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Inversion of coherent backscattering with interacting Bose-Einstein condensates in two-dimensional
disorder: A truncated Wigner approach
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We theoretically study the propagation of an interacting Bose-Einstein condensate in a two-dimensional
disorder potential, following the principle of an atom laser. The constructive interference between time-reversed
scattering paths gives rise to coherent backscattering, which may be observed under the form of a sharp
cone in the disorder-averaged angular backscattered current. As is found by the numerical integration of the
Gross-Pitaevskii equation, this coherent backscattering cone is inversed when a nonvanishing interaction strength
is present, indicating a crossover from constructive to destructive interferences. Numerical simulations based
on the truncated Wigner method allow one to go beyond the mean-field approach and show that dephasing
renders this signature of antilocalization hidden behind a structureless and dominant incoherent contribution as
the interaction strength is increased and the injected density decreased, in a regime of parameters far away from
the mean-field limit. However, despite a partial dephasing, we observe that this weak antilocalization scenario
prevails for finite interaction strengths, opening the way for an experimental observation with 87Rb atoms.
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I. INTRODUCTION

The phenomenon of coherent backscattering (CBS) [1–4]
lies at the heart of various interference effects in mesoscopic
transport physics. CBS arises due to constructive interfer-
ences between a path and its time-reversed counterpart in the
backscattered direction that survive ensemble averaging. It is
observed in a very wide variety of situations, ranging from
the explanation that Saturn’s rings are twice brighter [5] in the
backscattered direction to the probing of deep underground
to search for oil [6]. It has been experimentally verified by
illuminating a powder with light [1,2,4,7] or for elastic [8]
and acoustic waves [9] and most recently with Bose-Einstein
condensates in the presence of a two-dimensional disorder,
when time-of-flight imaging has shown that the condensate,
initially well-prepared in a momentum state pi, experiences
a momentum redistribution over 2π with a notable peak in
the backward direction [10]. In the context of electronic trans-
port, coherent backscattering gives rise to weak localization
[11,12]. It also inhibits thermalization and quantum ergod-
icity [13] in closed many-body systems and can give rise
to many-body spin echoes [14]. CBS is seen as a precursor
of strong (Anderson) localization [15,16] for which coherent
forward scattering [17–21] has been recently identified as a
key indicator.

Weak localization and coherent backscattering may be af-
fected by nonlinearities [22]. Such nonlinearities arise for
example in the context of light within nonlinear media
[23,24]. In the presence of a nonlinearity, the angular profile
of light scattering by a disordered opaque medium displays a
narrow dip in the backscattered direction [25]. In the context
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of ultracold atoms, the mean-field description of the atomic
gas accounts for the presence of atom-atom interaction via
the nonlinear Gross-Pitaevskii equation. Mean-field studies
[26,27] have indeed shown that in a quasisteady context, the
coherent backscattering peak can be inverted, as a result of
the presence of a nonlinearity in the wave equation describing
the quantum transport of matter wave towards a disordered
region (see also Ref. [25]). Similar results have been obtained
with Aharonov-Bohm rings in the presence of disorder, where
the presence of a nonlinearity gives rise to an inversion of
Al’tshuler-Aronov-Spivak oscillations [28].

A natural question that arises in this context is to what ex-
tent the mean-field approximation remains valid, particularly
concerning the peak inversion. A study based on diagram-
matic many-body techniques [29] predicts that a dephasing
effect in the presence of strong interaction is expected. In-
deed, in the presence of a finite interaction strength, inelastic
collision processes that are not described in the mean-field
approximation yield an energy redistribution amongst the in-
teracting particles. Owing to that energy redistribution, an
incoherent current is produced, which can eclipse the coher-
ent contribution due to interference effects. This was also
confirmed by Ref. [30] where it was found that in the nonequi-
librium configuration of Ref. [10], CBS is reduced owing to
thermalization-induced dephasing.

In order to obtain a complementary point of view to that
issue, we use the truncated Wigner method [31–36], which is a
quasiclassical method that allows one to go beyond the mean-
field regime. The truncated Wigner method takes into account
quantum fluctuations by a random sampling of the initial
quantum state evolved along Gross-Pitaevskii trajectories. It
therefore allows for the description of both coherent and inco-
herent processes that are not described by the Gross-Pitaevskii
equation. Those incoherent processes are of particular
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relevance in an experimental context, since they can over-
shadow the interference effect that one wants to highlight
in the context of CBS. The truncated Wigner method thus
provides a convenient tool to probe in which regime of atom
density and interaction dephasing dominates, and it can in-
form about the feasibility of a transport experiment. In this
latter context, it was applied to investigate the flow of a
Bose-Einstein condensate across obstacles and disorder po-
tentials [37] to study atom-laser scenarios [38,39], and it was
shown that it provides reliable predictions for average particle
densities and currents in disordered systems [40]. In the con-
text of disordered Aharonov-Bohm rings, truncated Wigner
simulations predict the inversion of Al’tshuler-Aronov-Spivak
oscillations in a finite regime of interaction but also the pres-
ence of dephasing for stronger interactions [28].

In this paper, we apply the truncated Wigner method in
order to study the crossover from constructive to destruc-
tive interferences due to the interaction in a two-dimensional
(2D) Bose-Einstein condensate. For that purpose, we study
the same system as in Ref. [26], that is, a source of atoms
that injects a coherent bosonic matter-wave beam onto a
two-dimensional disordered slab of finite width. Our numeri-
cal findings confirm the inversion of coherent backscattering
within the mean-field regime, and truncated Wigner sim-
ulations show that beyond this regime the inversion is
partially destroyed, but remains observable in a regime that
should be accessible experimentally, before getting hidden by
dephasing.

In Sec. II, we start by introducing the physical config-
uration we study. In view of numerically integrating the
equations describing the configuration we study, we discuss
in Sec. III the spatial discretization scheme that we use in
this context. We then briefly explain the numerical methods
we use in this paper, namely, the numerical integration of the
Gross-Pitaevskii equation and the truncated Wigner method.
Section IV is devoted to the discussion of the numerical re-
sults. We study the occurrence of coherent backscattering and
its inversion in the mean-field regime, as is documented in
Ref. [26]. We examine the prevalence of this inversion beyond
the mean-field regime with the truncated Wigner method and
identify in which regime the inverted CBS peak is still visible.

II. DESCRIPTION OF THE SCATTERING
CONFIGURATION

We consider a Bose-Einstein condensate of N → ∞ par-
ticles at zero temperature T = 0 which is outcoupled from a
reservoir with a finite chemical potential μ > 0, following the
principle of an atom laser [41–47]. The outcoupled particles
are propagating towards a two-dimensional disorder potential,
V (r), which can be experimentally realized by means of, for
instance, optical speckle fields [48]. The confinement to a
planar motion in two dimensions can be achieved by superim-
posing a strong one-dimensional optical lattice in a direction
perpendicular to the propagation direction. The incident beam
will then be squeezed in a stack of 2D layers and thus propa-
gates quasi-two-dimensionally, as is represented in Fig. 1.

A many-body model for the description of such a quantum
transport problem is given by a set of evolution equations for
the field operator ψ̂ (r, t ) of the bosons in the scattering region,

FIG. 1. Sketch of the scattering configuration. A Bose-Einstein
condensate at temperature T = 0 and the chemical potential μ is
injected in a spatially localized disorder potential superimposed by
a one-dimensional optical lattice that confines the bosons in quasi-
two-dimensional planes located between the layers of the lattice.

where r ≡ (x, y) is the spatial position, and for the particle
annihilation operator of the source φ̂S (t ), whose evolution
equations are given by [28,49]

ih̄
∂ψ̂ (r, t )

∂t
= Ĥ0ψ̂ (r, t ) + g̃(r)ψ̂†(r, t )ψ̂ (r, t )ψ̂ (r, t )

+K (r, t )φ̂S (0)e−iμt/h̄φ̂S (t ) (1)

ih̄
∂φ̂S (t )

∂t
= μφ̂S (t ) +

∫
drK∗(r, t )ψ̂ (r, t ). (2)

