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Artificial magnetic field for synthetic quantum matter without dynamical modulation
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We propose an all-static method to realize an artificial magnetic field for charge neutral particles without
introducing any time modulation. Our proposal consists of one-dimensional tubes subject to harmonic trapping
potentials with shifted centers. We show that this setup realizes an artificial magnetic field in a hybrid real-
momentum space. We discuss how characteristic features of particles in a magnetic field, such as chiral edge
states and the quantized Hall response, can be observed in this setup. We find that the mean-field ground state of
bosons in this setup in the presence of long-range interactions in physical real space can have quantized vortices

in the hybrid real-momentum space; such a state with vortices exhibits a supersolid structure in the physical real
space. Our method can be applied to a variety of synthetic quantum matter, including ultracold atomic gases,
coupled photonic cavities, coupled waveguides, and exciton-polariton lattices.

DOI: 10.1103/PhysRevA.103.033318

I. INTRODUCTION

Quantum simulation has been a central theme in the
research of synthetic quantum matter based on atomic, molec-
ular, and optical systems, such as ultracold atomic gases,
trapped ions, polaritons, and photonics [1-7]. In particular,
simulation of topological phenomena using synthetic quantum
matter has attracted a considerable attention in the recent
years [8—13]. A prototypical example of topological phenom-
ena is the quantum Hall effect, which was first found in a
two-dimensional electron gas under a magnetic field [14—16].
To simulate the quantum Hall effect and other topological
phenomena, one often needs to simulate physics of charged
particles in a magnetic field, which is not straightforward
because atoms in ultracold gases and photons in cavities and
waveguides are charge-neutral.

Various methods have been employed to simulate effects of
a magnetic field, namely to realize an artificial magnetic field
[17]. In ultracold atomic gases, the earliest example is to ro-
tate the system, exploiting the similarity between the Coriolis
force and the Lorentz force [18-20]. Other examples include
Floquet engineering [21], light-induced gauge potential [22],
and synthetic dimensions [23]. Most of the existing proposals
involve adding fast time modulation and/or exploiting differ-
ent energy and timescales present in the system to explore
adiabatic physics in a low-energy subspace. These methods
often suffer from instability and heating as a result of time
modulation and spontaneous emissions. A notable exception
is the method using spinor condensates in a quadrupole mag-
netic field where spatially dependent spin texture results in
an artificial magnetic field [24—27]. The situation is similar in
photonics and optics. For light close to optical frequencies,
magneto-optical effects are generally weak and thus, similar
to ultracold atomics gases, one needs to realize an artificial
magnetic field to explore the physics of quantum Hall effects
[28-30]. Static realizations of topological models in photons
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are in the class of quantum spin Hall insulators where two
degrees of freedom feel opposite magnetic fields and thus
topological protection relies upon decoupling of different de-
grees of freedom [31,32].

In this paper, we propose a completely static way to re-
alize an artificial magnetic field regardless of the spin of
the particles, which can be applied to a variety of synthetic
quantum matter. Our proposal is based on a well-known fact
that the Hamiltonian of a charged quantum particle in two
dimensions under a uniform magnetic field is equivalent to
a set of harmonic oscillators with shifted centers [33]. This
fact implies, conversely, that a set of harmonic oscillators
with shifted centers can be viewed as a charged particle in a
uniform magnetic field. We pursue this analogy further and
consider a set of one-dimensional systems elongated along
the x direction and align these one-dimensional tubes in the
y-direction and place them under harmonic trapping potentials
with shifted centers (Fig. 1). We find that the Hamiltonian of
a charged particle in a magnetic field is realized in the x-p,
plane where p, is the momentum along the y direction. Even
though the proposal looks deceptively simple, as we discuss in
detail, we can still observe most of the phenomena character-
istic of charged particles in a magnetic field, such as the chiral
edge states and quantized Hall response. We note that there
is no dynamical component in the proposal and, in particular,
our proposal does not break the time-reversal symmetry in the
physical x-y plane. Our proposal is thus expected to be more
stable and free from heating compared with existing proposals
which rely on dynamical modulations.

