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Ever since the first observation of Bose-Einstein condensation in the 1990s, ultracold quantum gases have
been the subject of intense research, providing a unique tool to understand the behavior of matter governed by
the laws of quantum mechanics. Ultracold bosonic atoms loaded in an optical lattice are usually described by the
Bose-Hubbard model or a variant of it. In addition to the common insulating and superfluid phases, other phases
(such as density waves and supersolids) may show up in the presence of a short-range interparticle repulsion and
also depending on the geometry of the lattice. We herein explore this possibility, using the graph of a convex
polyhedron as a “lattice” and playing with the coordination of nodes to promote the wanted finite-size ordering.
To accomplish the job we employ a decoupling approximation, whose efficacy is tested in one case against
exact diagonalization. We report zero-temperature results for two Catalan solids, the tetrakis hexahedron and the
pentakis dodecahedron, for which a thorough ground-state analysis reveals the existence of insulating “phases”
with polyhedral order and a widely extended supersolid region. The key to this outcome is the unbalance in
coordination between inequivalent nodes of the graph. The predicted phases can be probed in systems of ultracold
atoms using programmable holographic optical tweezers.
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I. INTRODUCTION

The last few decades have seen the development of
very effective atom-cooling methods [1] that has eventually
culminated in the first ever observation of Bose-Einstein con-
densation in atomic gases [2,3]. Concurrently, also the ability
to manipulate laser beams has been continuously increasing,
to the point that one can create periodic potentials of various
dimensionality (“optical lattices”) which are free of defects
and stable [4]. Optical trapping of ultracold atoms provides an
invaluable means to probe the behavior of quantum particles
on a lattice, thus representing a desirable platform for the
study of collective effects in many-body quantum systems
[5–7].

In the original Bose-Hubbard (BH) model [8], the competi-
tion between the itinerant and localized character of quantum
states is reduced to the bone: Kinetic energy, represented
through a U (1)-invariant hopping term, is made minimum
by a broken-symmetry condensed state spread over the en-
tire volume of the system, whereas potential energy favors
the localization of particles. As a result, at zero temperature
(T = 0) the system exists in either a superfluid or an insu-
lating ground state, with a quantum transition between them.
The scenario becomes richer when the range of interaction
between particles increases. Then, depending on the lattice,
other insulating ground states (ordinary solids) may appear;
moreover, crystalline order may coexist with superfluidity
(supersolids). Earlier examples of supersolid ground states in
extended BH models have been reported in [9–12], while the
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first observations of a density-modulated structure coexisting
with phase coherence are more recent [13–15].

We here expand the catalog of spinless boson systems
where density waves, either with or without off-diagonal
long-range order, are stable at T = 0 by considering finite
“lattices,” or better polyhedral graphs (i.e., made up from
the vertices and edges of a polyhedron) as an underlying
supporting frame for the particles. While clear-cut phases
and phase transitions are not possible on a finite graph, the
absence of natural boundaries and a relatively high symmetry
in the spatial distribution of nodes make our investigation
valuable for a comparison with ordinary lattice models. Our
interest goes to regular or semiregular polyhedra inscribed
in a sphere, since these ensure sufficient homogeneity in the
coordination of vertices, a property shared with lattices. The
use of spherical boundary conditions (SBCs) has often been
exploited in the past to discourage long-range ordering at high
density [16–24]. On the other hand, SBCs make it possible
to observe forms of ordering that are unknown to Euclidean
space. An added value of a spherical mesh is the possibility
to vary the coordination of vertices while keeping the overall
geometry strictly two dimensional (a polyhedral graph is a
planar graph). From the point of view of experiment, we note
that bosons confined in thin spherical shells (“bubble traps”)
have already been realized [25,26] and will soon be studied
in microgravity [27,28]. Present laser-light technology based
on optical tweezers already has the sophistication needed to
constrain atoms within a close neighborhood of the vertices
of a chosen polyhedron [29,30].

A preliminary study of the extended BH model on the
graph of a regular polyhedron has been given in Ref. [31].
There, we have employed the decoupling approximation
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[8,32] (DA, a kind of mean-field theory) to sketch the phase
behavior at T = 0, finding that DA is already reliable for a
graph as simple as that of a cube. Here, we carry out a similar
analysis for more complex graphs, choosing the skeleton of
two Catalan solids for demonstration. As in Ref. [31] we make
the further simplification that multiple node occupancy is for-
bidden, which corresponds to a system of hard-core bosons.
With this assumption, the dimensionality of the Hilbert space
is reduced to such a degree that in one case the DA can be
validated against exact diagonalization. The main lesson of
the present investigation is that, when the vertex set of a graph
can be decomposed into a few subsets of inequivalent vertices,
then the superfluid phase is ruled out and a wide supersolid
region appears in its place. Thus, semiregular graphs are an
ideal playground where to observe supersolid “phases,” in
addition to insulating “solids” with polyhedral symmetry.

The rest of the paper is organized as follows. In Sec. II we
describe the model, the physical observables of interest, and
the method used to perform the investigation. There is not a
unique way to motivate the DA method, and we have devoted
a few Appendixes to present various equivalent derivations of
this approximation for the reader’s benefit. Section III con-
tains the core of our study: In Secs. III A–III C we illustrate
our theory for the graph of a tetrakis hexahedron, which is still
sufficiently simple to be amenable to exact analysis. Then, in
Sec. III D we focus on the graph of a pentakis dodecahedron
and repeat the DA treatment of the extended BH model. Fi-
nally, concluding remarks follow in Sec. IV.

II. MODEL AND THEORY

In its simplest terms, the grand Hamiltonian of the ex-
tended BH model on a regular lattice reads

H = −t
∑
〈i, j〉

(a†
i a j + a†

j ai ) + U

2

∑
i

ni(ni − 1)

+ V
∑
〈i, j〉

nin j − μ
∑

i

ni, (2.1)

where ai, a†
i are bosonic field operators and ni = a†

i ai is a
number operator. Moreover, t � 0 is the hopping amplitude
between nearest-neighbor (NN) sites, U > 0 is the on-site re-
pulsion, V > 0 is the strength of the NN repulsion favoring the
spatial distancing of bosons, and μ is the chemical potential.
Were it not for the hopping term, the BH model would not be
dissimilar from a classical lattice gas, sharing with it the same
sequence of phases as a function of μ. Things change com-
pletely with the inclusion of quantum kinetic energy, which
makes it possible for particles to be delocalized even at T = 0,
a situation that goes along with a macroscopic occupation
of the zero-momentum state. When V �= 0, the interplay be-
tween insulating and superfluid order may generate so-called
supersolid phases where both crystalline and superfluid order
are simultaneously present [33–37]. In the hard-core limit
U → +∞, the site occupancy will be effectively restricted to
zero or one and the U term in (2.1) can be discarded; following
a well-established tradition [9,38–42], it is only this limit that
is treated hereafter.

In Ref. [31] we have studied model (2.1) at T = 0 on a
polyhedral graph with M nodes, focusing on those Platonic

FIG. 1. The two Catalan solids considered in this work.
(a) Tetrakis hexahedron (TH), with six octahedral vertices (red dots)
and eight cubic vertices (yellow dots); each cubic vertex belongs to
either of two different tetrahedral subsets. (b) Pentakis dodecahedron
(PD), with 12 icosahedral vertices (red dots) and 20 dodecahedral
vertices (yellow dots). In both pictures, the long edges are colored in
blue and the short edges are colored in gray. Two nodes of the graph
are considered NN if they are joined by an edge of the polyhedron,
either long or short.

polyhedra (i.e., the cube and the dodecahedron) where a sub-
set of vertices forms itself a regular polyhedron. Besides a
number of insulating “phases,” crystalline or not, the ground-
state diagram contains a wide superfluid basin and, only in the
dodecahedral case, a small supersolid region. In this paper, the
hosting space for bosons is still the graph of a convex polyhe-
dron, but now taken to be semiregular. Our choice goes in
particular to Catalan solids, which are isohedral (i.e., all faces
are equivalent under the symmetries of the figure) but neither
isogonal (vertices are not all equivalent) nor circumscribable.
Among this class of polyhedra, the two which are simplicial
(have triangular faces) and deviate less from isogonality are
the tetrakis hexahedron (TH, Kleetope of a cube and dual
to the truncated octahedron) and the pentakis dodecahedron
(PD, Kleetope of a dodecahedron and dual to the truncated
icosahedron) (see Fig. 1). To make them circumscribable, the
pyramids added to each face of the cube (TH) or dodecahe-
dron (PD) are adjusted in height so that the solid, already
inscribable, becomes also circumscribable—with this change,
the deviation from isogonality is slightly reduced. We collect
in Table I the main characteristics of the biscribed forms of
TH and PD. We note that T = 0 cluster phases with TH and
PD symmetry are found in a system of soft-core bosons on the
sphere [23].