In Eqs. (1) and (2), Ĥ0 = −(h̄2/2m)� + V (r) is the two-
dimensional single-particle Hamiltonian describing the propa-
gation of particles in the disorder potential V (r), with h̄ being
the reduced Planck constant and m the mass of the atoms.
We also introduced the position-dependent coupling strength
K (r, t ) which couples the reservoir to the scattering region
and g̃(r), the effective interaction strength. In the presence of
a 2D confinement, it is given by g̃(r) ≡ h̄2g(x)/m, with the 2D
effective dimensionless interaction strength

g(x) = 2
√

2π
as

a⊥(x)
, (3)

where as is the s-wave scattering length of the atoms under
study and a⊥(x) = √

h̄/mω⊥(x) is the oscillator length as-
sociated with the transverse confinement. Due to the spatial
dependence of a⊥(x) which follows the spatial profile of the
confining potential, the interaction strength depends on the
longitudinal propagation coordinate. We assume it to be adi-
abatically and smoothly ramped on from zero at position xL

to a finite value gmax at position xL + �x and then ramped off
from gmax at position xR to zero at position xR + �x, using a
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FIG. 2. Numerical representation of the 2D scattering configu-
ration. A coherent source of bosons is coupled to the scattering
region at position xS and injects a monochromatic plane wave beam
which travels towards a two-dimensional region of space in which
disorder and interaction are present, as is depicted in panel (a). The
discretization of the 2D scattering region of length L and width
W results in a lattice of L (respectively W ) sites in the longitu-
dinal (respectively transverse) direction with the spacing δ and a
nearest-neighbor hopping term, −Eδ/2, in both directions. Smooth
exterior complex scaling is applied in the longitudinal direction for
absorbing outgoing waves while periodic boundary conditions are
imposed in the transverse direction. Panel (c) shows the scattering
geometry consisting of two regions with V (x, y) = 0 surrounding a
slab of length LD and width W where a smooth random disorder
is generated. Panel (e) shows the spatial variation of g(x) that is
smoothly ramped from 0 before the disordered region to gmax in
the disorder and smoothly ramped back to 0 behind this region.
Panel (d) shows a single realization of the steady scattering state
achieved in the presence of the disorder displayed in panel (c). Panel
(f) shows the exponential decay of the coherent mode |〈ψl,w〉|2 and
the linear decrease of the density 〈|ψl,w|2〉. Numerical parameters:
kδ = 1,

√
N |κ|2m/h̄2k2 = 1, 1000 realizations of a Gaussian corre-

lated disorder with disorder strength V0m/h̄2k2 = 0.1 and correlation
length kσ = 1, length kLD = 100, and width kW = 120.

smooth switching function [50] represented in Fig. 2(e) whose
profile (B3) is detailed in Appendix B.

The reservoir is given by a trapped Bose-Einstein con-
densate filled with N → ∞ atoms. In order to ease the
calculations, we choose an idealized profile for the coupling

K (r, t ) = κ (t )δ(x − xS )φ(y), (4)

which acts as a source that injects particles into the scattering
plane at position xS , with a transverse profile φ(y) = 1 that
we assume to be homogeneous. The temporal profile of the
coupling κ (t ) is adiabatically and smoothly ramped from zero
to a constant value κmax (this can be experimentally achieved
by varying the intensity of the radio-frequency field in the case
of outcoupling via a radio-frequency knife [42]) following
the smooth switching function [50] profile (B4) described in
Appendix B. If this coupling tends to zero in such a manner

that the product N |κ (t )|2 remains constant [42,51,52], then a
stationary many-body scattering state can be realized.

The disorder potential we use in this paper is generated by

V (r) = V0

∫
1√
πσ

exp

(−|r − r′|2
2σ 2

)
η(r′)dr′, (5)

where the correlator η(r) is chosen as a Gaussian white noise
satisfying 〈η(r)〉 = 0 as well as 〈η(r)η(r′)〉 = δ(r − r′). This
potential is such that its probability distribution to obtain a
certain value for V is given by the Gaussian distribution:

P(V ) = 1√
2πV0

e−V 2/(2V0 )2
. (6)

The disorder potential in Eq. (5) is such that its average value
vanishes, 〈V (r)〉 = 0 (with 〈·〉 the random average), and its
two-point correlation function

〈V (r)V (r′)〉 = V 2
0 exp

(−|r − r′|2
4σ 2

)
(7)

is of Gaussian shape. Note that, even though the Gaussian
two-point correlator is not identical to the one describing
an optical speckle field, the predictions obtained with this
disorder potential are nevertheless expected to be very similar
to the ones that result from a speckle disorder, provided the
disorder correlation lengths are identical [53].

III. NUMERICAL METHODS

A. Discretization procedure

In order to numerically implement the truncated Wigner
method, we perform a discretization of the 2D scattering re-
gion of length L and width W resulting in a series of L × W
sites labeled by l and w and spaced by the grid spacing δ. As
is usually done in that case, we describe the kinetic energy
operator in terms of a finite-difference scheme:

∂2ψ̂ (x, y)

∂x2
� ψ̂ (x + δ, y) + ψ̂ (x − δ, y) − 2ψ̂ (x, y)

δ2
, (8)

∂2ψ̂ (x, y)

∂y2
� ψ̂ (x, y + δ) + ψ̂ (x, y − δ) − 2ψ̂ (x, y)

δ2
. (9)

As a result of the finite-difference scheme discretization, each
site acquires both an on-site energy, Eδ = h̄2/mδ2, and a
nearest-neighbor hopping term, Eδ/2. The Hamiltonian result-
ing from the discretization of space reads

Ĥ =
L∑

l=1

W∑
w=1

[
2Eδ â†

l,wâl,w + Vl,wâ†
l,wâl,w

− Eδ

2
(â†

l+1,w
âl,w + â†

l,wâl+1,w )

− Eδ

2
(â†

l,w+1âl,w + â†
l,wâl,w+1)

+ Eδgl â
†
l,wâ†

l,wâl,wâl,w

]

+
W∑
j=1

[κ (t )â†
lS , j b̂ + κ∗(t )b̂†âlS , j] + μb̂†b̂, (10)
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where â†
l,w (respectively âl,w) is the creation (respectively

annihilation) operator at site (l,w) and b̂† (respectively b̂) is
the creation (respectively annihilation) operator of the source
which is maintained at the chemical potential μ and the
vanishing temperature T = 0. We implement smooth exterior
complex scaling in the longitudinal direction in order to ab-
sorb outgoing waves [28,38,54–63] and we consider periodic
boundary conditions in the transverse direction.

The on-site interaction parameter is defined as

U (x) = g̃(x)/δ2 = gl Eδ = 4π h̄2aS√
2πmδ2a⊥(x)

(11)

and is controlled by the dimensionless parameter g(x) =
2
√

2πaS/a⊥(x). As Ref. [64] indicates, this choice for the
on-site interaction parameter exhibits convergence issues in
the formal limit δ → 0. In Appendix C, we determine the
correct scaling of this interaction parameter as a function of δ

and conclude that, for the choice kδ = 1 we made, corrections
to the scaling (11) are negligible.

In order to properly discretize the disorder potential, we
discretize the δ distribution in the two-point correlation func-
tion of the correlator, which amounts to generating within
the disordered slab complex Gaussian random numbers ξl,w

which fulfill

〈ξl,wξl ′,w′ 〉 = δl,l ′δw,w′ (12)

and satisfy the periodic boundary conditions ξl,w+W = ξl,w.
One has then to take the convolution product of those numbers
with a Gaussian envelope so that the disorder at point (l,w)
is generated by

Vl,w =
lend∑

l ′=−lstart

∞∑
w′=−∞

Al,l ′Aw,w′ξl ′,w′ , (13)

with the Gaussian weight

Aj, j′ =
√

V0δ√
πσ

exp

[
− δ2

2σ 2
( j − j′)2

]
, (14)

where V0 is the disorder strength and σ its correlation length.
In the Heisenberg picture, the Hamiltonian provided in

Eq. (10) yields the evolution of the annihilation operators
according to

ih̄
∂ âl,w(t )

∂t
= (2Eδ + Vl,w )âl,w(t )

−Eδ

2
[âl−1,w(t ) + âl+1,w(t )]

−Eδ

2
[âl,w−1(t ) + âl,w+1(t )]

+Eδgl â
†
l,w(t )â2

l,w(t ) + κ (t )δl,lS b̂(t ), (15)

ih̄
∂ b̂(t )

∂t
= μb̂(t ) +

W∑
j=1

κ∗(t )âlS , j (t ). (16)

In the absence of interaction and disorder, a steady many-
body scattering state can be achieved. It is characterized by
a stationary density and current that are given by [28,38,52]

ρ∅ = 1

δ2

N |κ (t )|2
μ(2Eδ − μ)

, (17)

j∅ = 1

h̄

N |κ (t )|2√
μ(2Eδ − μ)

. (18)

B. Mean-field Gross-Pitaevskii approach

In the limit of a large atomic density and small interaction
strength, the numerical integration of the Gross-Pitaevskii
equation has been revealed to provide very satisfactory de-
scriptions in various atom-lasers scenarios [65–69]. The
principle of the mean-field approximation lies in the fact that
quantum operators can be replaced by c-numbers as long as
on-site densities are large and the interaction strength is weak.
In this approximation, and making the Ansätze ψl,w(t ) =
〈âl,w〉e−iμt/h̄ and χ (t ) = 〈b̂〉e−iμt/h̄, Eqs. (15) and (16) reduce
to the discretized Gross-Pitaevskii equations

ih̄
∂ψl,w(t )

∂t
= (2Eδ + Vl,w − μ)ψl,w(t )

−Eδ

2
[ψl−1,w(t ) + ψl+1,w(t )]

−Eδ

2
[ψl,w−1(t ) + ψl,w+1(t )]

+ Eδgl |ψl,w(t )|2ψl,w(t ) + κ (t )δl,lSχ (t ), (19)

ih̄
∂χ (t )

∂t
=

W∑
w=1

κ∗(t )ψlS ,w(t ), (20)

with the initial conditions ψl,w(t0) = 0 and χ (t0) = √
N ,

corresponding to an empty scattering region and a coherent
Bose-Einstein condensate within the reservoir of atoms.

