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Time- and frequency-domain two-particle correlations of a driven dissipative Bose-Hubbard model
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We investigate theoretically the time- and frequency-domain two-particle correlations of a driven-dissipative
Bose-Hubbard model at and near a dissipative phase transition (DPT). We compute the Hanbury Brown–Twiss
(HBT)-type two-particle temporal correlation function g2(τ ) which, as a function of time delay τ , exhibits
oscillations with frequencies determined by the imaginary part of the Liouvillian gap. As the gap closes near
a transition point, the oscillations at that point die down. For parameters slightly away from the transition
point, the HBT correlations show oscillations from superbunching to antibunching regimes. We show that the
Fourier transform of HBT correlations into the frequency domain provide information about DPT and Liouvillian
dynamics. We numerically solve the many-body Lindblad master equation and calculate the Wigner distribution
of the system in the steady state to ascertain the DPT. Below a certain drive strength, the Fourier transform
shows a two-peak structure, while above that strength it exhibits either a Lorentzian-like single-peak structure
or a structure with two dips. The width of the single-peak structure is minimal at the phase-transition point
and the peak of this structure always lies at zero frequency. The positions of the two symmetrical peaks in
case of a two-peak structure are given by the imaginary parts of the Liouvillian gap while their half width at
half maximum is given by the real part of the gap. The positions and widths of the two dips are also related
to low-lying eigenvalues of the Liouvillian operator. We discuss quantum statistical properties of the model in
terms of the HBT correlation function and its Fourier transform.
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I. INTRODUCTION

In quantum mechanics, dissipation of a system is usu-
ally treated by system-bath Liouvillian dynamics, capturing
an interplay between unitary evolution and decay processes
that result from a coupling between the system and its en-
vironment, which is known as a bath or reservoir. For such
system-reservoir-interacting cases, dissipation is to be con-
sidered as a boundary for coherent dynamics, leading to
a doorway for open quantum systems. An open quantum
many-body system may be viewed as an out-of-equilibrium
counterpart of an equilibrium system. The methods of theo-
retical exploration of open quantum systems are not as well
established as those of idealized closed quantum systems.
Nevertheless, research into dissipative or open quantum sys-
tems over the years has led to the development of several
theoretical formalisms such as Gutzwiller [1] and cluster
mean-field [2–4], corner-space renormalization [5,6], full
configuration-interaction Monte Carlo [7,8], Keldysh formal-
ism [9–11], the matrix product operator and tensor-network
techniques [12–15], etc.

In recent times, a number of theoretical studies on quantum
phase transitions (QPTs) in a variety of physical platforms
[16–22] under nonequilibrium situations have been carried
out. More specifically, dissipative many-body quantum phe-
nomena [16,17] have been studied using cold atoms [23–26],
spin ensembles [6,11,27], Josephson junctions [28,29], su-
perconducting circuits [30–32], semiconductors [33–35], and

interacting polaritons in a Kerr nonlinear cavity [36]. Three
decades ago, pioneering theoretical work on QPT between
superfluid (SF) and Mott-insulator (MI) was carried out by
Fisher’s group [37]. Subsequently, experimental demonstra-
tion of QPTs has been reported [23,38,39] in an optical lattice
loaded with an atomic Bose-Einstein condensate. For ultra-
cold atoms in traps or optical lattices, various kinds of losses
can be controllably generated with external fields or parti-
cles, leading to dissipative engineering of driven many-body
quantum systems [40]. One-body particle loss [29] is imple-
mented by applying electron beams in a controlled manner.
Two-body loss [39,41–43] is a fundamental property of a
many-body system and is related to inelastic collisions. In
ultracold atom optical lattices, two-body loss has been en-
gineered by controlled photoassociation [39,41]. Three-body
dissipation [44–46] has been realized by Feshbach resonance
with controllable strength of three-body recombination.