We also explore the effect of interparticle interactions in
the artificial magnetic field. Weakly interacting bosons under
a magnetic field form vortices [18-20,34,35]. However, a
contact interaction, common in ultracold atomic gases and
photons with optical nonlinearity, translates into extremely
long-range interaction in p, direction, and we find that vor-
tices do not form under ordinary contact interactions. On the
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FIG. 1. Illustration of the scheme. (a) One-dimensional tubes
elongated in the x direction are aligned along the y direction. Har-
monic trapping potentials, depicted by parabolas, are applied to the
tubes. The trapping centers are on the dashed line, which is tilted
with respect to the x axis by an angle 6. (b) Setup viewed from top.
Tubes are located at y = ny,, where n is an integer. The trapping
centers are on the dashed line y = xtané. (c) In the x-p, plane, an
artificial magnetic field of strength B = —tan 0 is realized. We have
the geometry of a cylinder, where the p, direction is periodic with
periodicity 27 /yo.

other hand, by including nearest-neighbor interaction in y
direction we find that vortices can form in x-p, plane. Such
a vortex structure corresponds to supersolid structure in the
physical x-y plane, where the phase coherence of a conden-
sate is maintained and the discrete translational symmetry is
broken. Finally, we discuss possible experimental platforms
where the proposal can be implemented.

II. SETUP

We consider a set of uncoupled one-dimensional tubes
elongated in the x direction and aligned in the y direction,
where each tube is subject to a harmonic trapping potential.
The center of the trapping potential shifts between tubes by a
constant amount xy. We assume that tubes are separated by
a constant amount yy in the y direction. See Fig. 1 for an
illustration. We use the second-quantized formalism, where
1/7; (x) and xﬁn (x) are the creation and annihilation operators,
respectively, of a particle at coordinate (x, nyy), where n in-
dicates that the particle is in the nth tube. The single-particle
Hamiltonian is
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Note that there is no motion (coupling) between different
tubes in the y direction. By performing Fourier transformation
in the y direction,
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ﬂ/Yo
A= /dx/
7 /Yo

1 N n
[—2 @Y (x, p)) @V (x, py))
m

+ %Te{(iap}_ +xtan0) ¥’ (x, p))}
{( (0, —i—xtan@)l/f(x p))}:| 3)
In the first-quantized form, this Hamiltonian is
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This is nothing but the Hamiltonian of a charged particle in
the x-p, plane under a magnetic vector potential A(x, p,) =
(0, —xtan @) in the Landau gauge, corresponding to the arti-
ficial magnetic field B = — tan 6 penetrating the plane. (We
have set the charge e, speed of light ¢, and Plank constant
h to be unity.) We have chosen to use —id, = —y as the
“momentum” operator along the p, direction, regarding p,
as the synthetic “position.” The mass is anisotropic; the mass
in the x direction is the original mass m, = m, whereas the
mass in the p, direction is m, = = tan’ § /mw?. This anisotropy
can be absorbed by rescaling units of length in two directions
and does not pose any problem in the rest of the discussion.
Another noticeable feature here is that the x-p, plane is a
cylinder, open along the x direction and periodic along the
Dy direction.

Let us comment on the time-reversal symmetry in our sys-
tem. Our original Hamiltonian (1) does not break the physical
time-reversal symmetry. For a single-component (spinless)
system, the time-reversal operation flips the sign of the mo-
mentum p — —p. Since we want to look at the physics
related to the artificial magnetic field in the x-p, plane, the
relevant effective time-reversal symmetry is now to flip their
reciprocal variables T : (py, —y) — (—py,y); the effective
time-reversal symmetry is the simultaneous operation of flip-
ping p, and the parity in y. Our Hamiltonian does break the
parity in the y direction due to the shifted harmonic trapping
potentials, which enables us to realize the artificial magnetic
field in the x-p, plane without breaking the physical time-
reversal symmetry.