Inspecting Eqs. (19) and (20), we can deduce that χ (t ) =√
N [1 + O(|κ|2)] for some finite time interval t − t0, imply-

ing that in the formal limit where the coupling κ tends to zero
in such a manner that N |κ|2 remains constant [70], χ (t ) can
be safely assumed to be constant in time, thereby yielding a
nonlinear Schrödinger equation with a source term [49,67,69]
given by

ih̄
∂ψl,w(t )

∂t
=

(
2Eδ

ql,w
− μql,w + Vl,w

)
ψl,w(t )

− Eδ

2
[Jl−ψl−1,w(t ) + Jl+ψl+1,w(t )]

− Eδ

2
[ψl,w−1(t ) + ψl,w+1(t )]

+ Eδgl |ψl,w(t )|2ψl,w(t ) +
√
Nκδl,lS .

(21)

Here, the effective hopping term

Jl± =
(

1

ql±1,w

− δ

2

q′
l±1,w

q2
l±1,w

)
(22)

is introduced to implement complex scaling where, within
the scattering region, ql,w = 1, leaving the Hamiltonian
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unchanged, whereas outside the scattering region ql,w is
smoothly ramped to eiθ so that the x coordinate is rotated
in the complex plane according to x �→ z = xeiθ , with θ > 0
being the rotation angle [28,38,54–63]. This rotation of the
x coordinate allows the outgoing waves to be absorbed and
hence open systems can be modeled.

The approach developed here, which has been used in
various situations [65–69], suffers from a major drawback.
Because of two-body scattering [29,40,71], a noncondensed
population can be created as a result of a weak atom-atom in-
teraction, particularly in the presence of disordered potentials.
Those effects must be tackled by means of a method going
beyond the mean-field approach.

C. Truncated Wigner method

The drawback related to the effects beyond the mean-field
approach can be overcome with the truncated Wigner method
[31–36], which has been successfully used in the context of
atom-laser scenarios [38,39]. This method consists of finding
a map between the von Neumann equation governing the
time evolution of the density matrix of the system and the
related Wigner function [31,32] W ({ψl,w, ψ∗

l,w}, t ) defined in
the phase space spanned with the classical fields ψl,w at sites
(l,w). The resulting equation, containing third-order deriva-
tives of the classical fields ψl,w, is practically impossible
to integrate because of the prohibitively large dimension of
the underlying phase space [38]. The principle of the trun-
cated Wigner method lies in the omission of those third-order
derivative terms, hence resulting in a Fokker-Planck equation
with a drift term. The former can be mapped to a set of cou-
pled Langevin equations for the time-dependent canonically
conjugated variables ψl,w(t ) and ψ∗

l,w(t ), which we refer to as
classical field amplitudes. The evolution equation is given by

ih̄
d

dt
ψl,w =

(
2Eδ

ql,w
− μql,w + Vl,w

)
ψl,w

− Eδ

2
(Jl+ψl+1,w + Jl−ψl−1,w )

− Eδ

2
(ψl,w+1 + ψl,w−1)

+ Eδgl (|ψl,w|2 − 1)ψl,w +
√
Nκδl,lS

+ χlL,w(t )δlL,w + χlR,w(t )δlR,w, (23)

with Jl± being the function introduced in Eq. (22) for the
implementation of complex scaling. The last line of Eq. (23)
describes how the initial vacuum fluctuations outside the scat-
tering region penetrate the system and represent quantum
noise that enters the scattering region [38]. It is given by

χlL,w(t ) = Eδe−i(2Eδ−μ)τ/h̄
−1∑

l ′=−∞
Ll ′ (τ )

×
W −1∑
k=0

Tk (τ )ηl ′,k (0)e2π ikw/W , (24)

χlR,w(t ) = −Eδe−i(2Eδ−μ)τ/h̄
∞∑

l ′=1

Ll ′ (τ )

×
W −1∑
k=0

Tk (τ )ηl ′,k (0)e2π ikw/W , (25)

with τ = (t − t0) and

Lα (t − t0) = iα

2

[
Jα+1

(
Eδτ

h̄

)
+ Jα−1

(
Eδτ

h̄

)]
, (26)

where Jν (τ ) are the Bessel functions of the first kind of order
ν and

Tk (t − t0) = 1√
W

eiEδτ cos(2πk/W )/h̄. (27)

We use classical field amplitudes {ψl,w} that are randomly
chosen to properly sample the initial many-body quantum
state of the system. At the initial time, the scattering region
is fully empty and the corresponding Wigner function is a
product of vacuum Wigner functions:

WSR({ψl,w, ψ∗
l,w}, t0) =

∏
l

∏
m

(
2

π
e−2|ψl,w |2

)
. (28)

The source of atoms is populated with a large number |χ |2 =
N  1 of atoms, which allows one to treat the source as a
coherent state whose Wigner function reads

WS (χ, χ∗, t0) = 2

π
e−2|χ−√

N |2 . (29)

The Wigner function that describes the whole system is
simply given by the product of the Wigner functions (28)
and (29):

W ({ψl,w, ψ∗
l,w}, t0) = WSR({ψl,w, ψ∗

l,w}, t0)

× WS (χ, χ∗, t0). (30)

Consequently, the classical field amplitudes are chosen as

ψl,w(t = t0) = 1
2 (Al,w + iBl,w ), (31)

where Al,w and Bl,w are real and independent Gaussian ran-
dom variables fulfilling

Al,w = Bl,w = 0, (32)

Al ′,w′Al,w = Bl ′,w′Bl,w = δl,l ′δw,w′ , (33)

Al ′,w′Bl,w = 0, (34)

where · denotes an average over the random variables. That
choice for the classical field amplitudes implies that a fictious
average vacuum population, |ψl,w(t0)|2 = 1/2, is artificially
introduced at the initial time. The computation of the atomic
density must therefore include a subtraction of this half ficti-
tious particle per site.

Owing to the large number of atoms that populate the
source, we can safely consider that the relative uncertainties of
both the amplitude and the phase of the source are negligible.
This approximation allows us to treat the source classically
and to set χ (t = t0) =

√
N . We additionally choose κ (t ) → 0

while keeping N |κ|2 finite and constant, allowing us to ne-
glect the source depletion and any backaction of the scattering
region on the source [38]. In this limit, one can solely focus on
the evolution within the scattering region, and the propagation
equation for the amplitude of the classical fields on each point
of our lattice is therefore given by Eq. (23).

An average performed over the sampling of the initial
many-body quantum state gives access to the observables of

033319-5



RENAUD CHRÉTIEN AND PETER SCHLAGHECK PHYSICAL REVIEW A 103, 033319 (2021)

interest. We demonstrate this for the (k, n) mode density in
the momentum space which is evaluated in a slab of L̃ × W
sites in the upstream region. This mode density is yielded as

ñk,n = 1

L̃W

∣∣∣∣∣
∑

l

∑
w

ψl,we−2π i(kl/L̃+nw/W )

∣∣∣∣∣
2

− 1

2
, (35)

where the subtraction of 1/2 compensates for the artificial 1/2
atom per site in the momentum space, as explained above.
The truncated Wigner method allows one, contrarily to a
mean-field approach, to access both coherent and incoherent
quantities. The coherent contributions to the (k, n) mode den-
sity in momentum space is given by

ñcoh
k,n = 1

L̃W

∣∣∣∣∣
∑

l

∑
w

ψl,we−2π i(kl/L̃+nw/W )

∣∣∣∣∣
2

, (36)

and the incoherent one is then obtained through

ñincoh
k,n = ñk,n − ñcoh

k,n . (37)

This notion of coherence is meaningful for matter waves
and characterizes the capacity of the atom laser to pro-
duce superposition and interference effects. Note that the
interaction-induced loss of this matter-wave coherence must
not be confused with environment-induced decoherence in
the many-body Fock space that would arise if the system is
coupled to a heat bath.

