0 2 4

0.0

0.5

1.0

1.5

2.0

2.5

FIG. 4. Comparison of the gap parameter for different confine-
ment length scales and the three-dimensional case with respect to
the 3D crossover parameter 1/(kF a3D) for tfinal = −17. From top to
bottom (on BEC side): 3D limit in solid red (solid line in gray),
L

√
μmb = 1000 in dashed black, L

√
μmb = 2 in long-dashed blue

(long-dashed line in dark gray), L
√

μmb = 1 in dashed green (dashed
line in gray), and L

√
μmb = 0.5 in dotted yellow (dotted line in light

gray). The three-dimensional case is recovered for large L
√

μmb.

in transversal z direction L
√

μmb. The Fermi temperature
TF = kF

2 is, as in the zero temperature case, calculated using
the three-dimensional relation between the Fermi momentum
and the density kF = (3 π2 n)1/3. The order parameter for
the superfluid transition is the (finite-temperature) gap 	 =
(h2 ρ)1/2 in the fermion spectrum. The critical temperature is
calculated as the largest temperature at which the gap 	 is
nonvanishing. For a detailed description, see Appendix D.

For example, as shown for a−1
3D = 0 in Fig. 5, one can

identify a dimensional crossover from three to two dimensions
for all values of the three-dimensional scattering length. The
limiting case of three dimensions is reached for large confine-
ment scales L

√
μmb. Moreover, a distinct two-dimensional

limit is obtained where the critical temperature in units of
the Fermi temperature saturates and is significantly reduced
with respect to the three-dimensional case. Note that as in the
zero-temperature case IV we choose tfinal = −17 for the final
RG-flow scale.

Furthermore, one can clearly discern dips in the dimen-
sional crossover of the critical temperature where we find
an increased Tc/TF at intermediate stages between the two-
and three-dimensional limit. Interestingly, their appearance
and amplitude seem to be related to the scattering length a3D

chosen in the ultraviolet. Moreover, we find a larger amplitude
for more confined systems. This behavior is caused by the
mode structure of a confined system specified by the chosen
boundary conditions. As a consequence, the density of states
for a confined system has a steplike structure and the dips
can be found at the positions of the discontinuities. The dip
structure for the critical temperature Tc/TF emerge at the same
confinement length scales L

√
μmb as for the zero-temperature

gap parameter 	. In a mean-field analysis with a confinement
in transversal z direction induced by a harmonic potential on
the weakly interacting BCS side of the BCS-BEC crossover, a
similar diplike structure of the critical temperature was found

0.1 1 10 100 1000
0.05

0.10

0.15

0.20

0.25

0.30

FIG. 5. Critical temperature Tc/TF as a function of the con-
finement length scale L

√
μmb at an exemplary three-dimensional

fermion scattering length of a−1
3D = 0 for tfinal = −17. Similar plots

can be found for different scattering lengths with the difference being
the amplitude and the position of the dips. These result from the
mode structure caused by the chosen boundary conditions and are
related to the steplike structure of the density of states for a confined
system. Similar dips were also found in a mean-field analysis with a
harmonic confinement [27].

[27]. The same behavior is seen in confined superconductors
or thin superconducting films where the critical temperature,
the gap parameter, and the intrapair correlation lengths are
increased at so-called shape resonances [49–55].

B. Finite-temperature phase diagram

In Figs. 6 and 7, the critical temperature Tc/TF as a func-
tion of the three-dimensional inverse concentration c−1 =

- 4 - 2 0 2 4
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0.15

0.20

0.25

0.30

FIG. 6. Phase diagram in terms of Tc/TF for different confine-
ment length scales and the three-dimensional case with respect to
the 3D crossover parameter 1/(kF a3D) for tfinal = −17. From top
to bottom (on BEC side): 3D limit in solid red (solid line in gray),
L

√
μmb = 1000 in dashed black, L

√
μmb = 10 in long-dashed blue

(long-dashed line in gray), L
√

μmb = 5 in dash-dotted green (dash-
dotted line in lighter gray), L

√
μmb = 2 in dashed purple (dashed

line in dark gray), and L
√

μmb = 1 in dotted orange (dotted line in
light gray).
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FIG. 7. Phase diagram in terms of Tc/TF for different confine-
ment length scales with respect to the 2D crossover parameter
ln(kF a2D) for tfinal = −17. From top to bottom (on BEC side):
L

√
μmb = 10 in solid blue (solid line in dark gray), L

√
μmb = 5 in

dashed red (dashed line in gray), L
√

μmb = 2 in dash-dotted green
(dash-dotted line in lighter gray), and L

√
μmb = 1 in dotted yellow

(dotted line in light gray). The low critical temperature on the BEC
side is caused by our choice of boundary conditions; see Sec. II C.

(kF a3D)−1 and the two-dimensional crossover parameter
ln(kF a2D) is shown for different confinement length scales
over the whole BCS-BEC crossover. The phase diagram
in Fig. 6 approaches the three-dimensional limit for large
confinement length scales, while the critical temperature is re-
duced for lower dimensionality over the BCS-BEC crossover.
On the other hand, we find an increased critical temperature on
the BCS side of the crossover around L

√
μmb = (0.5 . . . 5).

On the BEC side Tc/TF continues to be reduced for more
confined systems.

In Figs. 7 and 8, we find the expected exponential decrease
on the BCS side of the crossover, where ln(kF a2D)  1, for
small confinement scales in a quasi-two-dimensional geome-
try. Here it was found [96] that

Tc

TF
= 2 eγ

π kF a2D
(28)

with the Euler number γ � 0.5772. The critical temperature
is lowered by a factor of e when including the Gorkov–Melik-
Barkhudarov contribution [97,98].

Furthermore, the BKT-transition temperature on the BEC
side, where ln(kF a2D) 
 1, is approximately reached for
these length scales. However, for smaller L

√
μmb, we obtain

a smaller value than the predicted BKT transition temperature
[98,99]

Tc

TF
= 1

2

{
ln

[ B
4 π

ln

(
4 π

k2
F a2

2D

)]}−1

, (29)

with B � 380.
As described in Sec. II C, this behavior might be attributed

to our choice of boundary conditions. Although we are ar-
riving at a two-dimensional system using periodic boundary
conditions, integrating out the higher modes in the transversal
z direction may lead to a shift in the parameters of the Fermi
gas. This shift can also be differently pronounced depending

- 4 - 2 0 2 4
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0.20

FIG. 8. Phase diagram in terms of Tc/TF for a confinement length
of L

√
μmb = 3.1 with respect to ln(kF a2D) for tfinal = −17. Here we

show the experimental data from Ref. [6] with the corresponding sta-
tistical errors in orange (light gray), as well as both the perturbative
BKT- and BCS-transition temperatures as dashed red (dashed gray)
lines in the appropriate regimes, i.e., ln(kF a2D) 
 −1 (BEC) and
ln(kF a2D)  1 (BCS).

on the scattering length. The observation that Tc/TF decreases
toward zero on the BEC side for L → 0 may be an indication
for a strong L dependence in the map from three-dimensional
to two-dimensional parameters in this region of the phase
diagram and range of L.

In the region of strong correlations, where ln(kF a2D) � 1,
we find a substantial increase in the critical temperature Tc/TF

which cannot be found in a mean-field analysis by extrapola-
tion of the known BCS and BEC limits.

Comparing our results for L
√

μmb = 3.1 to the exper-
imental data from Ref. [6] in Fig. 8, where L

√
μmb is

approximately of the order 0.5 . . . 5, we find a qualitatively
similar phase diagram. Here the increased critical temperature
in the strong coupling regime can also be found, yet slightly
less pronounced.