Our method is related to the idea of topological charge
pumping, where a momentum is replaced by an external
parameter; by sweeping the parameter one obtains the topo-
logical properties of the original Hamiltonian [36-38]. Our
method, however, is crucially different from charge pumping
in that we replace a momentum p, by a physical real co-
ordinate —y, and in this way we succeed in recovering the
full dynamics in all dimensions, whereas no dynamics occurs
in charge pumping in the direction replaced by an external
parameter.
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FIG. 2. Energy level and the Hall response. (a) The energy level
of each tube at position n, where length of each tube is 20a,s. and
we employ an open boundary condition. We choose tanf = 1, and
the energy is in units of the cyclotron frequency w. Solid lines are to
guide the eye. (b) The center-of-mass motion of wave packets when
a synthetic electric field E, = 0.1w/aos. is applied. Three solid lines
show the time evolution of the center of mass in the p, direction
for tan6 = 2/3 (top, green), tan® = 1 (middle, blue), and tan6 =
1/2 (bottom, red). The dashed lines going through the solid lines are
theoretical predictions from Eq. (5) with C = 1. The units of time are
1/w, and the units of p, are 1/y.

III. CHIRAL EDGE STATES

We now analyze how characteristic features of charged
particles in a magnetic field can be observed in our setup in
the x-p, plane. We first point out that the cyclotron frequency
of the artificial magnetic field is w, as expected. This can
be derived from the definition of the cyclotron frequency
B/m; as the mass m, we need to use a geometric mean of
anisotropic effective mass in two directions, m = /i, .
Using B = —tan 6, we then obtain @ = |B|/s. This obser-
vation implies the well-known fact that the energy level of
harmonic oscillators in the x-y plane, which is w(/ + 1/2),
where / =0, 1,2, ..., is a non-negative integer, is nothing
but the Landau-level energy spectrum. High degeneracy of
Landau levels come from the many uncoupled tubes present
in the system, which all have the same energy spectrum.

In the presence of edges, charged particles in two dimen-
sions under a magnetic field should have chiral edge states.
In Fig. 2(a), we plot the energy level of the system in the
presence of sharp edges in the x direction as a function of
n, which is the reciprocal variable of p,. We consider 21 tubes
and the length of each tube in the x direction is 20as., where
Gosc = 1/4/mw is the oscillator length. We can see that at
large values of |n|, the dispersion goes upward; these states
are localized at the edges and they propagate in one direction.
The existence of chiral edge states can be probed from the
dynamics of wave packets localized at the edges, as we show
below. Since there is no coupling between different tubes, the
population of particles in each tube does not change; in real
space, the propagation of chiral edge states in the p, direction
appears as an appropriate evolution of the relative phases in
each tube, which can be probed, for example, in ultracold
atomic gases through time-of-flight imaging.

We now numerically demonstrate how the chiral edge
mode in the x-p, plane can be observed through wave packet
dynamics. We choose the strength of the artificial magnetic
fieldto be B = —tan 6 = —1 for the numerical simulation. As
an initial state, we consider three wave packets, located at the
left edge, center, and the right edge of the system. To consider

physics relevant to a single band or band gap, we project the
wave packet onto the lowest level of each tube. Experimen-
tally, in ultracold gases, such an initial state can be prepared
by creating a wave packet out of single-particle ground states
of each tube by starting from Bose-Einstein condensates in
each tube. In photonics, where light can be injected from the
outside, we can insert light with frequency corresponding to
the lowest Landau level to prepare a similar initial condition.
The wave function of the initial state is plotted in Figs. 3(a)
and 3(b), in both the x-y and x-p, planes. We then let the
wave packet evolve freely. The wave functions in the x-p,
plane after time t = 1/w, t =2/w, and t = 3/w are plotted
in Figs. 3(c)-3(e). We observe that the wave packet at the left
edge goes upward, whereas the wave packet at the right edge
goes downward, showing that the edge state goes clockwise in
a chiral manner. This motion of the wave packet at the edge is
consistent with the artificial magnetic field in x-p, plane; the
strength of the magnetic field is B = —tan6 < 0, which im-
plies that the cyclotron motion inside the bulk of the system is
counterclockwise, and the edge state goes clockwise. We note
that the absolute value of the wave function plotted in the x-y
plane looks identical during time evolution. This is because
our initial state is projected onto the lowest Landau level, and
thus the wave function in each tube is an eigenstate of the
Hamiltonian for each tube, and thus the only time evolution
appears in the phase of the wave function. The evolution of
the phase in the x-y plane appears as chiral edge motion in the
x-py plane.