Compared to a Platonic solid, each polyhedron in Fig. 1 has
two species of vertices and also two kinds of edges, long and
short. Therefore, in view of interpreting the Hamiltonian (2.1)
clearly, we are faced with the problem of choosing between
two notions of nearness on the graph: One possibility is that
NN nodes are exclusively those joined by a short edge (then,
the ends of a long edge are second-neighbor nodes). On the
other hand, we may decide to call NN the pairs of nodes
that are adjacent in the graph, namely joined by an edge of
the polyhedron, regardless of being long or short. Clearly, the
nature of BH phases changes from one case to the other. Free
from obligations dictated by phenomenology, we can base our
choice on the kind of phase sequence we want at t = 0. It turns
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TABLE I. Main elements of the polyhedra considered in the present study. The quoted lengths refer to the biscribed form of the polyhedron
and are in units of the circumscribed radius (i.e., all vertices of the biscribed polyhedron lie on the sphere of radius 1).

Tetrakis hexahedron Pentakis dodecahedron

Vertices 14 (6 [4] + 8 [6]) 32 (12 [5] + 20 [6])
Faces 24 (isosceles triangles) 60 (isosceles triangles)
Edges 36 (24 short + 12 long) 90 (60 short + 30 long)
Symmetry Full octahedral (Oh ) Full icosahedral (Ih )

Short edge
√

6(3 − √
3)/3 = 0.9194 . . .

√
30[15 −

√
15(5 + 2

√
5)]/15 = 0.6408 . . .

Long edge 2
√

3/3 = 1.1547 . . . (
√

15 − √
3)/3 = 0.7136 . . .

Circumscribed radius 1 1

Inscribed radius 1/
√

5 − 2
√

3 = 0.8068 . . . 1/

√
10 − √

5 −
√

6(5 + √
5) = 0.9226 . . .

Volume 8/3 = 2.6666 . . . 2
√

10(5 − √
5)/3 = 3.5048 . . .

out that the phase diagram is richer if we use adjacency as a
criterion of nearness, as we do in the following.

Once the hosting graph has been chosen, we analyze the
T = 0 phase diagram of the extended BH model with U =
+∞ using the DA. In short, we linearize the hopping and
repulsion terms in (2.1) using [31]

a†
i a j ≈ a†

i 〈a j〉 + 〈a†
i 〉a j − 〈a†

i 〉〈a j〉 and

nin j ≈ ni〈n j〉 + 〈ni〉n j − 〈ni〉〈n j〉, (2.2)

where the ground-state averages 〈ai〉 ≡ φi and 〈ni〉 ≡ ρi are
to be determined self-consistently. φi and ρi represent the
superfluid order parameter and local density for the ith site,
respectively (the condensed fraction is |φi|2). The simplified
Hamiltonian reads

HDA = −t
∑

i

(Fia
†
i + F ∗

i ai − Fiφ
∗
i )

+ V

2

∑
i

(2Rini − Riρi ) − μ
∑

i

ni, (2.3)

with Fi =∑ j∈NNi
φ j and Ri =∑ j∈NNi

ρ j . We refer the reader
to Appendixes A–C for a thorough justification of this
approximation. The self-consistency equations for the param-
eters φi and ρi are also the conditions under which the grand
potential of (2.3) is stationary (see Appendix B).

III. RESULTS

By the DA, the original problem of determining the grand
potential of (2.1) is reduced to the much simpler task of
diagonalizing the one-site Hamiltonian (2.3). At T = 0, only
the minimum eigenvalue and its eigenstate are needed. For
the graph of a semiregular polyhedron, the job is even simpler
since we can identify a few inequivalent subsets of the vertex
set and, from the viewpoint of mean-field (MF) theory, assume
that the order parameters are homogeneous in each subset
(i.e., a single creation operator can be used to populate a whole
subset of vertices). In Ref. [31], where in the cases investi-
gated the vertex subsets are two, the strategy put forward was
to diagonalize a two-site Hamiltonian, hence a 4 × 4 matrix.
Here, we find it easier to divide the same task in as many
one-site problems as there are vertex types, which are three
for both TH and PD graphs.

A. TH model

Looking at Fig. 1(a), the 14 TH vertices can be classified as
octahedral (6) or cubic (8), implying a natural decomposition
of the TH graph into two inequivalent groups of vertices.
However, with an interaction that is repulsive at NN separa-
tion, we may expect a different number and superfluid density
in the two subsets of tetrahedral vertices of which the set
of cubic vertices is made up. Hence, we find it necessary
to divide the vertices of the TH graph in three subsets, A,
B, and C, consisting of the octahedral, tetrahedral-1, and
tetrahedral-2 nodes, respectively, and accordingly write the
MF Hamiltonian (2.3) as a function of six order parameters.
Since

FA = 2φB + 2φC, FB = 3φA + 3φC, FC = 3φA + 3φB,

RA = 2ρB + 2ρC, RB = 3ρA + 3ρC, RC = 3ρA + 3ρB,

(3.1)

the MF Hamiltonian reads

HDA = E0 − 12t[(φB + φC)a†
A + (φ∗

B + φ∗
C)aA]

− 12t[(φA + φC)a†
B + (φ∗

A + φ∗
C)aB]

− 12t[(φA + φB)a†
C + (φ∗

A + φ∗
B)aC]

+ 6(2V ρB + 2V ρC − μ)nA

+ 4(3V ρA + 3V ρC − μ)nB

+ 4(3V ρA + 3V ρB − μ)nC, (3.2)

with

E0 = 12t[(φB + φC)φ∗
A + (φA + φC)φ∗

B

+ (φA + φB)φ∗
C] − 12V [ρAρB + ρAρC + ρBρC].

(3.3)

For fixed t and μ, the matrix representing the DA Hamilto-
nian on the canonical basis |xA, xB, xC〉 (with xi = 0 or 1) is
8 × 8. The simplest case is t = 0, where the matrix becomes
diagonal. Then, each basis vector is an energy eigenvector
and the corresponding diagonal element is the eigenvalue.
While φA = φB = φC = 0, the density parameters are calcu-
lated by making each eigenvalue stationary; for the eigenvalue
of |xA, xB, xC〉 we obtain ρA = xA, ρB = xB, and ρC = xC.
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With these parameters, the minimum eigenvalue for the given
μ yields the grand potential �, and its eigenvector is the
ground state. We observe a “phase transition” when the rel-
ative stability of two eigenvalues changes. Clearly, on a finite
graph only a smooth crossover may occur, any thermody-
namic singularity being an artifact of MF theory. Results for
t = 0 are summarized below:

Grand Ground
μ range potential state Phase

μ � 0 0 |0, 0, 0〉 empty
0 � μ � 3V −6μ |1, 0, 0〉 OCT
3V � μ � 6V 12V − 10μ |1, 1, 0〉 and OCT+TET

|1, 0, 1〉
μ � 6V 36V − 14μ |1, 1, 1〉 full

To be clear, “empty” is the phase with no particle at all;
“OCT” is the phase where all the octahedral nodes are occu-
pied (N = 6 particles in total); “OCT+TET” is the twofold
degenerate phase where either A and B or A and C are filled
(N = 10); finally, “full” is the phase with one particle at each
node (N = 14). It is worth noting that, should we have opted
for a notion of nearness as proximity in space, we would have
gotten a stable CUB phase (i.e., one with only the cubic nodes
occupied) for 0 � μ � 4V , in addition to empty (μ � 0) and
full (μ � 4V ).

For t > 0, the minimum eigenvalue λmin of the Hamilto-
nian matrix is most easily obtained by separately diagonaliz-
ing a 2 × 2 matrix in each vertex subset (see Appendix A).
The equations for ρi and φi are then obtained by making λmin

stationary. It is a simple matter to show that

λmin = E0 + 12V (ρA + ρB + ρC) − 7μ

− 3
√

(2V ρB + 2V ρC − μ)2 + 16t2|φB + φC|2
−2
√

(3V ρA + 3V ρC − μ)2 + 36t2|φA + φC|2
− 2
√

(3V ρA + 3V ρB − μ)2 + 36t2|φA + φB|2.
(3.4)

For superfluid and supersolid phases, φA, φB, and φC are gen-
erally nonzero complex numbers. However, these parameters
should have equal phases since only the magnitude of the
order parameter can be spatially modulated. Without loss of
generality, we may take the arbitrary phase as zero, implying
that φA, φB, and φC are positive quantities. With this spec-
ification, the equations for the parameters are considerably
simplified and become the following,

ρB + ρC = 1 − 3V ρA + 3V ρC − μ

2
√©B − 3V ρA + 3V ρB − μ

2
√©C ,

ρA + ρC = 1 − 2V ρB + 2V ρC − μ

2
√©A − 3V ρA + 3V ρB − μ

2
√©C ,

ρA + ρB = 1 − 2V ρB + 2V ρC − μ

2
√©A − 3V ρA + 3V ρC − μ

2
√©B ,

φB + φC = 3t (φA + φC)√©B + 3t (φA + φB)√©C ,

�
/V

t/V

-3

 0

 3

 6

 9

 0  0.1  0.2  0.3  0.4  0.5

empty

full

OCT

OCT+TET

supersolid

superfluid

FIG. 2. MF phase diagram of the extended BH model with U =
+∞ on a TH graph, using V as the unit of energy. The blue dots
mark the transition points. The long-dashed μ = 0 line is the only
place where the system is superfluid. The dashed red curves are the
continuous-transition loci derived in the text [cf. Eqs. (3.11), (3.14),
and (3.17)]. The remaining transition lines are first order.