In Fig. 9, we show our result for a confinement length of
L

√
μmb = 3.1 and the experimental data on the nonthermal

fraction found in Ref. [6]. Here the preferred onset of a presu-
perfluid phase in the strongly correlated region is on par with
our result of an increased superfluid temperature. The shift
with respect to the two-dimensional crossover parameter can
be assigned to the change in the parameters from three to two
dimensions of the Fermi gas.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we have studied the dimensional crossover
in an ultracold Fermi gas from three to two dimensions, thus
extending the work on nonrelativistic bosons carried out in
Ref. [75] and the mean-field analysis in Ref. [27] for fermions.
Particular emphasis was put on the superfluid phase transition
calculated over the whole BCS-BEC crossover in depen-
dence on different confinement length scales. A comparison
to recent experiments in Refs. [3,6] found a qualitative good
agreement. Moreover, we find a nontrivial behavior of the
finite-temperature phase diagram when confining the Fermi
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FIG. 9. Phase diagram in terms of Tc/TF for a confinement length
of L

√
μmb = 3.1 (in black) with respect to ln(kF a2D). Here we show

the experimental data from Ref. [6]. The experimental critical tem-
perature Tc/TF with the corresponding statistical errors is depicted in
white, while the color scale denotes the nonthermal fraction which
signals the onset of a presuperfluid phase.

gas in reduced dimensionality. Here, for small confinement
length scales, a substantial reduction of the critical tempera-
ture Tc/TF on the one hand is found on the BEC side of the
crossover, while on the other hand the critical temperature on
the BCS side is moderately increased. Notably, in the strongly
coupled regime, a substantially higher critical temperature is
found which is on par with recent measurements [6].

Within the dimensional crossover from three to two di-
mensions, a diplike structure with regions of increased and
reduced critical temperature Tc/TF were found. This dip-
like structure is more or less pronounced depending on the
scattering length chosen in the ultraviolet a3D and its exact
shape is an artifact of the boundary conditions chosen for
the confinement. For a harmonic confinement, similar dips
were seen in Ref. [27] for a mean-field study of the critical
temperature on the BCS side for quasi-two-dimensional Fermi
gases. Moreover, in confined superconducting systems this
behavior is known as superconducting shape resonances and
responsible for an increased critical temperature, gap, and
intrapair correlation length at the discontinuities of the density
of states.

These results suggest that a geometry lying between three
and two dimensions might be beneficial in finding systems
with increased critical temperature and thus in advancing in
the quest for high-Tc superconductors.

Overall, we see that certain effects can be attributed to
the dimensionality of the system. These include the diplike
structure of increased and reduced critical temperature within
the dimensional crossover or the overall shape of the phase
diagram at a certain confinement length L

√
μmb. The effective

dimension of the system has thus a constraining impact on the
many-body physics.

The above procedure of confinement from three to two
dimensions can in general be extended to confinements from
three to one and from two to one dimensions; cf., e.g.,
Ref. [100] for a dimensional crossover from two to one dimen-
sions. Moreover, for a more realistic confinement scenario, a
harmonic trapping potential V (z) = 1

2 m ωz z2, as it is approx-
imately realized in most ultracold atom experiments, should

be implemented instead of the periodic conditions used in this
work in order to account for the correct trapping geometry.
However, already the periodic boundary conditions yield qual-
itatively similar features in the L dependence of the critical
temperature as a harmonic trap.

A further quantitative improvement, within the dimen-
sional crossover as well as in three dimensions, concerns the
calculation of the density by which every quantity is normal-
ized, by means of the Fermi momentum kF . As detailed in
Appendix B, the initial conditions for observables gi with scal-
ing dimension dgi � 2 are dependent on the chemical potential
μ. As a consequence, the flow of the density, calculated by
an μ derivative of the effective potential, is not UV finite. In
Appendix B, we outline an iterative safe way of calculating
the density whose results will be presented in future work. In
addition, the truncation may be extended to include also the
renormalization of the fermion propagator, as well as higher
orders in the derivative expansion.

Another interesting aspect would be the study of spin-
and mass-imbalanced Fermi gases within the dimensional
crossover, since here the influence of mismatching Fermi
surfaces and stronger fluctuations in lower dimensions might
result in competing effects concerning pairing [101–106].
This may shed further physical insight, for example, into the
search for high-temperature superconductors.

Already at the present stage our beyond-mean-field analy-
sis is an advancement in the study of the interplay between
many-body physics and dimensionality of ultracold Fermi
gases. It reveals that the dependence of fluctuation effects on
the effective dimensionality leads to characteristic features
that can be exploited in experiment and serve as a test for
theoretical methods.
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APPENDIX A: DEPENDENCE ON THE IR
RG-FLOW SCALE

As mentioned in Sec. II D, the running of the couplings
does not saturate as quickly in d < 3 as in three dimensions
in our RG flow. In Fig. 10, we show this IR-scale dependence
exemplary for a confinement length of L

√
μmb = 0.7 and find

that it is most pronounced in the strongly interacting region
around ln (kF a2D) ≈ 1 while being much less significant in
the BEC and BCS limits. Seeing that the critical temperature is
reduced for a smaller IR scale demands that we choose a suf-
ficiently small final k scale when solving our flow equations.

The dependence on the final RG-flow scale in the infrared
across the dimensional crossover can be seen in Fig. 11 for
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FIG. 10. Phase diagram in terms of Tc/TF for a confinement
length of L

√
μmb = 0.7. Here the dependence on the final IR scale

of the RG flow is shown with (from top to bottom) tfinal = −10
in solid blue (solid line dark gray), tfinal = −12 in long-dashed red
(long-dashed line in gray), tfinal = −14 in dashed green (dashed line
in lighter gray), and tfinal = −17 in dotted yellow (dotted line in light
gray). It is most pronounced in the strongly interacting region around
ln kF a2D ≈ 1, while being much less significant in the BEC and BCS
limits. A smaller IR scale leads to a reduced critical temperature.

a three-dimensional scattering length of a−1
3D = 0. Again, the

dips within the crossover from two to three dimensions are
caused by the chosen boundary conditions and are related to
the steplike structure of the density of states for a confined
system [27].

As shown in Fig. 12, the maximum critical tempera-
ture T max

c /TF within the (quasi-)two-dimensional BCS-BEC
crossover for a confinment length scale L

√
μmb = 0.7 con-

verges for tfinal � −16. For this reason, we choose a final IR
scale of tfinal = −17 for all our calculations such that suffi-
ciently converged results should be obtained.

0.1 1 10 100 1000

0.10

0.15

0.20

0.25

FIG. 11. Critical temperature Tc/TF at fixed three-dimensional
scattering length a−1

3D = 0 over the dimensional crossover from two
to three dimensions. Here we show the dependence on the final IR
scale of the RG flow with (from top to bottom) tfinal = −10 in blue
(dark gray), tfinal = −12 in red (gray), tfinal = −14 in green (lighter
gray), and tfinal = −17 in yellow (light gray).
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FIG. 12. Maximum critical temperature T max
c /TF within the

(quasi-)two-dimensional BCS-BEC crossover for a confinement
length scale L

√
μmb and different final k scales in the infrared. The

convergence for tfinal � −16 can be inferred.

APPENDIX B: μ DEPENDENCE

In this Appendix, we discuss the potential μ dependences
of initial conditions as well as an iterative safe way of how
to extract related observables such as the density and higher
μ derivatives of the free energy. A similar procedure can be
found in Ref. [107].