We should also comment on the direction of the edge mode
with respect to the energy spectrum, see Fig. 2(a). One sees
that, in the energy spectrum, the energy goes up at large values
of n. These states at large values of n > 0 are localized at
the right edge. Since the energy goes up, one might want to
conclude that the group velocity is positive at the right edge.
However, as one sees from Fig. 3, this is not the case; the
group velocity is negative at the right edge. This apparent dis-
crepancy is because one needs to consider —n as the conjugate
variable of py. Namely, the horizontal axis of Fig. 2(a) should
be flipped when one wants to find the correct group velocity.
By flipping the horizontal axis of Fig. 2(a), one obtains the
correct group velocity, which is negative at the right edge.

IV. QUANTIZED HALL RESPONSE

Since Landau levels are topological, the Hall response
should be quantized, which can be a signature of nontrivial
topology obtained from the bulk property of the system. The
topological Chern number C of Landau levels with B < 0 is
one, C = 1; we now investigate if this unit Chern number can
be observed in our setup.

One way to see the topological nature of the system is
through Laughlin charge pumping [39]; on a two-dimensional
cylinder with a perpendicular magnetic field, when a magnetic
flux quantum is inserted through the cylinder, the state on the
cylinder moves along the cylinder by one unit. As we naturally
have a cylindrical structure in the x-p, plane, it is natural to
ask how Laughlin charge pumping appears in our setup. As we
see below, quantized pumping in our system occurs naturally
due to construction. A magnetic flux can be inserted through
the cylinder in the x-p, plane by shifting the center of the
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FIG. 3. Dynamics of a wave packet and chiral edge modes. The units of length in the x direction are a, and the units of p, are 1/yy.
(a) The absolute value of the initial wave function is plotted in the x-y plane, where each n represents a tube located at the position y = nyy.
(b) The initial state in the x-p, plane. The lower panel shows the wave function in the x-p, plane after time evolution for duration (c) t = 1/w,

(d)t = 2w, and (e) t = 3/w. Chiral edge motion is clearly visible.

harmonic trapping potential in the x-y plane. If we shift the
central position of the harmonic trapping potentials by éx, the
harmonic trapping potential acts as %ma)2 (x — nxo — 8x)? for
a given tube labeled by an integer n. In the x-p, plane, this
shift corresponds to the shift of the magnetic vector potential
to A(x, py) = (0, —xtan 6 + Sx tan 6). The additional contri-
bution of dxtané is a constant term in the magnetic vector
potential, and thus if we integrate it over the p, direction,
we see that the cylinder in the x-p, plane is penetrated by a
magnetic flux 2w éx tan 6 /yy = 27w dx/xy. Therefore, inserting
a magnetic flux quantum of 27 corresponds to taking x = xo.
This shift of §x = xj corresponds to no change in the overall
Hamiltonian except that a tube previously labeled by an inte-
ger n now acts as a tube with a label n + 1. Thus, as in the
Laughlin pumping, the overall Hamiltonian comes back to the
original one after the shift of §x = xy. In the x-y plane, the
shift of 6x = x( corresponds to moving the entire system by an
amount §x = xg to the right, thus any state should also move
horizontally by x¢. This implies that any state on the cylinder
of the x-p, plane should also move along the cylinder by
Xo, which is the manifestation of the Laughlin charge pump-
ing in our setup. Another way to see the topological nature
of the system is through dynamical response of the system.
In ultracold gases, quantized Hall response can be observed
through the center-of-mass response upon application of a
force (synthetic electric field) E = (Ex, E,, ) [40—42]. When
a synthetic electric field E; is applied along the i direction, the
center-of-mass velocity is [42] v*M = —eijj—;EjC , where
Apz is the area of the Brillouin zone and €,,, = —¢,, , = 1. For
our setup of a uniform magnetic field in the x-p, plane, there
is no translational symmetry in the x direction, and therefore
we need to consider a magnetic unit cell and the magnetic

Brillouin zone. A magnetic unit cell is an arbitrary rectangle
in the x-p, plane which encloses one magnetic flux quantum.
Since the strength of the artificial magnetic field is |B| = tan 6,
the area of a magnetic unit cell is 277 / tan 6. Then the area of
the magnetic Brillouin zone is (27)? divided by the area of
a magnetic unit cell and thus Agz = 27 tan 8. Therefore, the
center-of-mass velocity should follow

= —e,»jEjC/tanG = G,’jEjC/B. (5)

We should then be able to determine the Chern number of the
Landau levels in the x-p, plane by monitoring the center-of-
mass motion. As we see below, the quantized response upon
adding E,, is nothing but the Laughlin charge pumping we
saw above and turns out to be trivially satisfied, whereas the
response upon E, can provide observable signatures of the
quantized Hall response.