IV. RESULTS

A. Coherent backscattering peak

We first perform a mean-field study. Considering that
initially the scattering region, depicted in Fig. 2(a), is to-
tally empty, i.e., ψl,w = 0 at t = t0, we numerically integrate
Eq. (21) on the grid depicted in Fig. 2(b) for various dis-
order potentials and perform the disorder averages of the
observables under study. The scattering geometry can be rep-
resented by a region of space where we consider the presence
of a smooth Gaussian correlated disorder as is described
in Eq. (13) surrounded by two regions where V (x, y) = 0,
as depicted in Fig. 2(c). We also consider the presence of
an effective interaction strength that is constant and equal
to gmax in the disordered region and that is adiabatically
ramped from zero to gmax upstream from the disordered slab
and from gmax to zero downstream, following the profile
in Fig. 2(e).

Provided the nonlinearity remains sufficiently small in the
Gross-Pitaevskii Eq. (21), there exists a steady stable scat-
tering state [72]. At higher interaction strengths, however,
dynamical instabilities can occur [68,73], thus rendering a
steady scattering state unreachable because the scattering pro-
cess remains always time dependent. Since we want to focus
on quasisteady scattering processes, we have to restrict the
interaction strength to very low values.

In the absence of nonlinearity, we can, for each disorder
realization, reach a steady scattering state, one of which is dis-
played in Fig. 2(d). Taking the disorder average of these states
leads to the coherent mode |〈ψl,w〉|2 and to the mean density
〈|ψl,w|2〉, depending on whether the disorder average is per-
formed before or after the square modulus. Figure 2(f) shows

an average over the y direction of |〈ψl,w〉|2 and 〈|ψl,w|2〉. We
observe, as was also found in Ref. [26], an exponential decay
of the coherent mode |〈ψl,w〉|2 ∝ exp(−x/ls), where ls is the
scattering mean free path. From Fig. 2(f), we extract kls ≈ 11,
indicating that we are in the so-called kls  1 weak disorder
regime, as well as in the ls � LD diffusive regime, which is
also confirmed by the linear decrease over the longitudinal
direction of the density. This allows us to compute the Boltz-
mann mean free path which is defined as [74]

ls
lB

= 1 − I1(2k2σ 2)

I0(2k2σ 2)
, (38)

where Iν (z) is the modified Bessel function of order ν, yield-
ing klB ≈ 37. We also extract the transport mean free path
ltr [75] using the scaling 〈|ψl,w|2〉 ∝ LD + 0.82ltr − x of the
disorder-averaged density and find kltr ≈ 39, indicating that
the chosen correlation length yields anisotropic scattering.
Finally, the localization length is provided by [76] ξloc =
lB exp(πklB/2) and exceeds, by far, the dimension of the scat-
tering region.

The two-dimensional Fourier transform of the wave func-
tion is taken in an upstream region where both disorder and
nonlinearity are equal to zero. The different Fourier modes
can hence be associated with outgoing waves in various di-
rections with the wave numbers kn =

√
k2 − (2πn/W )2ex +

(2πn/W )ey, describing the propagation in a spatial direction
characterized by the angle θn = arcsin[2πn/(kW )], with n =
−W/2,−W/2 + 1, . . . ,W/2.

In the absence of interaction, Gross-Pitaevskii simula-
tions show the appearance of coherent backscattering. This is
clearly visible in Fig. 3(a), where we observe that the modes
associated with outgoing waves display similar populations,
forming a ridge along the circle k2

x + k2
y = k2, which indicates

that all directions of reflection are approximately equiva-
lently populated. The inset of Fig. 3(a) shows a zoom around
(kx/k, ky/k) = (−1, 0), corresponding to the backscattered
direction, which highlights a higher population of the mode
associated with coherent backscattering, as compared to other
scattering directions. Artificial oscillations, which are the re-
sult of the periodic boundary conditions, are present for large
angles, indicating that a more suitable method to extract and
analyze coherent backscattering is required.

The height of the CBS peak in Fig. 3(a) is reduced
compared to the semiclassical expectation of a factor 2
enhancement. This reduction is due to the presence of
short-length self-retracing paths, mainly those that feature a
backreflection at only a single scattering event within the
disordered region. Those paths are identical to their time-
reversed counterpart and bring no contribution to CBS. Their
relative weight in the sum over all backreflected paths gives
therefore rise to a reduction of the CBS enhancement.

It has been argued in Ref. [27] that this reduction of the
CBS peak height, induced by self-retracing paths, should be
quantitatively identical to the depth of the dip that forms in
the presence of mean-field interaction. The occurrence of this
dip is shown in Fig. 3(b) which displays that the CBS peak
becomes a pronounced dip in the presence of interaction, as
was also observed in Ref. [26]. Beyond the mean-field regime,
truncated Wigner simulations depicted in Fig. 3(c) indicate
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FIG. 3. Disorder average of the two-dimensional Fourier trans-
form of the quasistationary scattering wave function evaluated in the
upstream region. A strong peak (whose height is cut) at kx/k = 1
appears as a clear signature of the incoming plane wave. States
forming the circle k2

x + k2
y = k2 around the origin are also populated,

with a higher value in the backscattered direction. The inset shows
a zoom around (kx/k, ky/k) = (−1, 0) which is the backscattered
mode. Panel (a) shows that, in the absence of interaction, a peak in
the mode (kx/k, ky/k) = (−1, 0) associated with coherent backscat-
tering appears. In the presence of a small interaction strength of
g = 0.005, Gross-Pitaevskii simulations shown in panel (b) indi-
cate that the coherent backscattering peak is inverted. Truncated
Wigner simulations (c) show that this effect is partially destroyed
due to many-body interaction effects that are responsible for the
dephasing of interfering trajectories. Numerical parameters: kδ = 1,√
N |κ|2m/h̄2k2 = 1, 1500 realizations of a Gaussian correlated dis-

order with disorder strength V0m/h̄2k2 = 0.1 and correlation length
kσ = 1, length kLD = 100, and width kW = 120. In panel (c), we
have the injected density ρ∅/k2 ≈ 1.33 and g = 0.005.

that this inversion prevails. It is however partially destroyed
due to many-body interaction effects that create incoherent
particles, from which results dephasing.

Despite the fact that the truncated Wigner method accounts
for off-shell scattering events between the atoms [38], which
populate states with a kinetic energy different from that of the
incident particles, we do not observe a significant broaden-
ing of the density distribution about the energy shell in the

FIG. 4. Angular-resolved current as a function of the backscat-
tered angle θn = arcsin[2πn/(kW )] for different values of the
interaction strength g. Error bars indicate the statistical standard
deviation. In the absence of nonlinearity, we recover the typical
coherent backscattering cone at θ = 0. For increasing values of the
nonlinearity, we find, reproducing the behavior observed in Ref. [26],
that the peak is first damped and then inverted into a dip, indicating
that constructive interferences become destructive. We also show, by
a dash-dotted line, a truncated Wigner curve that shows the total
backscattered current, which, despite a partial dephasing, is in quite
good agreement with its Gross-Pitaevskii counterpart. We show in
the inset that this effect is indeed due to interference between re-
flected paths and not due to the geometry of the slab: if we tilt the
source by the angle φ−3 = arcsin[2π (−3)/(kW )] ≈ −0.16, we get
the peak and the dip at the exact opposite angle. Numerical param-
eters: kδ = 1,

√
N |κ|2m/h̄2k2 = 1, 1500 realizations of a Gaussian

correlated disorder with disorder strength V0m/h̄2k2 = 0.1 and cor-
relation length kσ = 1, length kLD = 40, and width kW = 120. For
the truncated Wigner simulation: g = 0.005 and ρ∅/k2 ≈ 1.33.

presence of interaction [29]. We attribute this to the fact that
the atoms do not stay long in the disordered region where they
interact. This thermal cloud around the condensate is expected
to be more pronounced in a turbulent regime which we do not
study here. As a matter of fact, the set of parameters chosen
in Fig. 3(c) yields a mostly coherent current, as is confirmed
in Fig. 5(c).