It is well known that thermal fluctuations decay exponen-
tially with the infrared cutoff scale,

f (k/T, R)e−c(R)k/T , (B1)

where f (k/T, R) rises not more than polynomially or even
decays, depending on the (canonical) dimension of the ob-
servable under consideration; see Ref. [108]. The form of
the prefactor as well as the coefficient c(R) depend on the
shape of the regulator. In particular, for nonanalytic cutoffs
(in frequency) such as the sharp cutoff and the optimal cutoff,
we have c(R) = 0 and the thermal behavior at large cutoff
scales relates to the dimension of the observable. Note that
(B1) can be shown to hold to any order of a given approxima-
tion scheme and hence is a formal, exact property of thermal
fluctuations. It is intimately linked to the fact that thermal
sums can be represented as contour integrals and the infrared
cutoff scale serves as a mass parameter which shifts poles
to momenta p2 ∝ ik2. This also hints at the fact that it is
not present for nonanalytic regulators, where the Matsubara
sum cannot be represented as a contour integral and a naive
dimensional analysis prevails.

In contradisctinction, the chemical potential μ as well as
other external tuning parameters only lead to a polynomial
decay or rise in the dimensionless ratio

k̂ = k

μ
, k̂ = k√

μ
, (B2)

for the relativistic case and nonrelativistic case respectively.
In most cases, this behavior is related to the (canonical) di-
mension of the observable at hand. For example, the free
energy or effective action has a vanishing canonical di-
mension. However, it relates to (negative) pressure times
space-time volume V and hence has a scaling dimension dp =
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d with the cutoff scales in the relativistic case and scaling
dimension dp = d + 1 in the nonrelativistic case.

The above arguments entail that the flow of the thermal
pressure,

∂t p(T, μ) := −
(

∂t�k[φEoS,k; T, μ]

VT
− ∂t�k[φEoS,k; 0, μ]

V0

)
,

(B3)

in general decays exponentially for large cutoff scales,

∂t p(T, μ) ∝ e−c(R)k/T , (B4)

while the free energy density, f , normalized in the vacuum,

∂t f (T, μ) :=
(

∂t�k[φEoS,k ; T, μ]

VT
− ∂t�k[φEoS,k; 0, 0]

V0

)
,

(B5)

has polynomial growth with k,

∂t f (T, μ) → cd f −2kd f k̂−2 + cd f −4kd f k̂−4 + kd f O(k̂−6),
(B6)

Here, vanishing exponents (in the relativistic case) include
logarithms.

1. Initial conditions

Evidently, the initial conditions for observables or cou-
plings gi with scaling dimension dgi � 2 are μ dependent.
In turn, for sufficiently large cutoff scales k̂  1, the initial
conditions for couplings with scaling dimension dgi < 2 do
not change when changing the chemical potential.

First we concentrate on the effective action, the flow of
which is the master equation in our approach,

∂t�k[ψ, φ] = 1
2 Tr Gk,φ ∂t Rk,φ − Tr Gk,ψ ∂t Rk,ψ , (B7)

where the field φ stands for bosonic fields while ψ stands for
fermionic ones. Every observable and coupling can be derived
directly from (B7) and its solution. Indeed, if different defini-
tions of observables such as the density exist, the one directly
using the flow (B7) has the smallest systematic uncertainty.

For our investigation, we write the effective action as

�k = �k[ψ, φ; �g], �g = (mψ, mφ, Zψ, Zφ, h, λψ, λφ, ...),
(B8)

where �g encodes all couplings (expansion coefficients) of the
effective action, ordered in decaying mass dimension. We
conclude that in d = 4 dimensions the only couplings that
potentially require μ-dependent initial conditions are the mass
parameters (including μ itself). However, the flow of the
dimer mass reads asymptotically

∂t m
2
φ ∝ k

h2

k
(1 + μ/k2)3/2 (B9)

and hence its μ derivative tends toward zero, and the only cou-
pling to be taken care of is the fermionic mass (and chemical
potential).

2. Density

As already mentioned above, the equation for the density
with the smallest systematic error is its flow. For the nonrela-

tivistic case, it reads

∂t n = 1

Vol

d∂t�k

dμ
→ cn,3k3 + cn,1μ k + O(k̂−1), (B10)

and a similar equation holds for the relativistic case. The flow
of the susceptibility reads

∂t∂μn = 1

Vol

d2∂t�k

dμ2
→ cn,1k + O(k̂−1), (B11)

while the flow of the second μ derivative of the density tends
toward zero for large cutoff scales,

∂t∂
2
μn = ∂3

μ∂t�k

Vol
→ O(k̂−1). (B12)

We conclude that we can represent the density and the suscep-
tibility at vanishing cutoff, k = 0, by

n(μ) =
∫ μ

0
dμ′∂μ′n(μ′), with n(0) = 0, (B13)

and

∂μn(μ) =
∫ μ

0
dμ′ ∂2

μ′n(μ′), with ∂μn(0) = 0. (B14)

It is left to determine ∂2
μnk (μ). To that end, we rewrite the flow

of the density as

∂t nk = d∂t�k

dμ
= ∂μ|�g∂t�k + dgi

dμ
∂gi∂t�k. (B15)

Both terms follows analytically from the master equation,
(B7), and each partial μ derivative and dgi/dμ∂gi derivative
lowers the effective k dimension by two. The coefficients
g(1)

i = dgi/dμ with

g(n)
i = dngi

dμn
(B16)

follow from their flow

∂t g
(1)
i = d

dμ
∂t gi = ∂μ∂t gi + g(1)

j ∂g j ∂t gi. (B17)

Equation (B17) is a coupled differential equation for �g(1),

∂t �g(1) = �A1 + B1 · �g(1) (B18)

with coefficients

A1,i = ∂μ∂t gi, B1,i j = ∂g j ∂t gi. (B19)

The coefficients A1,i and B1,i j can be read off from the flow
(B7), and hence (B18) is a so-called derived flow: It does
not feed back into the flow of the effective action. Naturally,
this can be iteratively extended to the higher derivatives with
regard to μ. For g(2)

i , it reads

∂t g
(2)
i = d

dμ

(
A1,i + B1,i j g(1)

j

)
= ∂μA1,i + g(1)

j ∂g j A1,i + g(1)
j

(
∂μ + g(1)

m ∂gm

)
B1,i j

+ B1,i j g(2)
j . (B20)

Again, this can be conveniently rewritten in terms of a system
of linear differential equations

∂t �g(2) = �A2 + B2�g(2), (B21)
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with

A2,i = (
∂μ + g(1)

m ∂gm

)
A1,i + g(1)

j

(
∂μ + g(1)

m ∂gm

)
B1,i j,

B2,i j = B1,i j . (B22)

More explicitly, we have

A2,i = ∂2
μ∂t gi + 2g(1)

j ∂g j ∂μ∂t gi + g(1)
j g(1)

m ∂gm∂g j ∂t gi,

B2,i j = ∂g j ∂t gi. (B23)

This already allows us to put down the general structure. At
a given order g(n)

i , the matrix Bn is simply B1. The vector
An depends on �g, �g(1), ..., �g(n−1). Hence, it can be determined
iteratively with

An,i =
(

∂μ +
n−1∑
m=1

g(m)
j ∂g(m−1)

j

)
An−1,i + g(n−1)

j

(
∂μ + g(1)

m ∂gm

)
Bi j

(B24)

with g(0)
i = gi and(

∂μ + g(1)
m ∂gm

)
Bi j = ∂μ∂g j ∂t gi + g(1)

m ∂gm∂g j ∂t gi. (B25)

For n = 3, this explicitly yields

A3,i = [
∂3
μ + 3 g(1)

j ∂g j ∂
2
μ + 3 g(1)

j g(1)
m ∂gm ∂g j ∂μ

+ g(1)
k g(1)

j g(1)
m ∂gm ∂g j ∂gk + 3 g(2)

m ∂gm ∂μ

+ 3 g(2)
j g(1)

m ∂gm ∂g j

]
∂t gi. (B26)