φA + φC = 2t (φB + φC)√©A + 3t (φA + φB)√©C ,

φA + φB = 2t (φB + φC)√©A + 3t (φA + φC)√©B , (3.5)

with

A© = (2V ρB + 2V ρC − μ)2 + 16t2(φB + φC)2,

B© = (3V ρA + 3V ρC − μ)2 + 36t2(φA + φC)2,

C© = (3V ρA + 3V ρB − μ)2 + 36t2(φA + φB)2. (3.6)

Apparently, the above set of nonlinear equations cannot be
solved exactly. To overcome the problem, we can numerically
minimize a non-negative function G of the order parameters,
constructed in such a way as to vanish when Eqs. (3.5) and
(3.6) are simultaneously fulfilled. For given t and μ values,
we generate a grid of points in parameter space, which is
then made finer and finer around each zero of G where λmin

is low, until the best parameters and the absolute minimum
� of (3.4) are determined with sufficient precision. Typically,
several competing minima may occur, which suggests that one
should proceed carefully to avoid that some zero of G may
escape the net.

We sketch in Fig. 2 the resulting MF phase diagram at
T = 0. The dots are phase-transition points at which the solu-
tion to Eqs. (3.5) and (3.6) changes qualitatively. As a result,
particles can exist in five distinct phases, four insulating and
one supersolid (SS). For each t = 0 phase with polyhedral
order, there is a lobe in the (t, μ) plane where the same order
persists up to a certain t , before SS eventually prevails. In the
latter phase, φA �= φB = φC and ρA �= ρB = ρC, to within the
numerical uncertainty of our computation. A superfluid phase
only exists along the line μ = 0: If we take ρA = ρB = ρC =
ρ and φA = φB = φC = φ in Eqs. (3.5) and (3.6), we readily
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FIG. 3. Extended BH model on the TH graph. The DA order parameters are plotted as a function of μ for fixed t (from top left to bottom
right, t/V = 0.1, 0.2, 0.3, 0.4).

obtain

ρ = t

V + 2t
and φ =

√
V t + t2

V + 2t
−→ � = − 36t2

V + 2t
.

(3.7)

In Fig. 3 we plot the order parameters as a function of μ for
a number of t values. The main message conveyed by the data
is that, with the important exclusion of the OCT+TET phase,
the number and superfluid density are the same on B and C.
Moreover, some phase boundaries are continuous and others
are first order. The only exception is the boundary of the OCT
phase, whose nature is twofold: While its descending branch
is continuous, the ascending branch is first order. The other
continuous transitions are from empty to SS and from full
to SS. Below, we perform a theoretical analysis of the func-
tional dependence of μ on t along each continuous-transition
line, which is exact within the DA. Assuming full symmetry
between B and C, we seek for solutions to Eqs. (3.5) and

(3.6) that match continuously with the values of the order
parameters in the nearby insulating phase.

Near the transition line between empty and SS, every order
parameter is close to zero. Expanding Eqs. (3.5) and (3.6) near
zero values, we obtain

ρA  16t2φ2
B

(4V ρB − μ)2
, ρB  9t2(φA + φB)2

(3V ρA + 3V ρB − μ)2
,

φA  4tφB

4V ρB − μ
, φB  3t (φA + φB)

3V ρA + 3V ρB − μ
, (3.8)

indicating that

ρA  φ2
A and ρB  φ2

B. (3.9)

Plugging the latter equations in the last two Eqs. (3.8) and
neglecting subdominant terms, we arrive at two coupled equa-
tions for φA and φB:

φA + 4t

μ
φB = 0 and

3t

μ
φA +

(
1 + 3t

μ

)
φB = 0. (3.10)
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In order that the linear set (3.10) has nonzero solutions, the
matrix of coefficients must have a zero determinant:

μ2 + 3tμ − 12t2 = 0 −→ μ = −3 + √
57

2
t . (3.11)

The above equation gives the boundary line between empty
and SS.

We may similarly expand Eqs. (3.5) and (3.6) near ρA =
ρB = 1 and φA = φB = 0, which are the order parameters in
the full phase. We obtain

ρA  1 − φ2
A and ρB  1 − φ2

B. (3.12)

Inserting the above equations into the approximate expres-
sions of φA and φB, we arrive at two new coupled equations:

φA + 4t

4V − μ
φB = 0 and

3t

6V − μ
φA +

(
1 + 3t

6V − μ

)
φB = 0. (3.13)

To have nontrivial solutions we need that

μ2 − (10V + 3t )μ + 24V 2 + 12V t − 12t2 = 0 −→ μ

= 10V + 3t + √
4V 2 + 12V t + 57t2

2
, (3.14)

giving the boundary between full and SS.
Finally, near the descending branch of the OCT boundary

we have solutions to Eqs. (3.5) and (3.6) that are close to ρA =
1, ρB = φA = φB = 0. We easily find

ρA  1 − φ2
A and ρB  φ2

B. (3.15)

Inserting the latter equations into the expressions of φA and
φB, we obtain a new set of linear equations:

φA − 4t

μ
φB = 0 and

3t

3V − μ
φA −

(
1 − 3t

3V − μ

)
φB = 0.

(3.16)

We have nontrivial solutions provided that

μ2 − (3V − 3t )μ + 12t2 = 0 −→ μ±

= 3V − 3t ± √
9V 2 − 18V t − 39t2

2
. (3.17)

While μ+ describes the descending branch of the OCT-SS
boundary, the solution μ− is discarded since it corresponds
to a (virtual) continuous transition from OCT to SS that is
preempted by a first-order transition occurring close to μ−.
Observe that the square root in (3.17) only exists for t �
(4

√
3 − 3)V/13 = 0.3021 . . .V , which then represents the

abscissa tc of the (tri)critical point [the ordinate being μc =
(3V − 3tc)/2 = 1.0467 . . .V ].

B. TH model: Exact zero-temperature analysis

For the TH model, the dimensionality of the Hilbert space
(214 = 16 384) is small enough that we can compute a few
exact energy eigenvalues and relative eigenstates in affordable
time. To this aim we represent the Hamiltonian on the Fock
basis {|x1, x2, . . . , x14〉} (with xi = 0 or 1) and diagonalize the
ensuing matrix numerically. In particular, the ground state |g〉

-3

 0

 3

 6

 9

 0  0.2  0.4  0.6

14

13
12
11

10

9
8
7
6
5
4
3
2
1

0

μ
/V

t/V

FIG. 4. TH model, exact diagonalization vs MF results. In this
“phase diagram,” any difference between distinct phases is blurred.
The thin dashed and continuous lines are the MF transition lines. The
thick lines through the dots separate sectors of the phase diagram
where N and other averages are constant.

and its eigenvalue, the grand potential �, can be mapped as a
function of t and μ.

Once |g〉 has been determined, we calculate the average
occupancies of A, B, and C nodes (corresponding to the MF
parameters ρA, ρB, and ρC), the average value of ai, and the
superfluid density ρSF (see, e.g., Refs. [43,44]). The latter
quantity reads

ρSF ≡ 1

14
〈g|̃a†

0ã0|g〉 = 1

142

14∑
i, j=1

〈g|a†
i a j |g〉, (3.18)

where ã0 = (1/
√

14)
∑14

i=1 ai is the zero-momentum field op-
erator. Observe that, in a large lattice of M sites, 〈̃a†

0ã0〉 = N0

is the average number of condensate particles, hence ρSF =
N0/M is the condensate density.