B. Angular-resolved current

The drawback of the two-dimensional Fourier transform is
that it demands a large number of sites to yield a satisfactory
resolution. An alternative way to extract the reflected part
of the wave function is to take the partial Fourier transform
ψ̃ (x, ky) of ψ (x, y) along the y direction. This new wave
function contains both the incident part (+) and the reflected
part (−) and one should get rid of the former. Considering
ψ̃ (x, ky) at position x0 and position x1 = x0 + �, we have,
introducing α±, the amplitudes of the incident and reflected
waves

(
ψ̃ (x1, ky)
ψ̃ (x0, ky )

)
=

(
eikx� e−ikx�

1 1

)(
α+ψ̃ (+)(x0, ky)
α−ψ̃ (−)(x0, ky)

)
, (39)
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FIG. 5. Truncated Wigner simulations of the angular-resolved
backscattered current for an increasing interaction strength g and
a correspondingly decreasing average density ρ∅, the product
gρ∅/k2 � 0.006 65 being kept constant for all simulations. The
dotted orange (light gray) and dash-dotted red (gray) curves show
Gross-Pitaevskii simulations for g = 0 and g = 0.005 in panel (a),
that is, in a regime where backscattering is first observed and then
partially inverted. The dip appearing in panel (a) in the presence of
interaction is preserved beyond the mean-field regime, but is partially
destroyed due to dephasing resulting from an increasing incoher-
ent contribution. Numerical parameters: kδ = 1, 500 realizations of
a Gaussian correlated disorder with disorder strength V0m/h̄2k2 =
0.1 and correlation length kσ = 1, length kLD = 40, and width
kW = 120.

whose solution is found to be(
α+ψ̃ (+)(x0, ky)
α−ψ̃ (−)(x0, ky)

)
= 1

2i sin(kx�)

(
1 −e−ikx�

−1 eikx�

)

×
(

ψ̃ (x1, ky)
ψ̃ (x0, ky)

)
. (40)

This allows us to separate the incoming and reflected com-
ponents of the wave function at position x0, the latter being
given by

α−ψ̃ (−)(x0, ky) = ψ̃ (x0, ky)eikx� − ψ̃ (x1, ky)

2i sin(kx�)
. (41)

The current density jn in the direction θn is given by

jn = 2π
h̄

m

√
k2 − k2

y |ψ̃n|2 cos θn, (42)

where we have written ψ̃n ≡ α−ψ̃−(x0, ky) and θn =
arcsin(ky/k) with ky = 2πn/W . We finally note that x0 and
x1 must be chosen in a region where the interaction (and

consequently the disorder) is equal to zero. This allows us to
apply the superposition principle and to associate the Fourier
modes in Eq. (42) to directions in the two-dimensional space.
In the following, we choose kx0 = 10 and kx1 = 20.

The angular-resolved current is depicted in Fig. 4 for differ-
ent values of the interaction strength g. In the noninteracting
case, we recover the characteristic coherent backscattering
peak we already observed in the inset of Fig. 3(a). For
higher interaction strengths, the peak turns to a dip, as
was also observed in Ref. [26], indicating a crossover from
constructive to destructive interferences. Considering a tilt
of the source by an angle φ−3 = arcsin[2π (−3)/(kW )] ≈
−0.16, which amounts to choosing the tilted profile φ(y) =
exp [(i2π (−3)/kW )y] in Eq. (4), the inset of Fig. 4 shows
that the coherent backscattering peak and the related in-
version are realized in the exact opposite direction. This
confirms the interference effect between scattering paths and
their time-reversed counterparts and validates that coherent
backscattering is the underlying mechanism.

C. Inversion of coherent backscattering beyond the
mean-field regime

While it is already explained in Sec. III C, namely, in
Eqs. (35)–(37), how to compute the total, coherent, and in-
coherent (k, n) mode densities in the momentum space, the
procedure for doing so for the current requires further expla-
nations. Depending on whether the average is performed over
the wave functions (the square modulus being taken on the
average wave function) or over the square modulus of those,
one can define total and coherent current, similarly as for the
Gross-Pitaevskii simulations:

jtot
n = 2π

h̄

m

√
k2 − k2

n

(
|ψ̃n|2 − 1

2

)
cos θn, (43)

jcoh
n = 2π

h̄

m

√
k2 − k2

n |ψ̃n|2 cos θn. (44)

The incoherent part of the current is obtained by subtracting
the coherent contribution from the total one:

jincoh
n = jtot

n − jcoh
n . (45)

This allows us to investigate to which extent the inverted
structure is due to a coherent contribution and to find out
which interaction strength leads to a dephasing between in-
terfering trajectories and finally yields a structureless current,
with a dominant incoherent contribution, as was predicted by
a nonlinear diagrammatic theory in Ref. [29] and numerically
confirmed in Ref. [28] for Al’tshuler-Aronov-Spivak oscilla-
tions (see also Ref. [37] in this context). The identification of
this dephasing regime is fundamental, as it provides informa-
tion on whether the effect is experimentally observable.

We first perform truncated Wigner simulations for the case
of a partial inversion of coherent backscattering that corre-
sponds to the red (dark gray) curve of Fig. 4, that is, a scenario
with ρ∅g/k2 � 0.006 65. We vary both the density per unit
surface ρ∅ and the interaction strength g while maintaining
the nonlinearity ρ∅g/k2 constant, which allows us to ex-
plore the many-body effects beyond the mean-field regime.
Figure 5 shows that a partial inversion of coherent backscatter-
ing prevails beyond the mean-field regime. Figure 5(f) indeed
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indicates that, even for densities as low as ρ∅/k2 � 0.067, the
inversion is still preserved, although a certain dephasing has
already appeared, thereby partially destroying the effect.

We now evaluate whether this effect is observable with
87Rb. Considering the 2D interaction strength which we can
write as

g̃(x) = h̄2

m
g(x) = h̄2

m

2
√

2πaS

a⊥(x)
, (46)

with a⊥(x) = √
h̄/mω⊥(x) being the oscillator length associ-

ated with the confinement frequency ω⊥(x) of the trap, we can
write within the disordered region

g̃(x)ρ∅/k2 = h̄2

m
2
√

2π
aS

a⊥(x)
ρ∅/k2. (47)

In the simulations, we have the chemical potential μ =
Eδ/2 = mv2/2, corresponding to k = mv/h̄, with v being the
velocity of the injected particles. In the case we investigate
here, where ρ∅g(x)/k2 = 0.006 65, the injected density is
found to be

ρ∅/k2 = 0.006 65

2
√

2π

a⊥
aS

(48)

and essentially depends on the s-wave scattering length and
the oscillator length which scales as ω

−1/2
⊥ . Considering the

s-wave scattering length aS = 5.313 × 10−9 m of 87Rb and
its mass m = 1.443 × 10−25 kg, we find that, for a con-
finement frequency of ω⊥/2π = 75 Hz, the injected density
reaches ρ∅/k2 ≈ 0.31. This corresponds to a situation similar
to that depicted in Fig. 5(e). We therefore believe that such
an inversion of coherent backscattering should be observable
experimentally.

We also note that we have to enforce 1
2 mv2 < h̄ω⊥ in order

to safely neglect the excitation of the transverse modes of
the condensates. With the parameters we used, the choice
of a velocity for the injected particles of v = √

h̄ω⊥/m =
0.000 68 m/s satisfies this constraint. We should note that
one would still be in a supersonic regime with such a ve-
locity. Indeed, the speed of the sound within the condensate
is given by vc = (ρ∅g3D/m

√
πa⊥)1/2, where the 1/

√
πa⊥

factor comes from the transverse wave function in its ground
state φ(z) = e−z2/2a2

⊥/
√√

πa⊥ evaluated for z = 0 and where
g3D = 4π h̄2aS/m is the 3D interaction strength. This allows
us to rewrite the speed of sound within the condensate as
vc = (

√
2gρ∅/k2)1/2v, which yields vc � 0.1v for parameters

used in Figs. 5 and 6. This confirms that an inversion of
coherent backscattering might be observed with 87Rb.