Note that there are various forms for the coefficients An and
Bn. The above forms have the advantage that all derivatives
with regard to μ and g(n)

i can be performed analytically. Fi-
nally, we write down the flow for higher μ derivatives of �k

∂ (n−1)
μ ṅ(μ) = dn∂t�

dμn
=

(
∂μ +

n∑
m=1

g(m)
j ∂g(m−1)

j

)
Cn−1, (B27)

with

C0 = ∂t �k. (B28)

For n = 2, this explicitly yields

∂μ ∂t nk = d2 ∂t �k

dμ2
= [

∂2
μ

∣∣
�g + 2 g(1)

i ∂gi ∂μ

+ g(1)
j g(1)

i ∂gi ∂g j + g(2)
i ∂gi

]
∂t �k,

(B29)

while the second μ derivative of the flow for the density is
found to be

∂2
μ ∂t nk = d3 ∂t �k

dμ3

= [
∂3
μ|�g + 3 g(1)

i ∂gi ∂
2
μ + 3 g(1)

j g(1)
i ∂gi ∂g j ∂μ

+ g(1)
m g(1)

j g(1)
i ∂gi ∂g j ∂gm + 3 g(2)

i ∂gi ∂μ

+ 3 g(2)
i g(1)

j ∂g j ∂gi + g(3)
i ∂gi

]
∂t �k .

Hence, overall the density at vanishing cutoff k = 0 is ob-
tained by integrating twice over the chemical potential

n(μ) =
∫ μ

0
dμ′

[∫ μ′

0
dμ′′ ∂2

μ′′ n(μ′′) + ∂μ′ n(0)

]
+ n(0),

(B30)

where n(0) and ∂μ n(0) are vanishing.
Moreover, we have

∂2
μ nk=0(μ) =

∫ 0

�

dk

k
∂2
μ ṅk (μ) (B31)

for a UV vanishing flow ∂2
μ ṅk→∞ → 0.

APPENDIX C: FLOW EQUATIONS

In this Appendix, we derive the flow equations for an
ultracold Fermi gas in the dimensional crossover. By defin-
ing a master equation, all flow equations of the individual
couplings can be obtained by suitable projection descriptions.
Furthermore, we consider only the isotropic case where the
flow of the couplings in transversal direction equal the ones
in the plane gi = gi,z, since this distinction is negligible [75].
Our procedure is based on Ref. [67].

The ansatz for the effective average action can be divided
in an kinetic part which consists of the fermion and boson
dynamics and interaction part

�k = �kin + �int. (C1)

The kinetic part in terms of the renormalized fields ψ =
A1/2

ψ ψ and φ = A1/2
φ φ is given by

�kin[ψ, φ] =
∫

X

[ ∑
σ={1,2}

ψ∗
σ (Sψ ∂τ − ∇2 + mψ ) ψσ

+ φ∗(Sφ ∂τ − Vφ ∂2
τ − ∇2/2

)
φ

]
. (C2)

In this work, we set Vφ = 0. We normalized the coefficients
of the gradient terms by means of the wave function renor-
malizations Aψ and Aφ which enter the renormalization group
flow via the anomalous dimensions

ηψ = − ∂t ln Aψ, ηφ = − ∂t ln Aφ. (C3)

Unrenormalized quantities are in the following denoted with
an overbar, while renormalized ones do not have overbars. The
effective action �[ψ, φ] is expressed in terms of the unrenor-
malized fields. It can, however, be rescaled by appropriate
powers of Aψ,φ such that �[ψ, φ] = �[ψ, φ]. The projection
description is performed for the unrenomalized quantities, but
the flow is evaluated for the renomalized ones. The interac-
tions can, after a Hubbard-Stratonovich transformation, be
written as

�int[ψ, φ] =
∫

X
(U (φ∗ φ) − h (φ∗ ψ1 ψ2 − φ ψ∗

1 ψ∗
2 )),

(C4)

neglecting the RG flow of the four-fermion vertex λψ,k .
The effective average potential depends only on the U(1)-

invariant quantity ρ = φ∗ φ and describes bosonic scattering
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processes. The U(1) symmetry is spontaneously broken for a
nonzero minimum ρ0 of the effective average potential and
thus describes superfluidity.

In a Taylor expansion, we write

U (ρ) = m2
φ (ρ − ρ0) + λφ

2
(ρ − ρ0)2

− nk δμ + αk (ρ − ρ0) δμ, (C5)

where we need to include at least up to the second order in ρ to
reproduce the second-order phase transition to superfluidity.
In the symmetric regime, we therefore have ρ0 = 0 and m2

φ >

0, whereas the symmetry-broken regime is realized for ρ0 > 0
and m2

φ = 0.

1. Truncation

By including only the fermionic diagrams (F) of Fig. 1, we
arrive at the mean-field result and the bosonic fluctuations are
taken care of by the diagrams including two bosonic lines (B).

The inverse propagators G
−1
φ (Q) and G

−1
ψ (Q) are calcu-

lated by

�
(2)
φi,φ j

(X,Y, ρ ) = δ2 �

δφi(X ) δφ j (Y )
[φ],

�
(2)

ψ
(∗)
α ,ψ

(∗)
β

(X,Y, ρ ) =
−→
δ

δψ
(∗)
α (X )

�

←−
δ

δψ
(∗)
β (Y )

[φ],

(C6)

where the boson background field φ is assumed to be real
valued and the direction of the arrow for the inverse fermion
propagator denotes derivatives acting from left and right on
the effective potential. In momentum space, we arrive at

�
(2)
BB(Q, Q′) = δ(Q + Q′) G

−1
φ (Q),

�
(2)
FF (Q, Q′) = δ(Q + Q′) G

−1
ψ (Q). (C7)

After performing the functional derivatives, we obtain in
the {φ1, φ2} basis for a constant bosonic background field
φ = √

ρ

G
−1
φ (Q) = Aφ

(
PS,Q

φ + U ′ + 2 ρ U ′′ i PA,Q
φ

−i PA,Q
φ PS,Q

φ + U ′

)
,

G
−1
ψ (Q) = Aψ

(−h
√

ρ ε −P−Q
ψ 1

PQ
ψ 1 h

√
ρ ε

)
,

(C8)

with = G
−1
� = Aφ G−1

� (Q), 1 being the two-dimensional unity
matrix, ε = ((0, 1), (−1, 0)) the fully antisymmetric tensor,
and a prime denotes a derivative with respect to ρ.

The regulators in the {φ1, φ2} basis are given by

R
Q
φ = Aφ RQ

φ = Aφ

(
RS

φ (Q) i RA
φ (Q)

−i RA
φ (Q) RS

φ (Q)

)
,

R
Q
ψ = Aψ RQ

ψ = Aψ

(
0 −R−Q

ψ 1

RQ
ψ 1 0

)
. (C9)

Moreover, we defined the symmetrized and antisymmetrized
components of the propagators and regulator functions as

f S,A(Q) = f (Q) ± f (−Q)

2
. (C10)

By introducing short-hand notations for the sum of propagator
and regulator, as well as the determinants

LQ
ψ = PQ

ψ + RQ
ψ,

detQF = LQ
ψ L−Q

ψ + h2 ρ,

LQ
φ = PQ

φ + RQ
φ + U ′ + ρ U ′′,

L̃Q
φ = PQ

φ + RQ
φ ,

detQB = LQ
φ L−Q

φ − (ρU ′′)2,

(C11)

we may write the regularized propagators as

GQ
φ = Aφ G

Q
φ = 1

detQ
B

(
L̃S,Q

φ + U ′ −i L̃A,Q
φ

i L̃A,Q
φ L̃S,Q

φ + U ′ + 2 ρ U ′′

)
,

GQ
ψ = Aψ G

Q
ψ = 1

detQ
F

(
(h2 ρ)1/2 ε L−Q

ψ 1

−LQ
ψ 1 −(h2 ρ)1/2 ε

)
.