To obtain a dynamical or nonequilibrium phase of a dis-
sipative many-body system, an external field is required as
a drive. In quantum optics, a coherent drive has enormous
utility as a one or two-photon pump [28,47], opening up new
vistas in light-matter interactions. A nonequilibrium system
exhibits a dissipative phase transition (DPT) [48–50] when
the Liouvillian spectral gap closes in some well-defined limit
analogous to the thermodynamic limit. Recent experimental
observation of nonequilibrium phase transition or DPT [35]
in a driven system has given a tremendous impetus to the
field.
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One of the key issues in the context of DPT in a driven
open quantum systems is the role of higher-order quantum
fluctuations as the system is driven towards the transition
point. In particular, the study of two-particle correlations is
important as they carry crucial information about the quantum
statistical properties of the system. In a remarkable recent
experiment, Fink et al. [35] have explored the decay dynamics
of the Hanbury Brown–Twiss (HBT) -type two-particle cor-
relation function g(2)(τ ) as a possible signature of a DPT in
a driven nonlinear optical system of cavity polaritons. They
have observed critical slowing of the decay of g(2)(τ ) as the
system is driven towards the phase-transition point. Sciolla
et al. [51] have shown that the two-time two-particle cor-
relations can be used as a probe for complex nonstationary
dynamics of dissipative many-body systems. The bunching
of continuously pumped photon Bose-Einstein condensate in
terms of HBT correlations has been experimentally demon-
strated by Schmitt et al. [52]. Casteels, Fazio, and Ciuti [49]
have theoretically examined the behavior g(2)(0) as a function
of drive strength when a nonlinear photon mode is driven
towards a DPT. g(2)(τ ) has also been studied theoretically for a
strongly pumped dissipative Bose-Hubbard model (BHM) of
a coupled array of nonlinear cavities [21]. Syassen et al. [42]
have experimentally demonstrated that strong dissipation can
inhibit loss and drive a cold molecular gas on an optical lat-
tice into a strongly correlated system characterized by g(2)(0)
which is much less than unity.

Here we carry out a detailed theoretical study on the HBT
correlations of a driven dissipative BHM. Depending on the
system parameters, the correlations show oscillatory decay.
We characterize the frequency of the oscillations by analyzing
the Fourier transform of the temporal correlations into the
frequency domain in terms of the Liouvillian spectral decom-
position. To the best of our knowledge, the oscillations in the
decay of HBT correlations and their frequency characteriza-
tion in terms of the system parameters of a driven-dissipative
BHM have not been studied so far. It is important to gain
further insight into the role of two-particle correlations in DPT
of the model.

To ascertain the occurrence of DPT in our model, we calcu-
late the Wigner distribution [53] of the system and examine its
features reflecting the steady-state quantum states. Our results
show that, for the parameters at which the system exhibits
DPT, the oscillations in HBT correlations die down and the
decay shows critical slowing, consistent with earlier results
[35]. The Fourier transform shows a single-peak spectral
structure with the peak lying at zero frequency. Slightly away
from the phase-transition point, the oscillations revive and the
spectral structure shows multiple peaks or dips depending on
the system parameters. Our results show that, below certain
drive strength, the Fourier transform shows a prominent two-
peak structure. As the drive strength exceeds that strength, the
Fourier spectrum exhibits either a Lorentzian-like single-peak
structure or a structure with two dips. We show that the width
of the single-peak structure is minimal at the phase-transition
point. The positions of the two symmetrical peaks are found
to be equal to the imaginary parts of the Liouvillian gap while
their half width at half maximum (HWHM) is given by the
real part of the gap. We discuss in some detail the quan-
tum statistical properties of the model in terms of the HBT

correlation function and its Fourier transform and highlight
their characteristic features at or near the DPT.

This paper is organized as follows: We describe our the-
oretical methods for a generic driven-dissipative BHM in
Sec. II. The results and their interpretations are presented in
Sec. III. Finally, in Sec. IV, we draw conclusions and highlight
the future prospects of our study.