We first consider the Hall response upon adding £, , which
can be applied by making the artificial magnetic vector po-
tential time dependent A = (0, —xtan 6 — E, t). Such a time
dependence can again be introduced by changing the position
of the minima of the harmonic trapping potentials. Changing
the location of the trap minima from nxy to nxy + dx, in a y-
independent manner, the magnetic vector potential in the x-p,
plane becomes A = (0, —xtan6 4+ Sxtan ) as before. This
implies that the desired magnetic vector potential can be cre-
ated by moving dx as dx = —E), t/tan 0. Now, the quantized
Hall response through the center-of-mass velocity has a clear
physical meaning. When the motion of the trapping potential
is slow enough, the center of mass should follow the motion
of the trap minima 6x(¢). Therefore, the center-of-mass veloc-
ity in the x direction is vf‘M' = 0,6x(t) = —E, /tan6; from
Eq. (5), this implies the correct relation C = 1.

viC.M.
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Adding E,, the center-of-mass velocity follows Ug‘:M' =

E,C/tan, which can provide a more nontrivial observable
signature of topology. A synthetic electric field E, can be
applied by adding a linear potential gradient —E,x to the
Hamiltonian. We numerically simulate the time evolution
of a wave packet located at the center, projected onto the
lowest Landau level, under the field E,. In Fig. 2(b), we
plot the center-of-mass position of the wave packet in the
py direction under time evolution for different values of
B = —tanf. We also plot the theoretical prediction from
Eq. (5) assuming C = 1, which agrees well with the numerical
simulation of (py). The numerical simulation also exhibits
oscillation around the theoretical line with oscillation period
27 /w, which is a detailed structure of the cyclotron motion.
Thus, the quantized Hall response can be observed from the
center-of-mass motion in p, direction under the application
of E,, and the Chern number can be estimated from its
slope.

V. INTERACTION AND VORTICES

We now turn to interacting many-body cases. An impor-
tant feature is that a typical short-range interaction in the
x-y plane translates into long-ranged and unconventional in-
teraction in the p, direction. In particular, the formation of
vortices, which is a characteristic feature of weakly inter-
acting bosons in a magnetic field [18-20,34,35], cannot be
observed in the x-p, plane only with a contact interaction
in the x-y plane. Nonetheless, we find that, by adopting a
long-range interaction in the y direction, vortices can still
form in our setup as we discuss below. We now focus on
bosons with the mean-field interaction and ask if vortices
can form in the x-p, plane. We use description in terms

J

of the Gross—Pitaevskii equation with the condensate wave
function W,,(x, 1):
2

1
— X 4 —me*(x — nxo)?

i0,W,(x,1) = Hyhop + Hip + { m 3

1 ~2 .2
+ Emw X \I'ln(-xv t)a (6)
Hyhop =]y[an71(-x»t)+ ‘IJn+1(xvt)]’ @)
Hine = g9, 0, )12 W, (x, 1) 4+ g1 (|Wae 1 (x, 1)
+ W1 (x, 1))W, (x, 1). (8)

We additionally included an overall weak harmonic potential
with the oscillator frequency @ which confines the particles.
We take @ to be much smaller than w so that its only effect is
to prevent particles from flying away. We also added a small
intertube hopping term Hypo, which allows an exchange of
particles between different tubes. This hopping term allows
the system to establish an overall phase coherence. In the
x-py plane, such an intertube hopping term enters as a weak
periodic potential of the form 2J, cos(yop,). In the numeri-
cal calculations below, we take G, = 1/ ma = 10as. and
Jy = —0.01w. The interaction term H;y contains the contact
interaction with strength g, and also a nearest-neighbor (long-
range) interaction between tubes with strength g;.