(C12)

We can also represent the boson propagator in the conjugate
field basis {φ, φ∗} where the corresponding matrix will be
labeled by a hat.

For φ = (φ1 + i φ2)/
√

2, we have(
φ

φ∗

)
= 1√

2

(
1 i

1 −i

)(
φ1

φ2

)
(C13)

and thus arrive at

Ĝ−1
φ = U G−1

φ Ut (C14)

with the definitions

U = 1√
2

(
1 −i

1 i

)
, Ut = 1√

2

(
1 1

−i i

)
. (C15)

Thus, we obtain for the inverse boson propagator in the
{φ, φ∗} basis

Ĝ−1
φ =

(
ρ U ′′ L−Q

φ

LQ
φ ρ U ′′

)
, R̂φ (Q) =

(
0 R−Q

φ

RQ
φ 0

)
, (C16)

and

ĜQ
φ = 1

detQ
B

(−ρ U ′′ L−Q
φ

LQ
φ −ρ U ′′

)
(C17)

To generate higher n-point functions, further functional
derivatives have to be applied, once again paying attention to
the correct ordering for fermionic derivatives.

Since we assume momentum- and frequency-independent
vertices to close our set of equations, the complexity of the
system of differential equations is drastically reduced:

�
(n>2)
k (Q1, . . . , Qn) = γ

(n)
k δ(Q1, . . . , Qn). (C18)
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2. Master equations

In order to solve the Wetterich equation in practice, we
need to convert it into a set of coupled differential equations
of the correlation functions. We therefore start from a few
master equations, namely for the inverse fermion and boson
propagators, the effective average potential, and the Feshbach
coupling.

In the next step, these equation are projected appropriately
to arrive at flow equations for the running couplings {gk}.

For general regulators, the flow equation of the effective
average potential is then given by

U̇ k (ρ ) = 1

2
Tr

∫
Q

G
Q
φ Ṙ

Q

φ − 1

2
Tr

∫
Q

G
Q
ψ Ṙ

Q

ψ

= 1

2

∫
Q

1

Aφ

LQ
φ Ṙ

−Q

φ + L−Q
φ Ṙ

Q

φ

detQB

− 1

2

∫
Q

1

Aψ

LQ
ψ Ṙ

−Q

ψ + L−Q
ψ Ṙ

Q

ψ

detQF
. (C19)

Our flow equations can be divided into a bosonic and
a fermionic contribution resulting from bosonic (B) and
fermionic (F) diagrams, respectively:

U̇ (ρ) = U̇ (B) + U̇ (F ). (C20)

Including the additional term of the anomalous dimension, we
find the flow for the renormalized quantities, e.g.,

U̇ (ρ) = U̇ (B) + U̇ (F ) + ηφ ρ U ′(ρ). (C21)

For the flow of the inverse boson propagator in the {φ1, φ2} basis, we find

Ġ
−1

φiφ j
(P) = 1

2
Tr

∫
Q

Gφ (Q) γ
(3)
φiBB

Gφ (Q + P) γ
(3)
φ j BB

Gφ (Q)Ṙφ (Q)

+ 1

2
Tr

∫
Q

Gφ (Q) γ
(3)
φ j BB

Gφ (Q − P) γ
(3)
φiBB

Gφ (Q)Ṙφ (Q) − 1

2
Tr

∫
Q

Gφ (Q) γ
(4)
φiφ j BB

Gφ (Q)

− 1

2
Tr

∫
Q

Gψ (Q) γ
(3)
φiF |F Gψ (Q + P) γ

(3)
φ j F |F Gψ (Q)Ṙψ (Q)

− 1

2
Tr

∫
Q

Gψ (Q) γ
(3)
φ j F |F Gψ (Q − P) γ

(3)
φiF |F Gψ (Q)Ṙψ (Q). (C22)

Likewise, the flow of the inverse fermion propagator is obtained, taking the Grassmannian nature of fermions in account,

Ġ
−1

ψαψβ
(P) = 1

2
Tr

∫
Q

Gφ (Q) γ
(3)
ψαB|F Gψ (Q + P) γ

(3)
F |Bψβ

Gφ (Q)Ṙφ (Q)

− 1

2
Tr

∫
Q

Gφ (Q) γ
(3)
BF |ψβ

Gψ (Q − P) γ
(3)
ψα |FB

Gφ (Q)Ṙφ (Q)

− 1

2
Tr

∫
Q

Gψ (Q) γ
(3)
ψα |FB

Gφ (Q + P) γ
(3)
BF |ψφ

Gψ (Q)Ṙψ (Q)

+ 1

2
Tr

∫
Q

Gψ (Q) γ
(3)
F |Bψβ

Gφ (Q − P) γ
(3)
ψαB|F Gψ (Q)Ṙψ (Q). (C23)

3. Projection description for the running couplings

In this section, we derive suitable projection descriptions
for the flow equations of the running couplings {gk} and ex-
pansion coefficients of the effective average potential U (ρ).
We use a derivative expansion of the inverse fermion and
boson propagators

Pψσ (Q) = Zψσ i q0 + Aψσ q2 − μ

= Aψσ (Sψσ i q0 + q2 − μ),

Pφ (Q) = Zφ i q0 + Aφ q2/2

= Aφ (Sφ i q0 + q2/2). (C24)

Here we defined Sψ,φ = Zψ,φ/Aψ,φ and the renormalized
chemical potential μ = μ/Aψ,σ . Expanding the effective po-

tential in a Taylor series, we can easily project the flow
equation (C19) onto the coefficients

Uk (ρ) = m2
φ (ρ − ρ0) + λφ

2
(ρ − ρ0)2 +

N∑
n>2

un

n!
(ρ − ρ0)n.

(C25)

There are several candidates for projection descriptions for the
running couplings which may at a first glance seem equal.
However, as the Wetterich equation is an exact equation in-
corporating all orders of the effective average action, every
projection neglects certain higher order couplings and thus
results in different flows. We expect though that our truncation
includes the most important effects and a precise projection
would only yield negligible modifications. The distinction
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between different projection descriptions may also be used for
an error estimate.

In the symmetric regime of the flow, we have ṁ
2
φ = U̇

′
(ρ =

0), which makes a place for the flow of ρ̇0 = −U̇
′
(ρ0)/λφ in

the symmetry-broken regime. For the flow of higher expan-
sion coefficients, one finds

u̇n = ∂t (U
(n)

(ρ0)) = U̇
(n)

(ρ0) + un+1 ρ̇0. (C26)

We obtain the flow of the renormalized couplings

m2
φ = m2

φ

Aφ

, ρ0 = Aφ ρ0, un = un

An
φ

, (C27)

by

ṁ2
φ = ηφ m2

φ + ṁ
2
φ

Aφ

, ρ̇0 = −ηφ ρ0 + Aφ ρ̇0,

u̇n = ηφ un n + u̇n

An
φ

. (C28)

Since we restrict ourselves to purely fermionic and bosonic
diagrams, we have no running of the couplings entering the
fermionic propagator.

For the couplings associated with the boson propagator, we
obtain

Żφ = −∂p0 Ġ
−1

φ1φ2
(P, ρ0)

∣∣
P=0,ρ0

,

Ȧφ = 2 ∂p2 Ġ
−1

φ2φ2
(P, ρ0)

∣∣
P=0,ρ0

, (C29)

and for the renormalized quantities with the anomalous di-
mension ηφ = −Ȧφ/Aφ

Ṡφ = ηφ Sφ + Żφ

Aφ

. (C30)

In the flow equations for the running couplings, we ne-
glected a term proportional to ρ̇0 which would be generated
if one took the RG time derivative after performing the
projections.