II. THEORETICAL METHODS

A. The model and its solution

The Hamiltonian of a driven Bose-Hubbard model (h̄ = 1)
is Ĥ = ĤBH + Ĥdrive where

ĤBH = −J

z

∑
j

(b̂†
j b̂ j+1 + H.c.) + U

2

∑
j

b̂†
j b̂†

j b̂jb̂j

+
∑

j

ε0b̂†
j b̂ j (1)

is the standard Bose-Hubbard part with b̂ j and b̂†
j representing

the bosonic annihilation and creation operators acting on the
jth site. Here J is the hopping coefficient between nearest-
neighbor sites, z is the coordination number, U is the on-site
interaction parameter. The last term on the right-hand side of
the above equation denotes the on-site term with ε0 being the
on-site single-particle energy which is assumed to be same for
all sites. For a system of coupled nonlinear cavities, ε0 = h̄ωc

where ωc is the cavity frequency. In the case of equilibrium
Bose-Hubbard physics of massive particles on a lattice, this
on-site term is usually absorbed into the chemical potential.
The driving part Ĥdrive is given by

Ĥdrive(t ) =
∑

j

(Fb̂†
je

−iωpt + F ∗b̂ je
iωpt ), (2)

where F is the one-boson driving amplitude and ωp is the
pump frequency. To eliminate the explicit time-dependency
of the Hamiltonian, we may write it in a reference frame
rotating at the pump frequency ωp, leading to the effective
Hamiltonian

Ĥeff = −J

z

∑
j

(b̂†
j b̂ j+1 + H.c.) + U

2

∑
j

b̂†
j b̂†

j b̂jb̂j

− h̄
∑

j

�ωb̂†
j b̂ j +

∑
j

(Fb̂†
j + F ∗b̂ j ), (3)

where �ω = ωp − ε0/h̄ is the detuning between the pump and
the system.

The dissipation is incorporated in the dynamics through the
Lindblad master equation

∂ρ̂

∂t
= −i[Ĥeff , ρ̂] + D[ρ̂] (4)

of the density matrix ρ̂. Here the dissipation of the system is
described by the standard superoperator term

D[ρ̂] = �

2

∑
j

[2Ô j ρ̂Ô†
j − {Ô†

j Ô j, ρ̂}], (5)

where � is the damping rate and Ô j is a quantum jump op-
erator constructed using the combination of system operators
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b̂ j and b̂†
j depending on the nature of the dissipation process.

Here {Â, B̂} denotes an anticommutator between the operators
Â and B̂.

To solve the Liouville equation we make an approximation
by decoupling [54–56] the hopping term

b̂†
j b̂ j+1 ≈ 〈b̂†

j〉b̂ j+1 + b̂†
j〈b̂ j+1〉 − 〈b̂†

j〉〈b̂ j+1〉
= (ψ∗b̂ j+1 + ψ b̂†

j ) − |ψ |2, (6)

where ψ = 〈b̂ j+1〉 is a bosonic coherence and site-
independent. Although this approximation is not fully reliable
in all physical situations as pointed out in Ref. [21], it enables
one to obtain good qualitative results for the phase diagram
in equilibrium BHM. In this homogeneous mean-field ap-
proximation, the hopping or tunneling term is approximated,
rendering the problem effectively to a single-site dynamics.
However, this approximation accounts for the on-site inter-
action term exactly. In the momentum space, this amounts
to retaining only the zero-momentum states and neglecting
all finite-momentum states. So, this is a good approxima-
tion to calculate the steady-state or dynamical properties or
fluctuations around steady-state at zero temperature or zero
momentum when the tunneling term is small. In the context
of our model, this approximation is expected to be reasonably
good as long as the tunneling matrix element J is not large
compared with the strength of the drive. This kind of decou-
pling approximation is previously used to study the dynamics
of a driven-dissipative photonic Bose-Hubbard model [20,30].
The Hamiltonian then takes the form Ĥeff = ∑

j Ĥ0( j), where

Ĥ0( j) = β∗b̂ j + βb̂†
j − �ωb̂†

j b̂ j + U

2
b̂†

j b̂
†
j b̂ j b̂ j + J

z
|ψ |2,

(7)

where β = F − ψJ/z represents modified drive of the system.
Under the decoupling approximation, the density matrix is
product separable over the site indices. So, the density matrix
for the jth site ρ( j) is the same for all sites and henceforth
for simplicity we omit the site index ( j) in all the operators.
Within the Born-Markov approximation we then obtain the
Lindblad master in the following form:

∂ρ̂

∂t
= −i[Ĥ0, ρ̂] + �

2
[2b̂ρ̂b̂† − {b̂†b̂, ρ̂}]. (8)

We numerically solve the master equation (8) in the steady
state (t → ∞) to obtain the steady state the density matrix
ρ̂ss. We use the Fock basis |n〉 and obtain a set of coupled
algebraic equations. Further details of our numerical method
of solution are given in Appendix A.