In doing the computations, we find a perfect symmetry
between the vertex subsets B and C, also in the putative
OCT+TET region. The only exception is t = 0, where the
B-C symmetry is broken and the node occupancies are the
same as in MF theory. Since the Hamiltonian commutes with
the total number of particles

∑
i a†

i ai, the (t, μ) plane is di-
vided in sectors where the number of particles takes a constant
integer value N , from 0 to 14. As expected, N = 0 in the
empty phase and N = 14 in the full phase. In the N sector, the
only nonzero Fourier coefficients of |g〉 are those relative to
basis states with

∑
i xi = N . The resulting “phase diagram” is

plotted in Fig. 4. In stark contrast with the MF phase diagram
(Fig. 2), there are no sharp phase boundaries. This is more
clearly visible in Fig. 5, where we make a comparison in
terms of order parameters between exact diagonalization and
MF theory for t = 0.25V . The exact μ evolution of 〈nA〉 and
〈nB〉 = 〈nC〉 roughly traces the MF curves, except for the N =
10 sector—corresponding to the crossing of the OCT+TET
region—where instead 〈nB〉 �= 〈nC〉.
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FIG. 5. Extended BH model on the TH graph: Order parameters plotted as a function of μ for t = 0.25V . (a) DA results (with the only
exception of the OCT+TET phase, ρB and ρC are practically equal). (b) Exact results (〈nA〉, dotted blue line; 〈nB〉, thin green line; ρSF, red
thick line). Here, 〈nB〉 = 〈nC〉 is an outcome of diagonalization.

Another difference with MF theory is in the ground-state
average of ai, which is identically zero. In fact, we have
already commented in Ref. [31] that the right quantity to look
at is the superfluid density ρSF [red curve in Fig. 5(b)], which
indeed compares well with φ2

i . In particular, ρSF drops to a
minimum where φi vanishes, i.e., in the μ ranges pertaining
to the insulating phases. The nonzero value of ρSF in these
phases is a finite-size effect. A slightly larger value of ρSF in
the OCT+TET region could be the result of a free circulation
of particles within the cubic sites.

To get a flavor of the quality of MF theory, we may look
at Fig. 6 where the exact and approximate grand potentials
are plotted as a function of μ for a few t values. We see that
MF data lie systematically above the exact values, as should
be expected for a variational estimate based on the Gibbs-
Bogoliubov inequality (see Appendix B). We also generally
confirm that

∂�

∂μ
= −N, (3.19)

and that MF theory worsens with increasing t , as already
evident in Fig. 4.

A distinguishing feature of an insulating phase is a nonzero
energy gap, in contrast to the zero gap of a superfluid or
a supersolid phase (see, e.g., Ref. [7]). To see whether this
is confirmed in our system, in addition to the lowest-energy
eigenvalue �, we have also computed the second (�2) and the
third energy eigenvalue (�3), which define the first and second
gaps, �1 = �2 − � and �2 = �3 − �. These two quantities
are plotted in Fig. 7 as a function of μ for t = 0.20V . We see
that both gaps are larger in the insulating phases than in the
SS regions; as a rule, �1 is wider the larger is the distance in
chemical potential from the line separating two consecutive
sectors in Fig. 4. The nonmonotonic behavior of �1 with μ

has a simple explanation: While the less-costly excitation is
holelike on the low-μ side of a sector, it is particlelike on

the high-μ side. Looking more closely to the data, we indeed
realize that

∂�1

∂μ
= ±1, (3.20)

meaning that the first excited state, which is generally non-
degenerate, is a linear combination of basis states with one
particle more or less than those composing the ground state.
Only for N = 10 is the above derivative zero, meaning that the
first excited state is, as the ground state, a linear combination
of basis states having

∑
i xi = 10.

-100

-80

-60

-40

-20

 0

-3  0  3  6  9

Ω
/V

μ/V

t/V = 0.1 (DA)

t/V = 0.1

t/V = 0.2 (DA)

t/V = 0.2

t/V = 0.3 (DA)

t/V = 0.3

FIG. 6. Extended BH model on the TH graph. The DA grand
potential (black squares, green dots, and red diamonds) is plotted
as a function of μ for fixed t (for t/V = 0.1, 0.2, 0.3), and compared
with the exact value (blue crosses) obtained from Hamiltonian diago-
nalization. To help visualization, data for t/V = 0.2 (0.3) have been
shifted downwards by 20 (40).
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FIG. 7. Extended BH model on the TH graph. The first and
second gaps are plotted as a function of μ for t = 0.20V . For a
better reading of the data, also the average occupancies 〈nA〉, 〈nB〉
and the superfluid density ρSF have been reported (〈nA〉, dotted blue
line; 〈nB〉, thin green line; ρSF, red thick line).

C. TH model: MF theory in the spin representation

It is instructive to see how the same DA results at T = 0
can be recovered by working in the representation where the
extended BH model with U = +∞ is mapped onto a spin-1/2
Hamiltonian. We recap in Appendix D the exact terms of this
correspondence, which goes back to a paper by Matsubara and
Matsuda [45]. Below, we treat the case of the TH model.

The TH vertices are of three types: six octahedral nodes
(A), four tetrahedral-1 nodes (B), and four tetrahedral-2 nodes
(C). Depending on the sites involved, the number of distinct
nearest-neighbor pairs is either 0 (AA, BB, and CC type) or
12 (AB, AC, and BC type). Starting from the BH Hamiltonian
in the spin representation,

H =
∑
〈i, j〉

[
V Sz

i Sz
j − 2t

(
Sx

i Sx
j + Sy

i Sy
j

)]
+ V

2

∑
〈i, j〉

(
Sz

i + Sz
j + 1

2

)
− μ

∑
i

(
Sz

i + 1

2

)
, (3.21)

the MF energy is obtained by replacing the quantum spins
with classical spins of magnitude 1/2, further assuming the
same spin vector in all nodes of the same type,

ES = 3V [cos θA cos θB + cos θA cos θC + cos θB cos θC

−�(sin θA sin θB + sin θA sin θC + sin θB sin θC)]

+(6V − 3μ) cos θA + (6V − 2μ) cos θB

+(6V − 2μ) cos θC + 9V − 7μ, (3.22)

where � = 2t/V and, for example, θA is the angle between
SA and ẑ. With no loss of generality, we can assume that in
the minimum-energy configurations the spins are all lying in
the x-z plane.

We first examine the minimum-energy states for t = 0,
where every spin points in the z direction:

↓↓↓: ES = 0 (empty);

↑↑↑: ES = 36V − 14μ (full);

↑↓↓: ES = −6μ (OCT);

↑↑↓ and ↑↓↑: ES = 12V − 10μ (OCT + TET);

↓↑↑: ES = 12V − 8μ (CUB). (3.23)

The above spin energies are equal to the grand-potential val-
ues as previously determined for the TH model, hence the
same sequence of t = 0 phases occurs as a function of μ.

For a supersolid phase with θA �= θB = θC, the total energy
takes the form

ES (SS) = 3V [2 cos θA cos θB + cos2 θB − �(2 sin θA sin θB

+ sin2 θB)] + (6V − 3μ) cos θA

+2(6V − 2μ) cos θB + 9V − 7μ. (3.24)

Assume that the system is initially in the OCT phase
(cos θA = 1, cos θB = −1). A continuous transition to SS
occurs as the point of absolute minimum energy moves
to cos θA � 1, cos θB � −1. Expanding �ES = ES (SS) −
ES (OCT) around θA = 0 and θB = π , we obtain

�ES  3V
[
θ2

A + �
(
2θAθ ′

B − θ ′2
B

)]− 1
2 (6V − 3μ)θ2

A

+ (6V − 2μ)θ ′2
B , (3.25)

with θ ′
B = θB − π . A nonzero stationary point occurs when

the Hessian becomes negative. This requires

2μ2 − 3(2V − �V )μ + 6�2V 2 > 0, (3.26)

yielding μ � μ− or μ � μ+, with

μ± = 3V − 3t ± √
9V 2 − 18V t − 39t2

2
. (3.27)

The transition to SS for μ = μ− is actually preempted by a
first-order transition. Notice that Eq. (3.27) is equivalent to
Eq. (3.17).

A continuous transition from full to SS occurs when the
absolute minimum of ES moves from cos θA = 1, cos θB = 1
to cos θA � 1, cos θB � 1. The relative energy between full
and SS is

�ES ≡ ES (SS) − ES (full)

 3V
[−θ2

A − 2�θAθB

− (2 + �)θ2
B

]− 1
2 (6V − 3μ)θ2

A − (6V − 2μ)θ2
B.