Figure 6 is dedicated to a truncated Wigner study of the
regime corresponding to a full inversion of coherent backscat-
tering. As could be inferred from Fig. 5, the dephasing regime
is reached with higher nonlinearities. As Fig. 6(f) indicates,
the coherent contribution carrying the inverted dip is now
hidden behind a flat and structureless incoherent contribution
that overshadows the signature of interference and interaction.
Conducting the same reasoning as for Fig. 5 with a nonlinear-
ity equal to gρ∅/k2 = 0.00931 leads to an injected density
of ρ∅/k2 ≈ 0.44, which corresponds to a situation interme-
diate between those depicted in Figs. 6(d) and 6(e). Pushing
the system further in the quantum limit by increasing the

−π
4
−π

8
0 π

8
π
4

0

1

2

3

4

θ

g = 0.035
ρ∅/k2 ≈ 0.266

−π
4
−π

8
0 π

8
π
4

θ

g = 0.14
ρ∅/k2 ≈ 0.067

0

1

2

3

4

j(
θ)

g = 0.007
ρ∅/k2 ≈ 1.33

g = 0.014
ρ∅/k2 ≈ 0.67

0

1

2

3

4

g = 0.007

g = 0.0014
ρ∅/k2 ≈ 6.67

FIG. 6. Same as Fig. 5, but for gρ∅/k2 � 0.009 31. While a
more pronounced dip is found with the Gross-Pitaevskii red curve,
more dephasing is observed in the results of the truncated Wigner
simulations.

interaction strength and decreasing accordingly the injected
density induces, however, dephasing, as Fig. 6(f) indicates,
where the coherent inversion of backscattering is drowned by
an incoherent contribution.

V. CONCLUSIONS

In conclusion, we numerically studied the two-dimensional
transport of Bose-Einstein condensates across a disordered
region, which gives rise to a weak-localization scenario that
occurs through coherent backscattering. In the mean-field
regime, which is studied by means of the Gross-Pitaevskii
equation, the presence of an atom-atom interaction gives rise
to a crossover around gρ∅/k2 � 0.004 from constructive to
destructive interference, the peak in the backscattered current
becoming a pronounced dip, thereby reverting weak local-
ization [26,27]. Truncated Wigner simulations show that the
coherent backscattering inversion is also encountered when
accounting for effects beyond the mean-field approximation.
As was observed in Refs. [28,29] when pushing the limit far
beyond the mean-field regime, quantum interference effects
face dephasing, and the dip structure is completely overshad-
owed by a dominant incoherent contribution.

We believe that this effect is experimentally observable for
87Rb. We indeed found for experimentally realistic parameters
a value for the injected density, namely, ρ∅/k2 � 0.44, for
which the inversion is predicted to be still observable. Other
species, such as 39K, whose s-wave scattering length can be
tuned by means of Feshbach resonances to very low values,
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are also good candidates to realize a full inversion of coherent
backscattering.

The present study had a clear focus on the inversion of the
CBS peak in the framework of a quasistationary 2D prop-
agation of a Bose-Einstein condensate across a disordered
region. It thereby left out a number of interesting side investi-
gations that one could have performed in this context with our
numerical setup. Among these are the study of wave-packet
propagation processes across the disorder potential, in align-
ment with the experiments of Ref. [10] (see also Ref. [21]), as
well as coherent forwardscattering [17–21] which is expected
to occur in the downstream region behind the disordered
slab. A comparison with the study undertaken in Ref. [77],
dedicated to the expansion of a k-resolved source where it is
argued that as the cloud expands for a sufficiently long time

interaction disappears, would also be relevant. Furthermore,
this study lacks a quantitative comparison with diagrammatic
many-body scattering theory [29], which is, however, difficult
to carry out because of the inhomogeneous density profile
of the Bose-Einstein condensate. In that context, it would
therefore be interesting to investigate the transport of Bose-
Einstein condensates through 2D billiard potentials [27] or
in the nonequilibrium configuration described in Ref. [30],
where a homogeneous density profile is expected.
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APPENDIX A: NUMERICAL SCHEME

The discretization scheme of the partial differential equations in terms of finite differences naturally results in a set of ordinary
differential equations which we numerically integrate. For that purpose, we use a very general numerical scheme based on the
expansion of the solution in a Taylor series [78]. This method allows one, in principle, to determine the solution of every ordinary
differential equation, but one the other hand it requires one to compute the derivatives up to the desired order, which may be
tedious and inefficient in some cases. Automatic differention techniques [79–83] may be envisaged to circumvent this major
drawback. Knowing the solution y(t ) of the differential equation at time t , it is obtained at time t + δt using the expansion

yn+1 = yn + δt
dyn

dt
+ 1

2
(δt )2 d2yn

dt2
+ · · · , (A1)

which should be repeated iteratively from t = t0 until reaching t = t f . Following this principle, the discrete wave function at site
(l,w) is expanded in a Taylor series and is therefore written at time t + δt as

ψl,w(t + δt ) = ψl,w(t ) + δt
dψl,w

dt
(t ) + 1

2
(δt )2 d2ψl,w

dt2
(t ) + · · · =

Kmax∑
k=0

1

k!
(δt )k dkψl,w

dtk
(t ) + O[(δt )Kmax+1] (A2)

and will be propagated from initial time t0 to final time t f by means of this equation. In Eq. (A2), Kmax denotes the maximal
order considered for the derivative in the Taylor expansion. This expansion requires that we be able to compute the derivatives
of ψl,w up to order Kmax which is readily achieved by differentiating the field Eq. (23). This gives, for instance, for the second
time derivative

ih̄ψ̈l,w = (2Eδ − μ + Vl,w )ψ̇l,w − Eδ

2
(ψ̇l+1,w + ψ̇l−1,w ) − Eδ

2
(ψ̇l,w+1 + ψ̇l,w−1)

+ gl
d

dt
(|ψl,w|2ψl,w ) + χ̇ll ,w(t )δll ,w + χ̇lR,w(t )δlR,w, (A3)

where˙denotes the derivatives with respect to t and where we have omitted the derivative of the source term
√
Nκ (t )δl,lS because

we assume that the coupling κ (t ) varies so slowly that its derivative with respect to t is negligible.
While derivatives of the wave function ψl,w are easily found iteratively, the derivatives of the nonlinear term as well as those

of the noise terms are more complicated to obtain. Exploiting the property

dn

dtn
A(t )B(t )C(t ) =

n∑
k=0

n−k∑
λ=0

(
n

k, λ, n − k − λ

)
dk

dtk
A(t )

dλ

dtλ
B(t )

dn−k−λ

dtn−k−λ
C(t ), (A4)

where ( n
k, λ, n − k − λ) is the trinomial coefficient, the kth derivative of the nonlinear term reads

dn

dtn
ψ∗

l,w(t )ψ2
l,w(t ) =

n∑
k=0

n−k∑
λ=0

(
n

k, λ, n − k − λ

)
dk

dtk
ψ∗

l,w(t )
dλ

dtλ
ψl,w(t )

dn−k−λ

dtn−k−λ
ψl,w(t ). (A5)

One also has to compute the kth derivatives of the noise terms in Eqs. (24) and (25). Noting that the writing of those terms
suggests that an inverse discrete Fourier transform has been performed, one can compute the time derivatives of the Fourier
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coefficients of the noise terms as

χ̂lL,k (t ) = Eδe− i
h̄ (2Eδ−μ)(t−t0 )Tk (t − t0)

−1∑
l ′=−∞

Ll ′ (t − t0)ηl ′,k (t0),

χ̂lR,k (t ) = −Eδe− i
h̄ (2Eδ−μ)(t−t0 )Tk (t − t0)

∞∑
l ′=1

Ll ′ (t − t0)ηl ′,k (t0), (A6)

which turn out to be

dn

dtn
χ̂lL,k (t ) = Eδ

[ −1∑
l ′=−∞

(
n∑

k=0

n−k∑
λ=0

(
n

k, λ, n − k − λ

)
dk

dtk
Ll ′ (t − t0)

dλ

dtλ
Tk (t − t0)

dn−k−λ

dtn−k−λ
e−i(2Eδ−μ)t/h̄

)
ηl ′,k (t0)

]
, (A7)

dn

dtn
χ̂lR,k (t ) = −Eδ

[ ∞∑
l ′=1

(
n∑

k=0

n−k∑
λ=0

(
n

k, λ, n − k − λ

)
dk

dtk
Ll ′ (t − t0)

dλ

dtλ
Tk (t − t0)

dn−k−λ

dtn−k−λ
e−i(2Eδ−μ)t/h̄

)
ηl ′,k (t0)

]
, (A8)

once again involving ( n
k, λ, n − k − λ), the trinomial coefficient, as well as time derivatives of Ll ′ in the longitudinal direction and

Tk in the transverse direction. In Eqs. (A7) and (A8), ηl ′, j′ (t0) denotes the initial condition for the wave function, which in the
mean-field approximation is identically equal to zero, thereby yielding χll ,w(t ) = χlR,m(t ) = 0, for all t � t0. In the truncated
Wigner context, however, we have seen that those classical fields are sampled as prescribed in Sec. III C, with a different sampling
from one realization of the initial condition to another, the convolution kernel remaining unchanged.