For small U , the observable quantities of our system are
found to converge when the basis set is relatively large. In
contrast, for a large value of U , convergence happens with a
small basis set. In our numerical calculations, we ensure the
independence of the size of Fock basis for all our results by
choosing a sufficiently large basis set.

Since our objective is to study second-order quantum cor-
relation and its spectral characteristics at and near a dynamical
or nonequilibrium phase transition, we first semiclassically
determine a transition point from a mono- to a bistable regime.
In the full quantum treatment, it is well known that there is no

bistable regime [20], but the signature of semiclassical phase
transition is manifested in the quantum treatment in a different
way. Towards this end, we calculate the time evolution of the
bosonic coherence ψ given by

∂

∂t
(ρ̂b̂) = −i[Ĥ0, ρ̂]b̂ + D[ρ̂]b̂,

taking trace on both sides, we get

∂ψ

∂t
= −i

[
F +

{
U |ψ |2 −

(
J

z
+ �ω + i

�

2

)}]
. (9)

This equation resembles to single-mode Gross–Pitaevskii
(GP) equation [57–59]. The GP equation for a dilute Bose sys-
tem of photons in a single-mode cavity has a similar structure.

At steady state, the value of ψ is given by solving the
equation

ψ = F
J
z + �ω − U |ψ |2 + i �

2

. (10)

Taking modulus on both sides, we obtain a third-order polyno-
mial equation of the mean-field mean number density nm f =
|ψ |2, which is

U 2n3
m f − 2U (J + �ω)n2

m f +
[

(J + �ω)2 + �2

4

]
nm f − F 2

= 0. (11)

B. Two-time Hanbury Brown–Twiss correlation function

To bring forth the connection between Liouvillian spectral
properties and two-particle correlations of a driven-dissipative
many-body system, we here briefly discuss the method of
calculating the HBT-type two-particle correlations of the sys-
tem. The evolution of the density matrix ρ̂ governed by the
Liouvillian (8) can be expressed as

d ρ̂

dt
= M̂ρ̂, (12)

where M̂ is the Liouvillian superoperator. In some suitable
basis, one can diagonalize M̂ as demonstrated by Briegel
and Englart [60] and also by Barnett and Stenholm [61]. As
M̂ is non-Hermitian, a dual conjugate M̌ can be constructed
such that Tr{OM̂ρ̂} = Tr{(M̌O)ρ̂} for an observable O. M̌
has the same eigenvalue as M̂. Let uμ (μ = 1, 2, . . . ) be an
eigenstate with eigenvalue λμ, satisfying the eigenvalue equa-
tion M̂uμ = λμuμ (alternatively M̌ vμ′ = λμ′vμ′

). A steady
state of the system corresponds to the eigenstate with zero
eigenvalue. Let us denote this eigenstate by uμ=0. So the
steady-state density matrix ρ̂ss = ρ̂(t → ∞) ≡ u0 is given by
M̂ρ̂ss = 0. The eigenvalues with nonzero real part appear in
complex-conjugate pairs. The real part of an eigenvalue is
nonpositive and the eigenvalue whose real part has the lowest
magnitude is called the Liouvillian gap.