(3.28)

A nonzero stationary point only occurs for

2μ2 − (20V + 3�V )μ + 12V 2(4 + �) − 6�2V 2 < 0,

(3.29)
which is certainly satisfied for μ � μ+ with

μ+ = 10V + 3t + √
4V 2 + 12V t + 57t2

2
, (3.30)

coincident with Eq. (3.14).
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Finally, we observe a continuous transition from empty to
SS when the absolute minimum of ES moves from cos θA =
−1, cos θB = −1 to cos θA � −1, cos θB � −1. Upon defin-
ing θ ′

A = θA − π and θ ′
B = θB − π , we obtain

�ES ≡ ES (SS) − ES (empty)

 −3V
[
θ ′2

A + 2�θ ′
Aθ ′

B + (2 + �)θ ′2
B

]
+ 1

2
(6V − 3μ)θ ′2

A + (6V − 2μ)θ ′2
B . (3.31)

A nonzero stationary point only exists if the Hessian of (3.31)
is negative, that is, for

2μ2 + 3�V μ − 6�2V 2 < 0, (3.32)

which is certainly satisfied for μ � μ− with

μ− = −3 + √
57

2
t . (3.33)

The above equation is the same as Eq. (3.11).
For a general analysis of the characteristics of the B-C

symmetric case we need to express the MF energy ES as a
function of four order parameters. To this aim one observes
that

1
2 cos θA,B = ρA,B − 1

2 and 1
2 sin θA,B = φA,B, (3.34)

which can be combined to give(
ρA,B − 1

2

)2 + φ2
A,B = 1

4 . (3.35)

Eliminating φA,B in favor of ρA,B through Eq. (3.35), the MF
energy becomes

ES = 24V ρAρB + 12V ρ2
B

−12t
√

1 − 4(ρA − 1/2)2
√

1 − 4(ρB − 1/2)2

−6t + 24t
(
ρB − 1

2

)2 − 6μρA − 8μρB, (3.36)

whose stationary points obey the following equations:

∂ES

∂ρA
= 0 and

∂ES

∂ρB
= 0. (3.37)

The former equation leads to

ρA − 1

2
= −4V ρB − μ( 8tφB

φA

) . (3.38)

Plugging this equation in (3.35), we arrive at

φA = 4tφB√
(4V ρB − μ)2 + 64t2φ2

B

. (3.39)

Inserting the latter equation back in (3.38), we obtain

ρA = 1

2
− 4V ρB − μ

2
√

(4V ρB − μ)2 + 64t2φ2
B

. (3.40)

By a similar line of thought, from the second of Eqs. (3.37),
we arrive at

φB = 3t (φA + φB)√
(3V ρA + 3V ρB − μ)2 + 36t2(φA + φB)2

(3.41)

and

ρB = 1

2
− 3V ρA + 3V ρB − μ

2
√

(3V ρA + 3V ρB − μ)2 + 36t2(φA + φB)2
.

(3.42)

Equations (3.39)–(3.42) exactly coincide with Eqs. (3.5) and
(3.6) when perfect symmetry is assumed between B and C.

D. PD model

We conclude with the DA analysis at T = 0 of a system of
hard-core bosons on the PD graph, following the same lines of
reasoning as in Sec. III A. Looking at Fig. 1(b), the 32 nodes
of the PD graph are naturally classified as icosahedral (12) or
dodecahedral (20). In fact, the existing repulsion between NN
particles recommends to distinguish between dodecahedral
nodes of cubic (8) and co-cubic type (12) [31]. Hence, we
have three types of PD vertices: icosahedral (A), cubic (B),
and co-cubic (C). Upon considering that

FA = 2φB + 3φC, FB = 3φA + 3φC,

FC = 3φA + 2φB + φC,

RA = 2ρB + 3ρC, RB = 3ρA + 3ρC,

RC = 3ρA + 2ρB + ρC, (3.43)

the MF Hamiltonian reads

HDA = E0 − 12t[(2φB + 3φC)a†
A

+ (2φ∗
B + 3φ∗

C)aA] − 8t[(3φA + 3φC)a†
B

+ (3φ∗
A + 3φ∗

C)aB]

− 12t[(3φA + 2φB + φC)a†
C

+ (3φ∗
A + 2φ∗

B + φ∗
C)aC]

+ 12(2V ρB + 3V ρC − μ)nA

+ 8(3V ρA + 3V ρC − μ)nB

+ 12(3V ρA + 2V ρB + V ρC − μ)nC, (3.44)

with

E0 = 12t[2(φ∗
AφB + φAφ∗

B) + 3(φ∗
AφC + φAφ∗

C)

+ 2(φ∗
BφC + φBφ∗

C)] + 12t |φC|2
− 12V (2ρAρB + 3ρAρC + 2ρBρC)

− 6V ρ2
C. (3.45)

As for the TH model, the stable insulating phases at t = 0
can be identified by looking at the elements of the diagonal
matrix representing (3.44) on the canonical basis |xA, xB, xC〉.
A calculation similar to the one in Sec. III A leads to the
following:

μ range Grand potential Ground state Phase

μ � 0 0 |0, 0, 0〉 empty
0 � μ � 3V −12μ |1, 0, 0〉 ICO
3V � μ � (9/2)V 24V − 20μ |1, 1, 0〉 ICO+CUB
(9/2)V � μ � 6V 42V − 24μ |1, 0, 1〉 ICO+CCO
μ � 6V 90V − 32μ |1, 1, 1〉 full
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In the above list of phases, “ICO” is the phase where
all the icosahedral nodes are occupied (N = 12 particles in
total); “ICO+CUB” is the phase where A and B are filled
(N = 20); “ICO+CCO” is the phase where A and C are
filled (N = 24); finally, “full” is the phase where there is one
particle at each node (N = 32). Notice that a hypothetical
ICO+TET phase (� = 12V − 16μ) would only be stable at

the single point μ = 3V and here degenerate with ICO and
ICO+CUB. Should we have opted for a notion of nearness
based on spatial proximity, we would have obtained a stable
DOD phase (i.e., one with all the dodecahedral nodes occu-
pied) for 0 � μ � (15/2)V , in addition to empty (μ � 0) and
full [μ � (15/2)V ].

For t > 0 the minimum eigenvalue of (3.44) is

λmin = E0 + 30V ρA + 24V ρB + 36V ρC − 16μ − 6
√

(2V ρB + 3V ρC − μ)2 + 4t2|2φB + 3φC|2
−4
√

(3V ρA + 3V ρC − μ)2 + 36t2|φA + φC|2 − 6
√

(3V ρA + 2V ρB + V ρC − μ)2 + 4t2|3φA + 2φB + φC|2.
(3.46)

Arguing similarly as done for the TH model, we are allowed
to take φA, φB, and φC as real and positive. By making λmin

stationary, we eventually obtain six coupled equations for the
six unknown parameters:

2ρB + 3ρC = 5

2
− 3V ρA + 3V ρC − μ√©B

− 3

2

3V ρA + 2V ρB + V ρC − μ√©C ,

ρA + ρC = 1 − 2V ρB + 3V ρC − μ

2
√©A

− 3V ρA + 2V ρB + V ρC − μ

2
√©C ,

ρA + ρB = 1 − 2V ρB + 3V ρC − μ

2
√©A

− 3V ρA + 3V ρC − μ

2
√©B ,

2φB + 3φC = 6t (φA + φC)√©B + 3t (3φA + 2φB + φC)√©C ,

φA + φC = t (2φB + 3φC)√©A + t (3φA + 2φB + φC)√©C ,

φA + φB = t (2φB + 3φC)√©A + 3t (φA + φC)√©B , (3.47)

with

©A = (2V ρB + 3V ρC − μ)2 + 4t2(2φB + 3φC)2,

©B = (3V ρA + 3V ρC − μ)2 + 36t2(φA + φC)2,

©C = (3V ρA + 2V ρB +V ρC − μ)2 + 4t2(3φA + 2φB + φC)2.

(3.48)

The resulting phase diagram at T = 0 is represented in
Fig. 8. We count as many as six distinct phases (seven, if
we include the superfluid line μ = 0). Notice, in particular,
how wide is the supersolid region, while the superfluid is
confined to just a line. The insulating phases in Fig. 8 are the
same as found for t = 0, and the ICO+CUB and ICO+CCO
lobes are specular to each other with respect to μ = (9/2)V .
At variance with the TH model, where A+B and A+C

phases are indistinguishable (i.e., degenerate), ICO+CUB and
ICO+CCO are distinct phases, each with its own lobe in
the phase diagram. The continuous-transition lines are three:
those separating empty and full from the supersolid region,
and the descending part of the line between ICO and the
supersolid. In the latter phase, the order parameters are sym-
metric between B and C, as implied by the data reported in
Fig. 9. Moreover, we see that ρA > ρB = ρC for μ > 0 and
ρA � ρB = ρC for μ < 0.

Using B-C symmetry, we may simplify Eqs. (3.47)
and (3.48) and determine the equations of the continuous-
transition loci by following the same procedure used for the
TH model. We find

μ = −3 + √
69

2
t (empty-supersolid boundary),

μ = 11V + 3t + √
V 2 + 6V t + 69t2

2
(full-supersolid boundary),

μ
/V

t/V

-3

 0

 3

 6

 9

 0  0.1  0.2  0.3  0.4

empty

full

ICO+CCO

ICO+CUB

ICO

supersolid

superfluid

FIG. 8. MF phase diagram of the extended BH model with U =
+∞ on a PD graph, using V as the unit of energy. The blue dots mark
transition points. The long-dashed μ = 0 line is where the system
is superfluid. The dashed red curves are the continuous-transition
loci derived in the text [cf. Eqs. (3.49)]. The remaining black lines
represent first-order transitions.
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FIG. 9. Extended BH model on the PD graph. Order parameters plotted as a function of μ for fixed t (from top left to bottom right,
t/V = 0.1, 0.2, 0.25, 0.3).