Although the interaction Hj, looks innocuous in the x-y
plane, it translates into rather unusual infinite and long-ranged
interactions in the x-p, plane. Writing the Fourier transform
of W,(x) along the y direction as W(x, p,) and considering
the corresponding second-quantized creation and annihilation
operators Ui(x, py) and U(x, Dy), the interaction term written
in x-p, operators, up to an overall normalization factor, reads

— D4)

Z { 8s (yO(Pl - Pz)) (yo(Ps
£ + g1 cos 7 cos

P1+p2=p3+ps

This is a position conserving interaction considering p,
as a synthetic position coordinate. The contact interaction
gs is a uniform interaction in the x-p, plane as long as
the position is conserved, and thus infinite-ranged. On the
other hand, the intertube interaction g; has a factor of
cos(yo 522 ) cos(yo 252 ); the interaction is strongest when
p1 = pr and p3 = p4, which corresponds to the situation
where the interacting particles are close to each other. There-
fore, the intertube interaction introduces a shorter-ranged
interaction along the p, direction compared with the con-
tact interaction. We note, however, that, considering p, as
a synthetic position, this intertube interaction is still an un-
conventional form which cannot be derived from a two-body
potential depending only on the relative positions between two
interacting particles.

We first consider the ground state when only the contact
interaction g, is present. In Figs. 4(a) and 4(b), we plot
the ground state, obtained by imaginary-time propagation
of the Gross—Pitaevskii equation (6), when g = agscw and
g1 = 0, assuming the normalization ) _, fdx|\11n(x, N =1.

2

)} / dx W' (x, pOWT(x, p2)W(x, p3) ¥ (x, pa). ©)

(

Figure 4(a) shows |, (x)| in the x-y plane, whereas Fig. 4(b)
shows |W(x, p,)|. We see that the particles are clumped at the
center of the x-p, plane, and no vortex-like structure is seen.
This is because, in order to obtain vortices in the x-p, plane,
we need a short-range repulsive interaction in x-p,, but the
interaction due to g; is infinite-ranged in the p, direction.

To obtain vortices in the x-p, plane, we need to have a
long-range interaction along the y direction, which introduces
a shorter-range interaction in the x-p, plane. Technology to re-
alize long-range interactions in synthetic quantum matter has
been rapidly developing; representative setups include atoms
with dipole-dipole interactions [43], systems involving Ryd-
berg states [44—46], and atoms in a cavity with light-mediated
interactions [47]. Now we include a long-range interaction in
the simplest form through the nearest-neighbor interaction gi,
which can be realized in ultracold atomic gases using dipole-
dipole interactions with proper orientation of the dipole field
[43]. In Figs. 4(c) and 4(d), we plot the ground state when
8s = Goscw and gy = 2aqscw. We see that |W(x, p,)| has six
dips. By looking at its phase profile in Fig. 4(f), we confirm
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FIG. 4. The interacting ground states. The ground-state wave
function |, (x)| when g, = aqs.@ and g; = 0, plotted in (a) the x-y
plane, and (b) the corresponding wave function in the x-p, plane,
[W(x, py)|l. The ground-state wave function when g, = aocw and
g1 = 2aqs.w, plotted in (c) the x-y plane, and (d) the corresponding
wave function in the x-p, plane, where dips of the wave function can
be observed. () The integrated density for each tube, [ dx|W,(x)|?,
plotted as a function of n; a density modulation is visible. (f) The
phase profile of the wave function W(x, p,). The phase singularities
(vortices) at p, > 0 are marked by blue circles. The units of length
in the x direction are doq, and the units of p, are 1/y,.

that these dips are the vortices formed in the x-p, plane. In the
x-y plane, the state has density peaks at every other tube, as
seen in the integrated density for each tube plotted in Fig. 4(e).
Vortices on a cylinder are known to have dynamical properties
different from those on a plane [48,49]; our proposal provides
a unique setup where such phenomena can be studied. Since
the Hamiltonian has a discrete translational symmetry along
the angle 6 from the x axis, the state breaks this translational
symmetry, thus forming a supersolid state in the x-y plane.
Whether this supersolid structure persists in the absence of the
confining potential @ in a thermodynamic limit is a question
to be addressed in a future work.