APPENDIX B: A SMOOTH SWITCHING FUNCTION

The purpose of this Appendix is to present the smooth
switching function that we use in this work, which was derived
by Hartmann [50]. Considering an interval I ⊂ R, we are
looking for a function g ∈ C∞(R) that is exactly zero farther
than d > 0 from the interval and that smoothly reaches 1 over
that distance within the interval, as is shown in Fig. 7.

We start by defining the auxiliary test function

t (x) =
{

exp
[ − b

(
ax2 + 1

1−x2

)]
for |x| < 1,

0 for |x| � 1,
(B1)

where a = 0.557 747 and b = 1.364 054 are numerical pa-
rameters that are chosen so that t (x) is as smooth as possible.
Based on this test function, we build the function f : [0, 1] →
R which is defined as

f (x) = t (x)

t (x − 1) + t (x)
. (B2)

The smooth switching function describing the spatial profile
of the interaction is then defined as

g(x) = gmax

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 for x � xD − d,

f
( xD−x

d

)
for xD − d < x � xD,

1 for xD < x � xD + LD,

f
( x−xD+LD

2LD+d

)
for xD < x − LD � xD + d,

0 for xD + LD + d < x.
(B3)

FIG. 7. Graphical representation of the interaction g(x).

The smooth switching function describing the ramping of the
source is given by

κ (t ) = κmax

⎧⎨
⎩

0 for t � 0,

f
( ts−t

ts

)
for 0 � t � ts,

1 for ts � t .
(B4)

Specifically, we choose tsμ/h̄ = 400 for a smooth ramp-
ing and typically obtain a stationary scattering state after
t f μ/h̄ = 900.

APPENDIX C: EFFECTIVE ATOM-ATOM INTERACTION
STRENGTH ON THE SQUARE LATTICE

In this Appendix we discuss how to properly choose the
interaction parameter on the numerical grid that we introduced
in order to implement the truncated Wigner method. As each
grid point covers a square of the area δ2, with δ being the
lattice spacing, it appears most natural to define the on-site
interaction parameter as

U = g̃/δ2 = gEδ = 4π h̄2as√
2πmδ2a⊥

, (C1)

where g̃ is the effective two-dimensional atom-atom interac-
tion strength, assuming that the atomic cloud is located in the
transverse ground state of the 2D confinement, and g denotes
its dimensionless counterpart defined according to Eq. (3).
This naïve choice, which is retained within Eqs. (10), (15),
(19), and (23) for the sake of simplicity, is problematic insofar
as it exhibits convergence issues in the formal limit δ → 0, as
was discussed in detail in Ref. [64].

To determine the correct scaling of the on-site interaction
parameter U with the grid spacing, it is useful to study a
two-body scattering problem on the chosen numerical grid
and compare the outcome of this study with the solution
of this problem in the continuous 2D space, which was ob-
tained in Refs. [84,85]. Considering a harmonic confinement
potential with the frequency ω⊥ in the transverse direction,
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the Hamiltonian describing this two-body system in the full
three-dimensional space reads

Ĥ = − h̄2

2m

(
∂2

∂�r2
1

+ ∂2

∂�r2
2

)
+ 1

2
mω2

⊥
(
z2

1 + z2
2

) + U (�r1 − �r2),

(C2)
with �r j = (x j, y j, z j ) ≡ (r j, z j ) being the position coordinates
of the atom no. j = 1 and 2 and U being the two-body in-
teraction strength. As the latter depends only on the distance
between the two atoms, it is useful to separate the center-of-
mass and relative coordinates of the two atoms and thereby
map the collision process between the two atoms into an effec-
tive one-body scattering problem in the relative coordinates.
The exact solution of the latter in continuous space can then be
compared with the analytic solution of the analogous scatter-
ing problem in the presence of a square-lattice discretization
of the in-plane relative coordinates.

We should keep in mind, however, that the latter is not
exactly equivalent to the original discretization procedure car-
ried out in the individual in-plane coordinates r1 and r2 of the
atoms, which is effectively employed for our numerical sim-
ulations. Indeed, the conventional transformation (�r1, �r2) �→
( �R, �r) to the center-of-mass coordinates �R = (�r1 + �r2)/2 and
relative coordinates �r = �r1 − �r2 maps squares into nonequi-
lateral rectangles and therefore does not preserve the spacing
scales of the discretization procedure. An approximate equiva-
lence of the two square-lattice discretizations can nevertheless
be established by redefining the new coordinates �R and �r in a
more symmetric manner, namely through

�R = 1√
2

(�r1 + �r2) ≡ (R, Z ) , (C3)

�r = 1√
2

(�r1 − �r2) ≡ (r, z) , (C4)

which corresponds to a unitary mapping that preserves the
shape of the lattice squares resulting from the discretization.
We therefore adopt this latter symmetric definition of “center-
of-mass” and “relative” coordinates in the following. The
Hamiltonian (C2) can then be separated as Ĥ = Ĥc + Ĥr with
the Hamiltonians

Ĥc = − h̄2

2m

∂2

∂ �R2
+ 1

2
mω2

⊥Z2, (C5)

Ĥr = − h̄2

2m

∂2

∂�r2
+ 1

2
mω2

⊥z2 + U (
√

2�r) (C6)

that govern the dynamics in the center-of-mass and relative
coordinates, respectively.

The interaction is modeled via the Fermi-Huang pseudopo-
tential

U (�ρ ) = g3Dδ(�ρ)
∂

∂ρ
ρ, (C7)

with

g3D = 4π h̄2as

m
, (C8)

where as is the s-wave scattering length of the atoms. The ex-
pression (C7) can be seen as an augmented version of Dirac’s
δ distribution which is designed such that it can deal with r−1

singularities in the wave function. We can therefore formally
express the Hamiltonian (C6) describing the relative motion
as

Ĥr = Ĥ0 + U0 |O〉 〈O| , (C9)

where we define by

Ĥ0 = − h̄2

2m

∂2

∂�r2
+ 1

2
mω2

⊥z2 (C10)

the noninteracting part of the Hamiltonian and by |O〉 〈O|
the projector onto the origin in position space, correspond-
ing to the augmented δ function defined above. Noting that
U (

√
2�r) = U (�r)/

√
8 according to Eq. (C7), we obtain U0 =

g3D/
√

8.
Owing to the rank-one nature of the perturbation operator

in the expression (C9) for the Hamiltonian, the Lippmann-
Schwinger equation describing the scattering process in the
relative coordinates can be formally solved in terms of the
noninteracting retarded Green’s operator Ĝ0(E ) = (E − Ĥ0 +
i0)−1. More specifically, we obtain for the full retarded
Green’s operator the explicit expression

Ĝ(E ) = (E − Ĥr + i0)−1

= Ĝ0(E ) + U0Ĝ0(E ) |O〉 〈O| Ĝ0(E )

1 − U0 〈O| Ĝ0(E ) |O〉 . (C11)

Its matrix elements in the position representation read

〈�r| Ĝ(E ) |�r′〉 = 〈�r| Ĝ0(E ) |�r′〉

+ g3D 〈�r| Ĝ0(E ) |�0〉 〈�0| Ĝ0(E ) |�r′〉√
8 − g3D

∂
∂ρ

[ρ 〈�ρ| Ĝ0(E ) |�0〉]�ρ=�0

(C12)

for �r �= 0, �r′ �= 0, and �r′ �= �r, where we use the fact that the
noninteracting Green’s function 〈�r| Ĝ0(E ) |�r′〉 is well-behaved
and does not feature any singularity for �r′ �= �r.