μ = 3V − 3t + √
9V 2 − 18V t − 51t2

2
(ICO-supersolid top boundary). (3.49)

In particular, upon requiring in the latter expression that
9V 2 − 18V t − 51t2 � 0, the coordinates of the tricritical
point are tc = (2

√
15 − 3)V/17 = 0.2791 . . .V and μc =

(3V − 3tc)/2 = 1.0812 . . .V .

IV. CONCLUSIONS

The extended BH model is arguably the simplest model
of a quantum many-body system where one can accurately
study, already in the mean-field approximation, the onset of
crystalline order and its interplay with superfluid order. Es-
pecially, this model provides a theoretical framework where
supersolid phases, combining crystalline order with broken
U (1) symmetry, appear quite naturally and can thus be thor-
oughly examined.

In this paper the focus is on crystallinelike arrangements of
spinless bosons placed on the nodes of a semiregular spherical
mesh. We have considered two cases: the graph of a tetrakis
hexahedron, where we find a ground state with octahedral
symmetry; and the graph of a pentakis dodecahedron, where
we find a ground state with icosahedral symmetry. Needless to
say, ground states with polyhedral symmetry can only be sta-
ble for values of the hopping parameter t that are small relative
to the repulsion strength V . For larger t values, the wander-
ing of particles throughout the nodes is no longer forbidden
and the condensed fraction becomes nonzero. At variance
with the extended BH model on a lattice, the presence in
semiregular graphs of subsets of inequivalent nodes is at the
origin of the destabilization of superfluidity towards superso-
lidity, which thus occurs in a wide region of thermodynamic
parameters.

Clearly, no true phases or phase transitions can exist in
a finite system, but only approximate orders with smooth
crossovers between them. This weakness of our theory turns
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into an opportunity when we realize that mean-field theory can
be checked against exact diagonalization. We have made this
comparison for the smaller of our graphs (i.e., the skeleton of
a tetrakis hexahedron), highlighting the many similarities and
a few differences. Arrays of traps centered at the vertices of
a polyhedron can now be realized and loaded with Rydberg
atoms through moving optical tweezers [29,30], thus making
it possible to check our predictions in systems of bosonic
atoms.
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APPENDIX A: PARTITION FUNCTION AND THERMAL
AVERAGES FOR A LOCAL HAMILTONIAN

In this Appendix we recall a few properties of a lattice
boson Hamiltonian H in which sites—not particles—are fully
decoupled,

H =
M∑

i=1

hi, (A1)

where M is the number of lattice sites and, e.g., h1 (a function
of a†

1 and a1) operates in the subspace F1 generated by |〉 ≡
|0, 0, . . .〉, |1, 0, . . .〉, |2, 0, . . .〉, and so on. For such an H , the
eigenfunctions take the form of Gutzwiller [47,48],

|ψ〉 =
(∏

i

Gi

)
|〉 with Gi ≡

∞∑
n=0

cn(i)
(a†

i )n

√
n!

, (A2)

provided that Gi|〉 is an eigenfunction of hi:

hiGi|〉 = εiGi|〉. (A3)

Indeed, since operators at different sites commute, for i = 1,

h1|ψ〉 = h1G1G2 · · · GM |〉 = G2 · · · GMh1G1|〉
= ε1G2 · · · GMG1|〉 = ε1|ψ〉, (A4)

and similarly for the other sites, implying

H |ψ〉 =
∑

i

εi|ψ〉. (A5)

The Fock states |n1, n2, . . .〉 are Gutzwiller states where only
one coefficient cn(i) is nonzero for each i, but they are usu-
ally not energy eigenstates. In the following, we assume∑

n |cn(i)|2 = 1 for i = 1, . . . , M, in such a way that 〈ψ |ψ〉 =
1. In terms of Fock states, the eigenfunction (A2) is written as

|ψ〉 =
∑

n1,...,nM

cn1 (1) · · · cnM (M )|n1, . . . , nM〉. (A6)

It is worth emphasizing the factorized structure exhibited by
the Fourier coefficients, which is an effect of the strictly local
nature of the Hamiltonian (A1).

Applying the basic rules of creation and annihilation
operators, it follows for every i and |ψ〉 of type (A6)

that

〈ψ |aiψ〉 = 〈a†
i ψ |ψ〉

=
∞∑

n=0

√
n + 1 c∗

n (i)cn+1(i) ≡ ψ (i) and

〈ψ |a†
i aiψ〉 =

∞∑
n=1

n|cn(i)|2. (A7)

Moreover, the average of a†
i a j for i �= j is factorized,

〈ψ |a†
i a jψ〉 = ψ∗(i)ψ ( j) = 〈ψ |a†

i ψ〉〈ψ |a jψ〉, (A8)

which holds in particular for |ψ〉 being the ground state
of H .

To calculate the thermal average of, say, a†
1a2 we need

a complete set of energy eigenfunctions. To this aim, we
first diagonalize each hi in its domain Fi (in practice, some
cutoff nmax is put on n to account for the fact that large
n values are energetically suppressed). We denote {|ψ (α)〉 =
G(α1 )

1 · · · G(αM )
M |〉, αi = 1, 2, . . . , nmax} a complete set of or-

thonormal eigenfunctions of H (observe that the total number
of eigenfunctions is nM

max, the same as the number of Fock
states |n1, . . . , nM〉). Then, the partition function reads

Z = Tr(e−βH ) =
∑

α1,...,αM

〈ψ (α)|e−βHψ (α)〉

=
∑

α1,...,αM

e−β(ε (α1 )
1 +···+ε

(αM )
M )

=
∑
α1

e−βε
(α1 )
1 · · ·

∑
αM

e−βε
(αM )
M . (A9)

Since each eigenfunction can be expanded on the Fock basis
as in Eq. (A6), we have

〈ψ (α)|a†
1a2ψ

(α)〉 = ψ∗(1, α1)ψ (2, α2), (A10)

where, for example, ψ (1, α1) =∑∞
n=0

√
n + 1 c∗

n (1, α1)cn+1(1, α1). In the end, we find

〈a†
1a2〉 = 1

Z
Tr(e−βH a†

1a2)

= 1

Z

∑
α1

e−βε
(α1 )
1 ψ∗(1, α1)

∑
α2

e−βε
(α2 )
2 ψ (2, α2)

×
∑
α3

e−βε
(α3 )
3 · · ·

=
∑

α1
e−βε

(α1 )
1 ψ∗(1, α1)∑

α1
e−βε

(α1 )
1

∑
α2

e−βε
(α2 )
2 ψ (2, α2)∑

α2
e−βε

(α2 )
2

= 〈a†
1〉〈a2〉, (A11)

meaning that a†
i and a j are uncorrelated not only at T = 0 but

for all temperatures. One may similarly show that 〈nin j〉 =
〈ni〉〈n j〉 for i �= j.

If no external field is present, then the system is homo-
geneous and it is sufficient to diagonalize h at one site only.
In particular, the ground-state energy per site is simply the
minimum eigenvalue of a (nmax + 1) × (nmax + 1) Hermitian
matrix. However, if the lattice is bipartite (i.e., it consists of

033313-12



BOSE-HUBBARD MODEL ON POLYHEDRAL GRAPHS PHYSICAL REVIEW A 103, 033313 (2021)

two disjoint sublattices, A and B, such that nearest-neighbor
sites belong to different sublattices), then, depending on the
Hamiltonian and on the control parameters, the ground state
may also reflect the same checkerboard structure—as occurs,
for instance, in an extended BH model with nearest-neighbor
repulsion, where the minimum-energy state may be a density
wave or a supersolid state. In this case, the minimum energy is
MAεA,min + MBεB,min, with sublattice energies obtained from
the diagonalization of two distinct (nmax + 1) × (nmax + 1)
matrices. Alternatively, we may view the system as a two-site
BH model and represent the Hamiltonian on a basis of pair
states, {|nA, nB〉}, as done in Refs. [31,42].

APPENDIX B: VARIATIONAL FOUNDATION OF THE DA

We show hereafter that the DA treatment of the extended
BH model may be justified as an application of the variational
method based on the Gibbs-Bogoliubov (GB) inequality, also
valid for a quantum system [49]. Hence, the self-consistent
DA parameters are also those parameters that ensure min-
imization of a variational grand potential, as is usual in
classical and quantum phase-diagram reconstruction (see ex-
amples in Refs. [50–54]).