We note a crucial difference between previous studies
relating long-range interactions, such as a dipole-dipole in-
teraction, and the formation of vortices in the presence of
an artificial magnetic field [43,50]. In these earlier works,
the dipole-dipole interaction, an artificial magnetic field, and
vortices all appear in the same (physical) two-dimensional
plane. Our result, on the other hand, considers a long-range
(intertube) interaction in the x-y plane, but the vortices appear
in the reciprocal x-p, plane where the artificial magnetic field
is realized.

FIG. 5. The mean-field ground state when we consider a hypo-
thetical contact interaction in the x-p, plane. The units of length
in the x direction are as, and the units of p, are 1/y,. We take
the strength of the contact interaction in the x-p, plane to be g, =
10aoscyow, and no other interparticle interaction exists. Other param-
eters are tan6 = 1, ® = w/100, and J, = —0.01w. (a) The absolute
value of the wave function in the x-y plane, where two density peaks
are seen. (b) The wave function in the x-p, plane, where two dips of
the wave function are seen. (c) The integrated wave function of each
tube, f dx|W,(x)|?, from which one can see the density peaks more
clearly. (d) The phase profile of the wave function in the x-p, plane;
the two blue circles indicate the position of the phase singularities,
namely the vortices.

Below, we give a more detailed analysis of the vortices.
We first show the wave function profile when a hypotheti-
cal contact interaction in the x-p, plane is present. We see
that the vortices corresponds to a supersolid structure in the
x-y plane, confirming that the vortices we observed above
are indeed created by the same mechanism as the ordinary
vortices in the presence of a magnetic field. We then dis-
cuss how vortices form as one increases the nearest-neighbor
interaction g;.

A. Vortices under a contact interaction in the x-p, plane

We first analyze the bosonic ground state if the inter-
action is contact in the x-p, plane. Note that this is the
situation one often encounters in the x-y plane in ultracold
atomic gases in the presence of an artificial magnetic field
[18-20], and one expects the formation of vortices. We in-
clude the contact interaction in the x-p, plane by adding a
term [ dx [ dp,g,|W(x, p,)|* in the energy functional, where
W(x, py) is the normalized wave function in the x-p, plane.
We choose g; = 10aqscyow, g5 = g1 = 0 and we take all the
other parameters to be the same as before; in particular, we
take tan® = 1. In Fig. 5, we plot the ground state obtained
by imaginary time evolution of the Gross-Pitaevskii equation.
The absolute values of the wave function in the x-y as well as
the x-p, planes are plotted in Figs. 5(a) and 5(b), respectively.
We can see two density peaks in the x-y plane, similar to
the structure seen in Fig. 4 when the nearest-neighbor inter-
action is included. The total density of each tube is plotted
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FIG. 6. Formation of vortices in the x-p, plane. The three columns represent the ground states for g; = 0.8ayscw, g1 = 1.0ds @, and
g1 = 1.2a4w, respectively, from left to right. In each column, the top row shows |W,(x)| of the ground state, the second row shows |W(x, p, )|,
the third row shows the phase profile of W(x, p,), and the bottom row shows [ dx|W,(x)|* as a function of n. In the phase profile panels, we
mark phase singularities at p, > 0 by blue circles. (There is also the same number of phase singularities at p, < 0, which are not encircled.)
The units of length in the x direction are a, and the units of p, are 1/yy.

in Fig. 5(c), where the vertical axis denotes the integral of
|W,(x)|*> over x. The corresponding wave function in the
x-py plane shows the vortex structure, as confirmed by the
phase profile in Fig. 5(d). These vortices, formed by an ar-
tificial magnetic field and a contact interaction in the x-p,
plane, are the ordinary vortices which have been observed
in ultracold gases in the presence of an artificial magnetic
field in real (x-y) space. Comparing these results with the
wave function found in Fig. 4, we conclude that the vortex
structure found in Fig. 4 has the same origin as the con-

ventional vortices in the presence of an artificial magnetic
field.