4. Flow equations using the optimized regulator

In this section, we use the optimized regulator (9) for
deriving the flow equations of the running couplings. These
equations will be our main starting point in studying the BCS-
BEC crossover in dimensions 2 � d � 3. The advantage of
the optimized regulator stems from the possibility of analyt-
ically performing the Matsubara summations due to a purely
spatial cutoff q2 = |�q|2.

The procedure may, however, further be simplified by in-
terchanging the order of the derivative projection and the
Matsubara summation. We therefore start again from the gen-
eral form of the flow of the inverse propagators with the
trace not being evaluated so that we can expand the inverse
propagators G(Q ± P) in powers of p0 and p and perform the
projections afterward.

For the fermionic contributions, we arrive at the general
flow equations with the loop integration still unevaluated:

Ṡ(F )
φ = −2 h2 Sψ

∫
Q

Ṙψ (q2)

Aψ

(
1

det2
F

− 2 h2 ρ

det3
F

)
,

η
(F )
φ = 8 h2

d

∫
Q

Ṙψ (q2)

Aψ

q2 Rψ (2)

det3
F

. (C31)

The expansion for the bosonic contributions results in the flow
equations

Ṡ(B)
φ = − 4 Sφ ρ U ′′

∫
Q

Ṙφ (q2)

Aφ

(
U ′′ + ρ U (3)

det2B(Q)
+ 2 ρ U ′′[ρ U ′′(U ′′ + ρ U (3) ) − (2U ′′ + ρ U (3) ) LS

φ (Q)
]

det3B(Q)

)
,

η
(B)
φ = 4 ρ (U ′′)2

∫
Q

Ṙφ (q2)

Aφ

(
1 + 2 R(1)

π + 4 q2 x2 R(2)
φ

det2B(Q)
− 2 q2 x2 (1 + 2 R(1)

π )2
LS

φ (Q)

det3B(Q)

)
. (C32)

After performing the Matsubara sums and the momentum
integrations, the overall flow equations in our truncation can
be cast into the forms

U̇ (F )(ρ) = −16 vd

d
kd+2 

(1,1)
F ,

U̇ (B)(ρ) = 8 vd 2d/2

d
kd+2 

(1,1)
B . (C33)

The fermionic contributions to the boson propagator are found
to be

Ṡ(F )
φ = −16 h2 vd

d
kd−4

(


(0,2)
F − 2 w3 

(0,3)
F

)
,

η
(F )
φ = 16 h2 vd

d
kd−4 

(0,2)
F,2 ,

(C34)

while the bosonic contributions are given by

Ṡ(B)
φ = −32 Sφ

d
ρ U ′′ vd 2d/2 kd−4

[
(U ′′ + ρ U (3) ) 

(0,2)
B

+ 2 (ρ U ′′)2 (U ′′ + ρ U (3) ) k−4 
(0,3)
B

− 2 ρ U ′′ (2U ′′ + ρ U (3) ) k−2 
(1,3)
B

]
,

η
(B)
φ = 8 ρ (U ′′)2 vd 2d/2

d
kd−4 

(0,2)
B,2 . (C35)

Here we used the definitions for fermionic contributions


(n,m)
F (μ̃, T̃ ,w3) =

{
2(μ̃)Fm

(√
1 + w3

)
n even

1(μ̃)Fm
(√

1 + w3
)

n odd
(C36)
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and


(n,m)
F,2 (μ̃, T̃ ,w3) =

{
3(μ̃)Fm

(√
1 + w3

)
n even

1(μ̃)Fm
(√

1 + w3
)

n odd
, (C37)

where we made use of w3 = h2 ρ/k4, as well as w1 = U ′/k2 and w2 = ρ U ′′/k2. For bosonic diagrams, we defined


(n,m)
B (T̃ ,w1,w2) = 1

S2m
φ

(
1 − ηφ

d + 2

)
(1 + w1 + w2)n Bm(

√
(1 + w1)(1 + w1 + 2 w2)/Sφ ) (C38)

and


(0,m)
B,2 (T̃ ,w1,w2) = 1

S2m
φ

Bm(
√

(1 + w1)(1 + w1 + 2 w2)/Sφ ) = 
(0,m)
B

∣∣
ηφ=0. (C39)

Fm(z) and Bm(z) label the fermionic and bosonic Matsubara
sums of order m, respectively. The functions i are defined as

1(x) = θ (x + 1) (x + 1)d/2 − θ (x − 1) (x − 1)d/2,

3(x) = θ (x + 1) (x + 1)d/2 + θ (x − 1) (x − 1)d/2,

2(x) = 3(x) − 2 θ (x) xd/2,

(C40)

and the d-dimensional volume integral is given by v−1
d =

2d+1 πd/2 �(d/2).
In order to obtain the flow of the density n = nk→0, we

may split the chemical potential into a reference part μ0 and
an offset δμ such that μ = μ0 + δμ. We then expand our
effective potential (23) with respect to the offset chemical
potential δμ according to

Uk (ρ) =
2∑

n=1

un

n!
(ρ − ρ0)n − nk δμ + αk (ρ − ρ0) δμ.

(C41)

The differentiation with respect to μ acts rather on δμ as the
reference chemical potential is fixed:

ṅk = − ∂ U̇

∂ δμ
. (C42)

According to our master equation for the effective average
potential (C19), we now expand LS,Q

ψ and detQ
F in terms of δμ

while the fermionic cutoff still regularizes around the Fermi
surface, i.e., the reference chemical potential μ0.

5. Flow equations for finite volume

When confining our system by means of a compactification
of one spatial dimension in a dimensional crossover from 3d
to 2d with a confinement length scale L. By adopting periodic
boundary conditions, we restrict our system to a torus in one
spatial direction

ψ (L) = ψ (0), (C43)

such that we obtain a “spatial Matsubara sum” over discrete
momenta kn = 2πn/L with n ∈ Z. Accompanying this quan-
tization of energy levels, the bosonic and fermionic regulators
defined are modified accordingly. For the optimized regulator,

they become

Rφ,k (q2) =
(

k2 − q2 + k2
n

2

)
θ

(
k2 − q2 + k2

n

2

)
,

Rψ,k (q2) = k2
[
sgn

(
z + k̃2

n

) − (
z + k̃2

n

)]
θ
(
1 − ∣∣z + k̃2

n

∣∣),
(C44)

where we again used z = (q2 − μ)/k2 and k̃n = kn/k. Hence,
the d-dimensional spatial integration splits up into a sum over
the discrete momenta kn and a momentum integral in d − 1
dimensions ∫

dd q

(2 π )d
= 1

L

∑
kn

∫
dd−1 q

(2 π )d−1 . (C45)

Due to the inclusion of the discrete momenta in the reg-
ulator, the evaluation of the spatial boils down to counting
the modes within the potential well. For periodic boundary
conditions, we hereby encounter the following type of sums:

N∑
n=−N

α = α (1 + 2 N ) (α ∈ R),

(C46)
N∑

n=1

n2 = 1

6
N (1 + N ) (1 + 2 N ),

and

N∑
n=1

n4 = 1

30
N (1 + N ) (1 + 2 N ) (−1 + 3 N + 3 N2).

(C47)

As a result of the periodic boundary conditions, the reg-
ulator function restricts the Matsubara-type summation in
the transversal direction to |kn| = |2πn/L| <

√
2 k or equiva-

lently |n| < L̃/
√

2π .
For bosonic contributions, we define

N (B) =
⌊

L̃√
2 π

⌋
(C48)
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with �x� being the largest integer smaller than x. In three dimensions, we find

CL = 1

L

∑
kn

(
1 − k2

n

2 k2

)d/2[
1 − ηφ

d + 2

(
1 − k2

n

2 k2

)]
θ

(
k2 − k2

n

2

)