The on-site HBT correlation function of a lattice is
defined by

g(2)(τ ) = 〈b̂†(t )b̂†(t + τ )b̂(t + τ )b̂(t )〉
〈b̂†(t )b̂(t )〉〈b̂†(t + τ )b̂(t + τ )〉 . (13)

The physical interpretation of g(2)(τ ) is that it measures
the probability of detecting a particle at time t and another

033310-3



ADHIKARY, DEY, PAL, MAL, AND DEB PHYSICAL REVIEW A 103, 033310 (2021)

particle after time delay τ . For stationary processes or in the
steady state of the system, the HBT function depends only
on the difference τ between the two times. For τ = 0, we
have equal-time second-order correlation function g(2)(0) =
〈b̂†b̂†b̂b̂〉/〈b̂†b̂〉2, which characterizes the nature of particle
distribution. We calculate the normalized g(2)(τ ) in steady
state conditions (t → ∞) by using the quantum regression
theorem [62]. Explicitly,

g(2)(τ ) = Tr{b̂†(0)b̂(0)eM̂τ [b̂(0)ρ̂(t → ∞)b̂†(0)]}
{Tr[b̂†(0)b̂(0)ρ̂(t → ∞)]}2

. (14)

Here M̂ is the Liouvillian matrix with infinite dimension.
However, to numerically calculate the eigenvalues, we trun-
cate the matrix up to N2 such that, if we increase N , the results
remain convergent. Here N is the total number of Fock basis
states. We define a function Q(τ ) = g(2)(τ ) − g(2)(∞). Since
limτ→±∞g(2)(τ ) = 1, the on-site number fluctuation will be
reduced below the standard quantum limit when Q(τ = 0) <

0, implying sub-Poissonian bosonic statistics. We define a
frequency-domain [63,64] two-particle correlation function
by

F (ω) = �

∫ ∞

−∞
Q(τ ) exp[iωτ ]dτ

= �

[∫ ∞

−∞
g(2)(τ ) exp[iωτ ]dτ − 2πg(2)(∞)δ(ω)

]
. (15)

As derived in Appendix B, we have

F (ω) = 2�

N2∑
μ=1

[
Wμ|λμr |

(ω + λμi)2 + λ2
μr

]
, (16)

where λμi and λμr are the real and imaginary parts, respec-
tively, of the eigenvalue λμ, and Wμ is a weight factor as
defined in the Appendix.

III. RESULTS AND DISCUSSION

For our numerical work, we take h̄� as the unit of energy
and therefore scale all the energy quantities with this unit. We
first identify the parameter space where bistability occurs by
analyzing the roots of the semiclassical equation (11). There
are three real positive roots for any set of parameters if it
satisfies the condition (J + �ω) >

√
3

2 , but this does not hap-
pen always. This can be understood by taking the derivative
of the left side of Eq. (11). We have scanned the solutions
of Eq. (11) for a wide range of system parameters. Figure 1
shows the mono- and bistability (S-shaped curve) of the semi-
classical mean number density nm f . The system has two kinds
of stability: (i) when three roots are real and positive then
the system enters into a bi-stable region, and (ii) when only
one real root survives, then the system becomes monostable.
In the bistable regime, two roots are associated with two
high-density phases and the remaining root defines the low-
density phase. The semiclassical GP equation (9) captures
only one high-density and one low-density phase which are
stable and another high density phase that is always unstable,
which is consistent with the generalized P representation of
Drummond and Walls [65].

Next we carry out a full quantum-mechanical treatment.
We define the mean particle number per lattice site by n̄ =

1
Nlat

∑
j Tr[b̂†

j b̂ j ρ̂
ss] = ncoh + nnc, where Nlat denotes the num-

ber of lattice sites, and ncoh = |ψ |2 is the coherent and nnc

is the noncoherent part of the density. At a small on-site
repulsion, the system’s behavior is dominated by a coherent

0 1 2
0

2

4

0 1 2 3
0

2

4

0 0.5 1
0

1

2

FIG. 1. The top row represents (U vs F ) phase-space diagram of the semiclassical equation (11) for the fixed parameters (a) �ω =
2, J = 0, (b) �ω = 2, J = 1, and (c) �ω = 0.2, J = 1. The bistable region is marked with yellow color, the gray shaded part represents
the monostable region. The bottom row displays the variation of the mean-field density nm f as a function of the drive F for U = 1 with
(d) �ω = 2, J = 0, (e) �ω = 2, J = 1, and (f) �ω = 0.2, J = 1. All roots of Eq. (11) are real inside the black vertical (dashed) lines.
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1
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0