B. Vortex formation

Now we come back to the interaction we originally con-
sidered: the contact interaction g, and the nearest-neighbor
interaction g;. We analyze how vortices form by varying the
value of g; and looking at the wave-function profile. In Fig. 6,
we plot, for three different values of g;, the wave function in
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the x-y plane and x-p, plane, as well as the phase profile of
the wave function in the x-p, plane and the integrated density
for each tube. We use tan 6 = 1, g; = apscw, @ = /100, and
Jy = —0.0lw. We can observe that vortices form as one in-
creases g1. We see that, when g; = 0.8a.w, there is no phase
singularity in the x-p, plane, and the integrated density for
each tube has a peak at n = 0 and monotonically decreases
as one goes away from n = 0. The situation changes for g; =
1.0aqscw. Although it is still difficult to see vortex formation
in [¥(x, py)|, by looking at the phase profile of W(x, p,),
we clearly see six phase singularities, indicating the forma-
tion of vortices. Correspondingly, density modulation starts to
be seen in the integrated density for each tube. When g; =
1.2a4sw, the vortices become easily visible in |W(x, p,)|. The
phase singularity and the density modulation also become
more pronounced. The vortices are fragile against increase of
the intertube hopping amplitude J,. If we use J, = —0.02w,
the density dip in the x-y plane, and hence the vortex structure
in the x-p, plane, similar to the one found for the middle
column of Fig. 6, will not appear until we increase g; until
around g; &~ 1.3a.s.w. Thus, a stronger interaction is neces-
sary to form vortices. This tendency can be understood in the
following way: Intertube hopping J, introduces a sinusoidal
potential energy in the x-p, plane along the p, direction. To
create vortices in the x-p, plane, the interaction effect should
be strong enough to overcome the sinusoidal potential created
by J,. We note that the vortices can in principle form also
when there is no intertube hopping, J, = 0. In such a case,
however, there is no reason for the entire system to develop
a phase coherence, and thus the resulting structure in the
x-y plane is not a supersolid anymore; it would rather be a
phase-incoherent density wave.

VI. EXPERIMENTAL PLATFORMS

Our proposal is relevant to various platforms of syn-
thetic quantum matter. In ultracold atomic gases, decoupled
arrays of one-dimensional tubes can be realized with a two-
dimensional optical lattice [51]. Our proposal can then be
realized by superposing another harmonic trapping potential
with an appropriate angle. The quantized Hall response and
many-body physics are directly relevant in ultracold atomic
gases [40-42]. Various photonic platforms are also relevant
to our proposal. For example, exciton-polariton microcav-
ity can be made into an array of one-dimensional wires
[7,52], and an additional harmonic potential can be applied
by varying the width of each wire. Since it is extremely

challenging to break the physical time-reversal symmetry in
exciton-polaritons to open a topological gap [53], our proposal
provides a valuable alternative to explore Chern insulator
physics in exciton-polariton microcavities. Photonic cavity
arrays and propagating waveguide geometry are also suited to
realize our proposal, where harmonic potentials can be applied
by varying the cavity or waveguide size along the x direction
[28,31]; for these systems it is more natural to consider a lat-
tice structure in the x direction, which results in a coupled wire
setup in the x-p, plane [54]. Edge-related physics are more
easily accessible in such photon-related platforms [28,31,55].

We note that our proposal depends crucially on the fact
that properties in momentum space (p, direction) are observ-
able in this synthetic quantum matter. In ultracold gases, the
momentum-space wave function is accessible through time-
of-flight imaging and, in photon-related systems, far-field
imaging provides information on momentum space.

VII. CONCLUSION

We have shown that a set of tubes with harmonic trapping
potentials whose centers are shifted is equivalent to charged
particles in a magnetic field in the x-p, plane. The underlying
idea of our proposal is to replace momentum in one direction
by position to realize a simpler Hamiltonian which simulates
the original Hamiltonian in a hybrid real-momentum space.
This method is quite versatile; for example, with a similar
mechanism, a collection of one-dimensional Aubry-André
model [56] (the Harper model) with shifted modulation phases
simulates a two-dimensional lattice with a magnetic field, the
Harper-Hofstadter model [57,58], in real-momentum space,
without breaking the physical time-reversal symmetry. Our
proposal provides a simple and powerful method applicable to
realize various Hamiltonians, opening a possibility for quan-
tum simulation in synthetic quantum matter.
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