The projection of the matrix elements (C12) to the 2D
plane to which the atoms are confined gives rise to the
equation

〈r| Ĝ(E ) |r′〉 = 〈r| Ĝ0(E ) |r′〉

+ g3D 〈r| Ĝ0(E ) |�0〉 〈�0| Ĝ0(E ) |r′〉√
8 − g3D

∂
∂ρ

[ρ 〈�ρ| Ĝ0(E ) |�0〉]�ρ=�0

, (C13)

where we define by |r〉 ≡ ∫ ∞
−∞ φ0(z) |�r〉 dz the 2D

position eigenstate on the plane, which is anchored
on the normalized ground-state wave function φ0(z) =
(
√

πa⊥)−1/2 exp[−z2/(2a2
⊥)] of the transverse confinement

potential. Quite straightforwardly, we evaluate

〈r| Ĝ0(E ) |r′〉 = m

2ih̄2 H (1)
0 (kE |r − r′|) (C14)

as well as

〈r| Ĝ0(E ) |�0〉 = 〈�0| Ĝ0(E ) |r〉 = m

2ih̄2
√√

πa⊥
H (1)

0 (kE |r|),
(C15)
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with H (1)
0 being the Hankel function of the first kind of order

zero and

kE = 1

h̄

√
2m(E − h̄ω⊥/2) (C16)

being the in-plane wave number associated with the energy
E . The denominator appearing on the right-hand side of
Eq. (C13) was calculated in Refs. [84,85]. Assuming that the
in-plane kinetic energy of the atoms is much smaller than the
transverse confinement energy h̄ω⊥, such that a population of

transversally excited modes is energetically suppressed, this
calculation yields

∂

∂ρ
[ρ 〈�ρ| Ĝ0(E ) |�0〉]�ρ=�0

= − m

2
√

π
3a⊥h̄2

[
ln

(
2B

πk2
E a2

⊥

)
+ iπ

]
, (C17)

with the numerical constant B � 0.915 [85]. Combining
Eqs. (C8), (C13), (C14), (C15), and (C17), we altogether
obtain

〈r| Ĝ(E ) |r′〉 = m

2ih̄2

(
H (1)

0 (kE |r − r′|) − iπH (1)
0 (kE |r|)H (1)

0 (kE |r′|)
ln

(
2B

πk2
E a2

⊥

) + iπ + √
2π a⊥

as

)
(C18)

for the in-plane position representation of the Green’s function. Note that this expression is valid in leading order in kE a⊥.
Corrections scaling linearly with kE a⊥ will arise as soon as the in-plane kinetic energy of the atoms becomes comparable with
the transverse excitation energy h̄ω⊥.

Let us now redo this calculation of the Green’s function for a square-lattice discretization of the two-dimensional in-plane
space with the grid spacing δ. Using the finite-difference schemes (8) and (9), we model the projection of the noninteracting part
(C10) of the Hamiltonian Ĥr to the transverse ground mode φ0 as

Ĥ (δ)
0 =

∞∑
lx,ly=−∞

(
2Eδ + h̄ω⊥

2

)
|lx, ly〉 〈lx, ly| − Eδ

∞∑
lx,ly=−∞

(|lx + 1, ly〉 〈lx, ly| + |lx, ly〉 〈lx + 1, ly|)

− Eδ

∞∑
lx,ly=−∞

(|lx, ly + 1〉 〈lx, ly| + |lx, ly〉 〈lx, ly + 1|), (C19)

where we define by |lx, ly〉 the localized lattice site orbitals satisfying 〈lx, ly|l ′
x, l ′

y〉 = δlx l ′x δlyl ′y and by Eδ = h̄2/(mδ2) the
characteristic energy scale of the lattice. The interaction operator is modeled by a projector onto the origin site |0, 0〉 of this
lattice according to

Û (δ)
r = U (δ)

0

2
|0, 0〉 〈0, 0| . (C20)

U (δ)
0 represents the interaction parameter that one would use in a square-lattice model for the original two-body Hamiltonian

(C2) with the same grid spacing δ, where the interaction operator would read

Û (δ) =
∞∑

lx,ly=−∞
U (δ)

0 |(lx, ly), (lx, ly)〉 〈(lx, ly), (lx, ly)| . (C21)

Since this expression is supposed to model the effect of a two-dimensional δ function and since, as is seen in Eq. (C6), the
prefactor

√
2 has to be accounted for in the argument of this function when transforming from the original particle coordinates

to the symmetric center-of-mass and relative coordinates (C3) and (C4), we obtain the prefactor 1/2 in the expression (C20) for
the interaction operator in the relative coordinates.

Since we can write the total lattice Hamiltonian of the relative motion projected onto the transverse ground mode as

Ĥ (δ)
r = Ĥ (δ)

0 + U (δ)
0

2
|0, 0〉 〈0, 0| , (C22)

its associated Green’s operator Ĝ(δ)(E ) = (E − Ĥ (δ)
r + i0)−1 is, according to Eq. (C11), explicitly expressed as

Ĝ(δ)(E ) = Ĝ(δ)
0 (E ) + U (δ)

0 Ĝ(δ)
0 (E ) |0, 0〉 〈0, 0| Ĝ(δ)

0 (E )

2 − U (δ)
0 〈0, 0| Ĝ(δ)

0 (E ) |0, 0〉 (C23)

in terms of the noninteracting Green’s operator Ĝ(δ)
0 (E ) = (E − Ĥ (δ)

0 + i0)−1. The latter is calculated via a diagonalization of
the noninteracting lattice Hamiltonian (C19) according to

Ĥ (δ)
0 =

∫ π/δ

−π/δ

dkx

∫ π/δ

−π/δ

dky

(
h̄ω⊥

2
+ [2 − cos (kxδ) − cos(kyδ)]Eδ

)
|k〉 〈k| , (C24)
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with the normalized two-dimensional plane-wave eigenstates |k〉 ≡ |kx, ky〉 being defined by

〈lx, ly|k〉 = δ

2π
exp[iδ(lxkx + lyky)] . (C25)

In the continuous limit δ → 0, which is taken such that [(lx − l ′
x )2 + (ly − l ′

y)2]1/2δ is kept finite, we obtain

〈lx, ly| Ĝ(δ)
0 (E ) |l ′

x, l ′
y〉 = mδ2

2ih̄2 H (1)
0

(
kE

∣∣rlx,ly − rl ′x,l ′y

∣∣) (C26)

in perfect analogy with Eq. (C14), where we formally define rlx,ly ≡ (lxδ, lyδ).
The diagonal matrix element of the noninteracting Green’s operator on the origin site is determined as

〈0, 0| Ĝ(δ)
0 (E ) |0, 0〉 =

∫ π

−π

dθ

2π

∫ π

−π

dθ ′

2π

1

E − h̄ω⊥/2 − (2 − cos θ − cos θ ′)Eδ + i0
. (C27)

Defining

ε = E − h̄ω⊥/2

2Eδ

= k2
Eδ2/4 (C28)

with the property 0 < ε � 1 in the continuous limit δ → 0 [86], where we use the definition (C16) of the in-plane wave number
associated with the energy E , we obtain through standard residue calculus

〈0, 0| Ĝ(δ)
0 (E ) |0, 0〉 = 1

2π iEδ

(∫ ε

0

dx√
x(1 − x)(ε − x)(1 − ε + x)

− i
∫ 1

ε

dx√
x(1 − x)(x − ε)(1 − ε + x)

)
. (C29)

Evaluating separately ∫ ε

0

dx√
x(1 − x)(ε − x)(1 − ε + x)

= π + O(ε), (C30)

∫ 1

ε

dx√
x(1 − x)(x − ε)(1 − ε + x)

= ln(8/ε) + O(ε) (C31)

yields the expression

〈0, 0| Ĝ(δ)
0 (E ) |0, 0〉 = 1

2πEδ

[
ln

(
k2

Eδ2/32
) − iπ

] + O
(
k2

Eδ2
)

(C32)

in the continuous limit.
Inserting this expression and Eq. (C26) into the expression (C23) for the Green’s operator yields its matrix elements as

〈lx, ly| Ĝ(δ)(E ) |l ′
x, l ′

y〉 = mδ2

2ih̄2

⎛
⎝H (1)

0

(
kE

∣∣rlx,ly − rl ′x,l ′y

∣∣) − iπH (1)
0

(
kE

∣∣rlx,ly

∣∣)H (1)
0

(
kE

∣∣rl ′x,l ′y

∣∣)
ln

(
32

k2
E δ2

) + iπ + 4π h̄2

mδ2U (δ)
0

⎞
⎠. (C33)

Comparing this expression with the analogous matrix ele-
ments (C18) of the spatially continuous Green’s function
finally yields the prescription that we have to choose the
square-lattice interaction parameter as

U (δ)
0 = 4π h̄2/(mδ2)√

2π a⊥
as

+ ln
(

Bδ2

16πa2
⊥

) (C34)

as a function of the grid spacing δ in order to obtain a match
between the expressions (C18) and (C33) for the continuous
and discretized Green’s functions.

In the numerical practice of our calculations, we choose
not too fine grids in order to limit the numerical effort. Conse-
quently, the logarithmic correction arising in the denominator
of Eq. (C34) can safely be neglected. Most specifically, for the
choice δ = k−1

E = a⊥ of the grid spacing and the inverse wave
number, we obtain ln[Bδ2/(16πa2

⊥)] � −4, while we have√
2πa⊥/as � 6 × 102 for 87Rb in the presence of the trans-

verse confinement frequency ω⊥ = 2π × 75 Hz. This justifies
the usage of the “naïve” expression (C1) for the interaction
parameter in our numerical simulations.
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