0.5

1

FIG. 2. Plotted are the (a) mean particle number n̄, (b) coherent density ncoh, and (c) coherent fraction ncoh/n̄ as a function of F for �ω = 2,
J = 1, U = 0.01 (red solid curve), U = 1 (blue dashed curve), and U = 10 (green dashed-dotted curve).

number fluctuation at each site, but as the ratio U
J increases

the on-site number fluctuation drastically reduces. In Fig. 2,
we present the variation of the mean particle number n̄ as
a function of F . In contrast with the semiclassical treatment
depicted in Fig. 1, the bistable nature is absent in the quan-
tum treatment. Instead, we notice that, when U becomes
comparable to �ω, there exists a sudden discontinuous jump
from one to another semiclassical branch at a critical drive
strength F = Fc, indicating the onset of a first-order DPT. In
Fig. 2(a), this critical behavior occurs at Fc = 1.1 for U = 1
and �ω = 2.

We now calculate the steady-state Wigner distribution to
further illustrate the quantum signature of the DPT. It is
given by

W (z, z∗) = 1

π2

∫
d2νeν∗z−νz∗

Tr[ρsseνa†−ν∗a], (17)

where z and ν are coherent states and
∫

d2zW (z) = 1.
A close inspection of the steady-state Wigner distribution

function displayed in Fig. 3 reveals the signatures of the
DPT. Below the transition point, the function has a single
symmetrical-peak structure that corresponds to the monos-
table nature of the system. This is evidence of a valid
single-valued root of the semiclassical equation (11). Above
the transition point, the well-known bimodal shape appears,
providing a quantum signature of the semiclassical bistability.
Right at the transition point, the shape of the distribution
begins to deform, indicating the switch-over from one phase
to the other phase.

Another way to analyze the critical behavior associated
with a DPT [49] is to introduce an equivalence of the thermo-
dynamic limit by employing a dimensionless parameter N and
defining the scaled interaction parameter Ũ = NU and scaled
drive strength F̃ = F/

√
N such that, in the limit N → ∞,

the quantity UF 2 remains constant; and to study the variation
of the inverse of the Liouvillian gap λg as a function of F̃
near the critical drive strength F̃c. In stark contrast with a
second-order phase transition [66], a first-order DPT has a
different behavior as F̃ approaches F̃c [35,49]. For a first-order
DPT, it is experimentally found that −1/λg as a function of
(F̃ − F̃c) shows a power-law behavior over a limited range
away from F̃c and an exponential decay near F̃c [35]. Fur-
thermore, it was experimentally shown that the critical value
of the drive strength Fc is that value of F for which the
bunching [g(2)(τ ) > 0] has the longest duration [35]. We have
also looked into the scaling behavior of the bunching lifetime
(−1/λg) for F̃ near F̃c and found a reasonably good fit with
a power law for a limited range of F̃ slightly away from F̃c.
The exponent of the power law is found to be −0.18 for the
first-order DPT corresponding to the dashed curve in Fig. 2(a).

Next, we present our results on HBT two-particle corre-
lation functions and analyze their characteristic features at
and near the DPT point. In Fig. 4 we display the steady-
state correlation g(2)(0) as a function of F . We notice that,
when the input parameters U , J , and �ω are set at values
that correspond to the phase-transition point (as per our ob-
servations in Figs. 2–4), g(2)(0) as a function of F shows a
prominent peak structure [blue-dashed curve of Fig. 4(a)].
The peak exceeds two, meaning the occurrence of strong

FIG. 3. The steady-state Wigner functions W (z) as a function of the real and imaginary parts of the coherent field z for J = 1, �ω = 2,
U = 1, (a) F = 0.02, (b) F = 1.17, and (c) F = 1.8. Panels (a) and (c) present Wigner functions below and above the transition point,
respectively; while panel (b) presents the same at the transition point. White corresponds to high values, and red corresponds to zero (a
different scale is used for the different panels).
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1.5