= k

L̃
(1 + 2 N (B) )

{
1 − ηφ

4
− 1

6

(
1 − ηφ

2

) (
2 π

L̃

)2

N (B) (1 + N (B) )

− ηφ

60

(
2 π

L̃

)4

N (B) (1 + N (B) ) [−1 + 3 N (B) + 3 (N (B) )2]

}
. (C49)

Thus, all bosonic flow equations still hold with the replacements(
1 − ηφ

d + 2

)
→ CL, d → d − 1. (C50)

The fermionic momentum integrals can be generalized by the transformation z → ẑ = (q2 + k2
n − μ)/k2. All results can

then be transferred by the transformation μ → μ̂ = μ̃ − k̃2
n . For periodic boundary conditions, it can be easily shown in d = 3

dimensions
1

L

∑
kn

θ (μ̂ + 1) (μ̂ + 1)(d−1)/2 = 1

L

[
(μ̃ + 1)

(
1 + 2 N (F )

1

) − 1

3

(
2 π

L̃

)2

N (F )
1

(
1 + N (F )

1

) (
1 + 2 N (F )

1

)]
θ (μ̃ + 1),

1

L

∑
kn

θ (μ̂ − 1) (μ̂ − 1)(d−1)/2 = 1

L

[
(μ̃ − 1)

(
1 + 2 N (F )

2

) − 1

3

(
2 π

L̃

)2

N (F )
2

(
1 + N (F )

2

) (
1 + 2 N (F )

2

)]
θ (μ̃ − 1),

1

L

∑
kn

θ (μ̂) (μ̂)(d−1)/2 = 1

L

[
μ̃

(
1 + 2 N (F )

3

) − 1

3

(
2 π

L̃

)2

N (F )
3

(
1 + N (F )

3

) (
1 + 2 N (F )

3

)]
θ (μ̃). (C51)

Here we defined

N (F )
1 =

⌊
L̃ (μ̃ + 1)1/2

2 π

⌋
, N (F )

2 =
⌊

L̃ (μ̃ − 1)1/2

2 π

⌋
, N (F )

3 =
⌊

L̃ μ̃1/2

2 π

⌋
. (C52)

Hence, for the spatial threshold function with explicit Matsubara summation, we obtain for periodic boundary conditions in
d = 3

1

L

∑
kn

a(μ̂) = k

L̃

{[
(μ̃ + 1)

(
1 + 2 N (F )

1

) − 1

3

(
2 π

L̃

)2

N (F )
1

(
1 + N (F )

1

) (
1 + 2 N (F )

1

)]

× (−1)a
[
(μ̃ + 1) → (μ̃ − 1)

(
N (F )

1 → N (F )
2

)]
− (1 + (−1)a)

[
μ̃

(
1 + 2 N (F )

3

) − 1

3

(
2 π

L̃

)2

N (F )
3

(
1 + N (F )

3

) (
1 + 2 N (F )

3

)] }
(C53)

for a = 1, 2 and in addition

1

L

∑
kn

3(μ̂) = k

L̃

{[
(μ̃ + 1)

(
1 + 2 N (F )

1

) − 1

3

(
2 π

L̃

)2

N (F )
1

(
1 + N (F )

1

) (
1 + 2 N (F )

1

)]

+ [
(μ̃ + 1) → (μ̃ − 1)&

(
N (F )

1 → N (F )
2

)]}
. (C54)

Thus, all fermionic flow equations can be transferred to the case of finite volume with periodic boundary conditions with the
replacement

i → i,L = k

L̃

∑
kn

i, d → d − 1. (C55)

APPENDIX D: NUMERICAL PROCEDURE

The set of coupled differential equations for the pro-
jected flow equations from Appendix C are numerically
evaluated for both zero and finite temperature. However,
it is a useful feature of the functional renormalization

group that for large scales k2  T the finite-temperature
flow can be approximated by the zero-temperature system
[67]. For a practical computation, we choose kswitch,T =
6 π T ; i.e., we follow the zero-temperature flow until
kswitch,T where the temperature starts to become an im-
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portant scale and we switch to the finite-temperature flow
equations.

Likewise, the Fermi gas confined to a trap can be regarded
as an unconfined system for large scales k  L−1. Here
we choose kswitch,L = 50/L, which significantly decreases the
runtime of the computation. The agreement of the results with
and without splitting the flow in zero and finite temperature, as
well as unconfined and confined flow equations was checked
numerically.

The critical temperature is determined as the largest
temperature for which the gap of the fermion spec-

trum is nonvanishing. Numerically, we use the following
algorithm

0 < 	tfinal (Tc, μ, a, L) <
1

100
	tfinal (T = 0, μ, a, L). (D1)

Using this algorithm is very efficient, as it accounts for both
the large gap on the BEC side and for the smaller gap on the
BCS side (especially in the three-dimensional case). It was
checked numerically that further limitation to <1% of the
zero-temperature gap yields identical results in d � 3 within
the numerical precision.
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Milošević, M. Fretto, C. Cassiago, and N. De Leo, Sci. Rep. 8,
4710 (2018).

[54] D. Eom, S. Qin, M.-Y. Chou, and C. K. Shih, Phys. Rev. Lett.
96, 027005 (2006).

[55] A. Perali, A. Bianconi, A. Lanzara, and N. L. Saini, Solid State
Commun. 100, 181 (1996).

[56] S. Diehl and C. Wetterich, Phys. Rev. A 73, 033615 (2006).
[57] S. Diehl and C. Wetterich, Nucl. Phys. B 770, 206 (2007).
[58] S. Diehl, H. Gies, J. M. Pawlowski, and C. Wetterich, Phys.

Rev. A 76, 053627 (2007).
[59] S. Diehl, H. Gies, J. M. Pawlowski, and C. Wetterich, Phys.

Rev. A 76, 021602(R) (2007).
[60] S. Floerchinger, M. Scherer, S. Diehl, and C. Wetterich, Phys.

Rev. B 78, 174528 (2008).
[61] S. Floerchinger, R. Schmidt, S. Moroz, and C. Wetterich, Phys.

Rev. A 79, 013603 (2009).
[62] S. Floerchinger, M. M. Scherer, and C. Wetterich, Phys. Rev.

A 81, 063619 (2010).
[63] S. Diehl, S. Floerchinger, H. Gies, J. M. Pawlowski, and C.

Wetterich, Ann. Phys. 522, 615 (2010).
[64] I. Boettcher, J. M. Pawlowski, and S. Diehl, Nucl. Phys. Proc.

Suppl. 228, 63 (2012).
[65] I. Boettcher, S. Diehl, J. M. Pawlowski, and C. Wetterich,

Phys. Rev. A 87, 023606 (2013).
[66] D. Schnoerr, I. Boettcher, J. M. Pawlowski, and C. Wetterich,

Ann. Phys. 334, 83 (2013).
[67] I. Boettcher, J. M. Pawlowski, and C. Wetterich, Phys. Rev. A

89, 053630 (2014).
[68] I. Boettcher, J. Braun, T. K. Herbst, J. M. Pawlowski, D.

Roscher, and C. Wetterich, Phys. Rev. A 91, 013610 (2015).
[69] D. Roscher, J. Braun, and J. E. Drut, Phys. Rev. A 91, 053611

(2015).
[70] I. Boettcher, T. K. Herbst, J. M. Pawlowski, N. Strodthoff, L.

von Smekal, and C. Wetterich, Phys. Lett. B 742, 86 (2015).
[71] M. Ku, J. Braun, and A. Schwenk, Phys. Rev. Lett. 102,

255301 (2009).
[72] J. Braun, B. Klein, and B.-J. Schaefer, Phys. Lett. B 713, 216

(2012).