Let the extended BH Hamiltonian be written as

H = −t
∑

i j

zi ja
†
i a j + V

2

∑
i j

zi jnin j +
∑

i

f (ni ), (B1)

where zi j = 1 if i and j are NN sites and zero otherwise (zi j

and its inverse are symmetric matrices). All local terms in the
BH Hamiltonian, including the chemical-potential term, have
been absorbed in f (ni ). With the aim to estimate the grand
potential � of (B1), we introduce a fully local Hamiltonian

H0 = −t
∑

i

(Fia
†
i + F ∗

i ai ) + V
∑

i

Rini +
∑

i

f (ni ), (B2)

where Fi ∈ C and Ri ∈ R are parameters to be optimized.
According to the GB inequality,

� � �0 + 〈H − H0〉0 ≡ �GB, (B3)

where 〈· · · 〉0 is a thermal average over the Boltzmann distri-
bution pertaining to H0 and

�0 = − 1

β
ln Tr eβt

∑
i (Fia

†
i +F ∗

i ai )−βV
∑

i Rini−β
∑

i f (ni ) (B4)

is the grand potential of the trial Hamiltonian. Using equalities
such as (A11), we obtain

〈H − H0〉0 = −t
∑

i j

zi j〈ai〉∗0〈a j〉0 + t
∑

i

(Fi〈ai〉∗0 + F ∗
i 〈ai〉0)

+V

2

∑
i j

zi j〈ni〉0〈n j〉0 − V
∑

i

Ri〈ni〉0. (B5)

The best parameters are those providing the absolute mini-
mum of �BG. As long as this minimum falls in the interior of
parameter space, a necessary condition for it is the vanishing
of first-order derivatives,

∂�BG

∂F ∗
k

=
(

∂�BG

∂Fk

)∗
= 0 and

∂�BG

∂Rk
= 0. (B6)

The former derivative is a conjugate cogradient, or Wirtinger
derivative, and is to be interpreted as a partial derivative with
respect to F ∗

k , while keeping Fk constant.
Before proceeding to the solution of Eqs. (B6) we need

another piece of information, since F ∗
i and Ri enter in an

intricate manner inside �0 [see Eq. (B4)]. Consider a Hamil-
tonian ξA + B where ξ is a real or complex parameter and
A and B are quantum observables independent of ξ . For
such a Hamiltonian, the normalized eigenstates |s〉, such that
(ξA + B)|s〉 = Es|s〉, form a complete set. Then, the partition
function reads

Z (ξ ) = Tr e−β(ξA+B) =
∑

s

〈s|e−β(ξA+B)s〉 =
∑

s

e−βEs .

(B7)
By noting that (the components of) |s〉 and Es are both depen-
dent on ξ , we obtain

∂ ln Z

∂ξ
= −β

Z

∑
s

∂Es

∂ξ
e−βEs , (B8)

with
∂Es

∂ξ
= 〈∂ξ s|(ξA + B)s〉 + 〈s|As〉 + 〈s|(ξA + B)∂ξ s〉

= Es[〈∂ξ s|s〉 + 〈∂ξ s|s〉∗] + 〈s|As〉
= Es∂ξ 〈s|s〉 + 〈s|As〉 = 〈s|As〉, (B9)

in such a way that

∂ ln Z

∂ξ
= −β

Z

∑
s

〈s|As〉e−βEs

= −β

Z
Tr(Ae−β(ξA+B) ) = −β〈A〉. (B10)

With the above result established, by simple algebra we
obtain

∂�BG

∂F ∗
k

= −t
∑

i

[(
Fi −

∑
j

zi j〈a j〉0

)
∂〈ai〉∗0
∂F ∗

k

+
(

F ∗
i −

∑
j

zi j〈a j〉∗0
)

∂〈ai〉0

∂F ∗
k

]
− V

∑
i

(
Ri −

∑
j

zi j〈n j〉0

)
∂〈ni〉0

∂F ∗
k

(B11)

and

∂�BG

∂Rk
= −t

∑
i

[(
Fi −

∑
j

zi j〈a j〉0

)
∂〈ai〉∗0
∂Rk

+
(

F ∗
i −

∑
j

zi j〈a j〉∗0
)

∂〈ai〉0

∂Rk

]
− V

∑
i

(
Ri −

∑
j

zi j〈n j〉0

)
∂〈ni〉0

∂Rk
. (B12)
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In order that (B11) and (B12) be zero, it is sufficient (and
seemingly also necessary) that

Fi =
∑

j

zi j〈a j〉0 and Ri =
∑

j

zi j〈n j〉0. (B13)

Observe that the above equations define Fi and Ri only implic-
itly, since 〈a j〉0 and 〈n j〉0 are themselves dependent on these
parameters. Upon formally inverting Eqs. (B13) we find the
equivalent relations

〈ai〉0 =
∑

j

(z−1)i jFj and 〈ni〉0 =
∑

j

(z−1)i jR j . (B14)

The point of absolute minimum for �BG is among the solu-
tions to Eqs. (B14).

We now introduce another functional, �̃BG = �0 +
˜〈H − H0〉0, which is obtained from �BG by substituting the

averages (B14) into (B5):

˜〈H − H0〉0 = t
∑

ik

(z−1)ikFiF
∗

k − V

2

∑
ik

(z−1)ikRiRk . (B15)

The new functional �̃BG is different from �BG, but they share
the same stationary points and stationary values: Indeed, it is
easy to see that Eqs. (B14) are still necessary and sufficient
conditions for

∂�̃BG

∂F ∗
k

= 0 and
∂�̃BG

∂Rk
= 0. (B16)

We stress, however, that the nature of extremal points may not
be preserved in the transition from �BG to �̃BG, as second-
order derivatives in these points are generally different for the
two functionals. Using the shorthand

φi =
∑

j

(z−1)i jFj and ρi =
∑

j

(z−1)i jR j, (B17)

we may also write

�̃BG = − 1

β

× ln Treβt
∑

i (Fia
†
i +F ∗

i ai−Fiφ
∗
i )−β V

2

∑
i (2Rini−Riρi )−β

∑
i f (ni ),

(B18)

showing that �̃BG is the grand potential of the DA Hamil-
tonian (2.3). The values of Fi and Ri must then be selected
imposing (B16) or, equivalently, (B14). If more solutions are
found, we must choose the one that provides the minimum
�̃BG for the given t, μ, and T .

APPENDIX C: DERIVATION OF THE DA FROM THE
HUBBARD-STRATONOVICH FORMULA

The DA may also be justified using the language of func-
tional integrals, as shown in Refs. [8,32,43] for the original
BH model. We hereafter retrace the steps of this derivation,
now making reference to the extended BH model.

In the coherent-state representation, the partition function
of a bosonic lattice Hamiltonian in normal-ordered form can
be written as an integral over M (i.e., as many as are the
lattice sites) closed paths. For the extended BH model, in the

continuum limit, one finds

� =
∮ ∏

k

DφkDφ∗
k e−h̄−1S[φ,φ∗],

with

S[φ, φ∗] =
∫ β h̄

0
dτ

[∑
i

φ∗
i (h̄∂τ − μ)φi + U

2

∑
i

|φi|4︸ ︷︷ ︸
H (1) (φ∗,φ)

−t
∑

i j

zi jφ
∗
i φ j + V

2

∑
i j

zi j |φi|2|φ j |2
]
. (C1)

In the above formula, τ is the imaginary time and S is the
Euclidean action—a functional of M complex fields φi(τ ) and
their conjugate fields φ∗

i (τ ), only subject to φi(0) = φi(β h̄).
Furthermore, H (1)(φ∗, φ) is the symbol of the on-site terms
in the Hamiltonian. Compared to the operator formalism,
the coherent-state path integral offers the distinct advantage
that any complications due to noncommuting observables are
swept away [φi(τ ) is an ordinary, albeit complex, function of
a real variable]. The price to pay is the introduction of an extra
time variable and of the ubiquitous φ∗∂τφ term in the action.

The idea behind the application of the Hubbard-
Stratonovich (HS) formula is to decouple the interaction terms
in (C1) by employing a suitable integral identity, even though
at the price of introducing more fields. In particular, we will
need a (dimensionless) complex field Mi for the hopping term
and a (dimensionless) real field Ni for the term proportional
to V , for each i. The HS formula is just another name for
the Gaussian integral; for a complex matrix A with a positive-
definite Hermitian part, it reads

N
∫ M∏

k=1

d Re zkd Im zk e−∑i j z∗
i Ai j z j = 1 with N = det A

πM
.

(C2)
By resorting to the identities

−
∑

i j

(
M∗

i −
∑

m

zimφ∗
m

)
(z−1)i j

(
Mj −

∑
n

z jnφn

)

= −
∑

i j

(z−1)i jM
∗
i Mj +

∑
i

(M∗
i φi + Miφ

∗
i ) −

∑
i j

zi jφ
∗
i φ j

(C3)

and

−1

2

∑
i j

zi j |φi|2|φ j |2 = 1

2

∑
i j

(z−1)i jNiNj −
∑

i

Ni|φi|2

−1

2

∑
i j

(
Ni −

∑
m

zim|φm|2
)

(z−1)i j

×
(

Nj −
∑

n

z jn|φn|2
)

, (C4)

the partition function (C1) can be rewritten as

� =
∫ ∏

k

DMkDM∗
k DNk e−h̄−1Seff [M,M∗,N], (C5)
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with

Seff =
∫ β h̄

0
dτ t

∑
i j

(z−1)i jM
∗
i (τ )Mj (τ ) −

∫ β h̄

0
dτ

V

2

∑
i j

(z−1)i jNi(τ )Nj (τ )

− h̄ ln
∮ ∏

k

DφkDφ∗
k exp

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩−h̄−1
∫ β h̄

0
dτ

[
H (1)(φ∗, φ) − t

∑
i

(M∗
i φi + Miφ

∗
i ) + V

∑
i

Ni|φi|2
]

︸ ︷︷ ︸
SDA

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭. (C6)

The normalization factors arising from the Gaussian integrals have been absorbed in the integration measure. We note the formal
similarity between the effective action (C6) and the functional �̃BG in Eq. (B18).

As for the partition function (C5), a natural MF estimate is obtained by approximating it with the integrand evaluated at the
saddle point. The “coordinates” of the saddle point are determined through the equations

0 = δSeff

δM∗
i (τ1)

= t
∑

j

(z−1)i jMj (τ1) − t

∫ ∏
k DφkDφ∗

k φi(τ1)e−h̄−1SDA∫ ∏
k DφkDφ∗

k e−h̄−1SDA
�⇒ Mi =

∑
j

zi j〈φ j (τ1)〉DA (C7)

and

0 = δSeff

δNi(τ1)
= −V

∑
j

(z−1)i jNj (τ1) + V

∫ ∏
k DφkDφ∗

k |φi(τ1)|2e−h̄−1SDA∫ ∏
k DφkDφ∗

k e−h̄−1SDA
�⇒ Ni =

∑
j

zi j〈|φ j (τ1)|2〉DA. (C8)

Clearly, Eqs. (C7) and (C8) are analogous to Eqs. (B13)
above.

APPENDIX D: MEAN-FIELD TREATMENT OF
HARD-CORE BOSONS IN SPIN LANGUAGE

We originally owe to Matsubara and Matsuda [45] the ob-
servation that a second-quantized Hamiltonian for hard-core
bosons can be rephrased in terms of half-unit spins:

a†
i = S+

i ≡ Sx
i + iSy

i

(hence ai = S−
i ≡ Sx

i − iSy
i and ni = Sz

i + 1/2). (D1)

Thus, an occupied site is represented by an up spin, while
an empty site is represented by a down spin. This mapping
has been exploited in many studies of the BH model (see,
e.g., Refs. [55–57]). For hard-core bosons, creation and an-
nihilation operators at different sites commute, while ai and
a†

i are anticommuting operators as a result of the dynamical
suppression of Fock states with two or more particles per site
(see, e.g., Ref. [58]).

For the extended BH model with infinite U the equivalent
spin Hamiltonian is readily found to be

HS = −J⊥
∑
〈i, j〉

(
Sx

i Sx
j + Sy

i Sy
j

)+ J‖
∑
〈i, j〉

Sz
i Sz

j − Hz

∑
i

Sz
i + C,

(D2)
where J⊥ = 2t is a ferromagnetic transverse exchange, J‖ =
V is an antiferromagnetic longitudinal exchange, Hz = μ −
zV/2 (z being the lattice coordination number) is an external
magnetic field, and C = MzV/8 − Mμ/2 is an offset. The
Hamiltonian (D2) is a spin-1/2 XXZ Heisenberg model. Had
we adopted the different convention of Matsuda and Tsuneto
[59], that is, a†

i = S−
i , we would have gotten the same Hamil-

tonian as in (D2) but for the sign in front of the magnetization
term. A modulated density of the original BH system cor-
responds to finite wave-vector Ising-type order of the spins.

Similarly, superfluidity maps to ferromagnetic spin ordering
in the x-y plane. In units of J‖ = V , the spin Hamiltonian reads

HS =
∑
〈i, j〉

[
Sz

i Sz
j − �

(
Sx

i Sx
j + Sy

i Sy
j

)]− h
∑

i

Sz
i + C/V,

(D3)
with � = 2t/V and h = μ/V − z/2. Spin systems such as the
one described by HS can actually be studied with ultracold
Rydberg atoms [30,46], which would allow one to observe the
ground states of our hard-core boson model in a real system.

In MF theory, the spins are treated as they were classical:
Si = (Sx

i , Sy
i , Sz

i ) is an ordinary vector of magnitude S = 1/2
for every i. For T = 0, the problem is then reduced to map-
ping the spin configuration of minimum energy as a function
of t and μ. For the Hamiltonian (D3), which is rotationally
symmetric in the x-y plane, we may assume that all spins lie
in the x-z plane. Putting Si = (1/2)�i, the MF Hamiltonian
reads (neglecting the unnecessary C/V constant)

HMF = 1

4

∑
〈i, j〉

(
�z

i �
z
j − ��x

i �
x
j

)− h

2

∑
i

�z
i . (D4)

As a matter of example, let us reconsider the model of
hard-core bosons on the vertices of a cube (M = 8, z = 3)
[31]. Due to the bipartite structure of the lattice, the MF
energy ES can be parametrized in terms of the orientation of
two unit vectors only, �A and �B, in the assumption that spins
are identical on the sites of the same sublattice,

ES = 3(cos θA cos θB − � sin θA sin θB)−2h(cos θA + cos θB),

(D5)

where θA (θB) is the angle made by �A (�B) with the positive z
axis. For h = 0, which is tantamount to μ = (3/2)V , the task
of minimizing ES is easily accomplished:

If � > 1, then θA = θB = π

2
−→ superfluid (⇒,⇔);
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if � < 1, then θA = 0, π or θB = π, 0 −→ Néel order

(↑↓,↓↑). (D6)

Moreover, it is clear that for h � 0 the minimum of ES is
attained for θA = θB = 0 (↑↑), while for h � 0 the minimum
falls at θA = θB = π (↓↓). The analysis is simple also for
� = 0 (t = 0):

If h < − 3
2 , then θA = θB = π and ES = 3 + 4h (↓↓);

if − 3
2 < h < 3

2 , then θA = 0, π or θB = π, 0 and

ES = −3 (↑↓,↓↑);

if h > 3
2 , then θA = θB = 0 and ES = 3 − 4h (↑↑).

(D7)

In the general case (D5) the minimization procedure can be
simplified by making the change of variables

θA = θ + θ ′ and θB = θ − θ ′, (D8)

leading eventually to

ES = 3[(1 + �)x2 + (1 − �)y2 − 1] − 4hxy ≡ f (x, y),
(D9)

with x = cos θ and y = cos θ ′ [notice the inversion symme-
try (x, y) → (−x,−y) of (D9)]. If the Hessian H = 36(1 −
�2) − 16h2 is nonzero, then the only stationary point of f
is x = y = 0 (meaning θA = 0, π and θB = π, 0). For H > 0
this is a minimum point (since fxx > 0) and we have a Néel
solid. In this case h2 < (9/4)(1 − �2), which in terms of t
and μ means

3
2V − 3

2

√
V 2 − 4t2 < μ < 3

2V + 3
2

√
V 2 − 4t2. (D10)

For H < 0, x = y = 0 is an inflection point and the absolute
minimum of f then falls on the boundary of the domain,
[−1, 1]2, precisely on y = ±1 [since in (D9) y2 has a smaller
coefficient than x2]. The minimum coordinates are simply
calculated for y = 1, or θA = θB (a ground-state configuration
that we can represent as ↗↗ or ↘↘). In this case ES = 3(1 +
�) cos2 θ − 4h cos θ − 3� and, provided that | 2h

3(1+�) | < 1, a

minimum occurs for θ = θm = arccos 2h
3(1+�) . This is also an

absolute minimum and (since the spin component in the x
direction is nonzero) the system is superfluid. However, as
|h| increases for fixed t , cos θm eventually becomes ±1; in
terms of the original variables, this first happens at the lines
μ = 3V + 3t and μ = −3t . Beyond these lines, the system
ceases to be superfluid and becomes insulating (θA = θB = 0
or θA = θB = π ).

In the superfluid phase, the grand potential (including the
constant factor C/V previously ignored) is

ES = V [3(1 + �) cos2 θm − 4h cos θm − 3�] + 3V − 4μ

= −4(μ + 3t )2

3V + 6t
, (D11)

the average occupancy is

ρA = 1

2
+ Sz

A = 1

2
(1 + cos θm) = μ + 3t

3V + 6t
, (D12)

and the superfluid order parameter is

φA = Sx
A = 1

2
sin θm =

√
(μ + 3t )(3V + 3t − μ)

3V + 6t
. (D13)

In conclusion, all MF boundaries and characteristics of the
model perfectly match with those calculated in Ref. [31] using
the language of second-quantized operators.
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