[73] J. Braun, Few Body Syst. 53, 37 (2012).
[74] R.-A. Tripolt, J. Braun, B. Klein, and B.-J. Schaefer, Phys.

Rev. D 90, 054012 (2014).
[75] S. Lammers, I. Boettcher, and C. Wetterich, Phys. Rev. A 93,

063631 (2016).
[76] N. Dupuis, L. Canet, A. Eichhorn, W. Metzner, J. M.

Pawlowski, M. Tissier, and N. Wschebor, Phys. Rep. (2021),
doi: 10.1016/j.physrep.2021.01.001.

[77] C. Wetterich, Nucl. Phys. B 352, 529 (1991).
[78] C. Wetterich, Phys. Lett. B 301, 90 (1993).
[79] J. M. Pawlowski, Ann. Phys. 322, 2831 (2007).
[80] B.-J. Schaefer and J. Wambach, Phys. Part. Nucl. 39, 1025

(2008).
[81] H. Gies, Lect. Notes Phys. 852, 287 (2012).
[82] B. Delamotte, Lect. Notes Phys. 852, 49 (2012).
[83] P. Kopietz, L. Bartosch, and F. Schütz, Lect. Notes Phys. 798,

1 (2010).
[84] W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden, and K.

Schonhammer, Rev. Mod. Phys. 84, 299 (2012).
[85] J. Braun, J. Phys. G 39, 033001 (2012).
[86] D. F. Litim, Int. J. Mod. Phys. A 16, 2081 (2001).
[87] D. F. Litim, Phys. Rev. D 64, 105007 (2001).
[88] C. Wetterich, Phys. Rev. B 77, 064504 (2008).
[89] N. Tetradis and C. Wetterich, Nucl. Phys. B 398, 659 (1993).
[90] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133

(1966).
[91] P. C. Hohenberg, Phys. Rev. 158, 383 (1967).
[92] V. L. Berezinsky, Sov. Phys. JETP 32, 493 (1971) [Zh. Eksp.

Teor. Fiz. 59, 907 (1971)].
[93] V. L. Berezinsky, Sov. Phys. JETP 34, 610 (1972) [Zh. Eksp.

Teor. Fiz. 61, 1144 (1972)].
[94] J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).
[95] J. M. Kosterlitz, J. Phys. C 7, 1046 (1974).
[96] K. Miyake, Prog. Theor. Phys. 69, 1794 (1983).
[97] L. P. Gor’kov and T. K. Melik-Barkhudarov, Sov. Phys. JETP

13, 1018 (1961) [Zh. Eksp. Teor. Fiz. 40, 1452 (1961)].
[98] D. S. Petrov, M. A. Baranov, and G. V. Shlyapnikov, Phys.

Rev. A 67, 031601(R) (2003).
[99] J. Levinsen and M. M. Parish, Ann. Rev. Cold Atoms

Molecules 3, 1 (2014).
[100] A. A. Shanenko, M. D. Croitoru, A. V. Vagov, V. M. Axt, A.

Perali, and F. M. Peeters, Phys. Rev. A 86, 033612 (2012).
[101] L. He and P. Zhuang, Phys. Rev. A 78, 033613 (2008).
[102] K. Sun and C. J. Bolech, Phys. Rev. A 85, 051607(R)

(2012).
[103] W. Ong, C. Cheng, I. Arakelyan, and J. E. Thomas, Phys. Rev.

Lett. 114, 110403 (2015).
[104] D. Mitra, P. T. Brown, P. Schauß, S. S. Kondov, and W. S.

Bakr, Phys. Rev. Lett. 117, 093601 (2016).
[105] C.-T. Wu, R. Boyack, and K. Levin, Phys. Rev. A 94, 033604

(2016).
[106] S. Dutta and E. J. Mueller, Phys. Rev. A 94, 063627 (2016).
[107] W.-J. Fu and J. M. Pawlowski, Phys. Rev. D 92, 116006

(2015).
[108] L. Fister and J. M. Pawlowski, arXiv:1112.5440 [hep-ph].

033320-19

https://doi.org/10.1088/0953-2048/27/12/124002
https://doi.org/10.1007/s10948-015-3308-y
https://doi.org/10.3390/condmat5010010
https://doi.org/10.1126/sciadv.1602372
https://doi.org/10.1103/PhysRevLett.10.332
https://doi.org/10.1016/S0375-9601(63)80003-1
https://doi.org/10.1103/PhysRevB.82.184528
https://doi.org/10.1088/1742-6596/529/1/012007
https://doi.org/10.1038/s41598-018-22983-6
https://doi.org/10.1103/PhysRevLett.96.027005
https://doi.org/10.1016/0038-1098(96)00373-0
https://doi.org/10.1103/PhysRevA.73.033615
https://doi.org/10.1016/j.nuclphysb.2007.02.026
https://doi.org/10.1103/PhysRevA.76.053627
https://doi.org/10.1103/PhysRevA.76.021602
https://doi.org/10.1103/PhysRevB.78.174528
https://doi.org/10.1103/PhysRevA.79.013603
https://doi.org/10.1103/PhysRevA.81.063619
https://doi.org/10.1002/andp.201010458
https://doi.org/10.1016/j.nuclphysbps.2012.06.004
https://doi.org/10.1103/PhysRevA.87.023606
https://doi.org/10.1016/j.aop.2013.03.013
https://doi.org/10.1103/PhysRevA.89.053630
https://doi.org/10.1103/PhysRevA.91.013610
https://doi.org/10.1103/PhysRevA.91.053611
https://doi.org/10.1016/j.physletb.2015.01.014
https://doi.org/10.1103/PhysRevLett.102.255301
https://doi.org/10.1016/j.physletb.2012.05.053
https://doi.org/10.1007/s00601-011-0285-y
https://doi.org/10.1103/PhysRevD.90.054012
https://doi.org/10.1103/PhysRevA.93.063631
https://doi.org/10.1016/j.physrep.2021.01.001
https://doi.org/10.1016/j.physrep.2021.01.001
https://doi.org/10.1016/0550-3213(91)90099-J
https://doi.org/10.1016/0370-2693(93)90726-X
https://doi.org/10.1016/j.aop.2007.01.007
https://doi.org/10.1134/S1063779608070083
https://doi.org/10.1007/978-3-642-27320-9_6
https://doi.org/10.1007/978-3-642-27320-9_2
https://doi.org/10.1007/978-3-642-05094-7
https://doi.org/10.1103/RevModPhys.84.299
https://doi.org/10.1088/0954-3899/39/3/033001
https://doi.org/10.1142/S0217751X01004748
https://doi.org/10.1103/PhysRevD.64.105007
https://doi.org/10.1103/PhysRevB.77.064504
https://doi.org/10.1016/0550-3213(93)90608-R
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRev.158.383
https://inspirehep.net/literature/61186
https://inspirehep.net/literature/1716846
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/7/6/005
https://doi.org/10.1143/PTP.69.1794
http://www.jetp.ac.ru/cgi-bin/e/index/e/13/5/p1018?a=list
https://doi.org/10.1103/PhysRevA.67.031601
https://doi.org/10.1142/9789814667746_0001
https://doi.org/10.1103/PhysRevA.86.033612
https://doi.org/10.1103/PhysRevA.78.033613
https://doi.org/10.1103/PhysRevA.85.051607
https://doi.org/10.1103/PhysRevLett.114.110403
https://doi.org/10.1103/PhysRevLett.117.093601
https://doi.org/10.1103/PhysRevA.94.033604
https://doi.org/10.1103/PhysRevA.94.063627
https://doi.org/10.1103/PhysRevD.92.116006
http://arxiv.org/abs/arXiv:1112.5440