FIG. 4. The normalized equal-time second-order correlation
function g(2)(0) as a function F for (a) �ω = 2 and (b) �ω = 0.2.
The other fixed parameters are J = 1, U = 0.01 (red solid curve),
U = 1 (blue dashed curve), and U = 10 (green dashed-dotted curve).

nonclassical fluctuations and superbunching at the transition
point. Perhaps this superbunching behavior forms a bench-
mark of the first-order DPT, as was also observed earlier by

several authors [13,32,35,49]. For small U (red solid curve),
g(2)(0) as a function of F varies very little near unity, implying
a coherent nature of the two-particle correlation. In contrast,
when U is large, g(2)(0) is much smaller than unity for low
values of F , meaning that the system has strong antibunching
character with sub-Poissonian particle distribution.

The upper panel of Fig. 5 shows the temporal behav-
ior of Q(τ ) = g(2)(τ ) − g(2)(∞) while the lower panel of
this figure displays its Fourier transform F (ω) as defined
in Eq. (16). Figure 5(b) illustrates the temporal evolution
of the two-particle correlation Q(τ ) and Fig. 5(e) shows the
corresponding frequency-domain correlation F (ω) when the
system parameters are set at the transition point. In com-
parison with other plots for which the input parameters are
chosen away from the transition point, the decay of g(2)(τ )
as shown in Fig. 5(b) is nonoscillatory and much slower.
The corresponding spectral-domain correlation F (ω) shown
in Fig. 5(e) shows a prominent single-peak structure with
the peak lying at zero frequency. We have found that the
HWHM of the zero-frequency peak structure is a minimum
when the parameters are set at the phase-transition point. As
the Figs. 5(a), 5(c), 5(d), and 5(f) illustrate, for parameters
away from the phase-transition point, Q(τ ) as a function of
τ exhibits oscillatory decay and the corresponding frequency-
domain correlation F (ω) as a function of ω shows spectral
structures that are characteristically quite different from that
at the phase-transition point. Figure 6 displays again the
time- and frequency-domain two-particle correlations Q(τ )
and F (ω) for U = 10, �ω = 2, J = 1 and the two different
values of F = 1, 10.

In contrast to the case of F = 1, Q(τ ) for F = 10 exhibits
greater oscillations. F (ω) for F = 1 shows a prominent peak
at zero frequency and two side dips at frequencies ±2.62 into
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FIG. 5. The two-time correlation function Q(τ ) and its Fourier transform F (ω) are plotted as a function of time delay τ and frequency ω,
respectively, for three different values of F . The other parameters are kept fixed at U = 1, �ω = 2, and J = 1. The Liouvillian eigenvalues
associated with the gap is calculated to be (a), (d) λ2 = −0.5 ± 1.9998i, (b), (e) λ1 = −0.2921 + 0i, and (c), (f) λ2 = −0.8575 ± 3.1229i.
The positions of the peaks or dips correspond to the imaginary parts of λ1 or λ2, while the HWHM of the peaks or dips correspond to the real
part of the eigenvalues (see text).
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FIG. 6. Same as in Fig. 5 but for (a), (c) U = 10, �ω = 2, J = 1,
F = 1 and (b), (d) F = 10. For panel (a), λ2 = −0.6268 ± 2.6188i
and for panel (b), λ2 = −0.6859 ± 17.0303i. In panel (c), the two
peaks are located at ω± ≈ ±2.62. In panel (d), the two dips appear
at ω± ≈ ±17.

the negative regime. In contrast, F (ω) for F = 10 shows two
prominent side dips at frequencies ±17 and the peak at zero
frequency disappears. The dip structures signify antibunching
or the nonclassical nature of the two-particle correlations.
Similar dip-like structures have been previously observed in
frequency-domain correlations between intensity fluctuations
of two optical fields in the context of electromagnetically
induced transparency [67].

To further explain the spectral features observed in Figs. 5
and 6, we have calculated a few low-lying eigenvalues of the
Liouvillian superoperator. The frequency-domain two-particle
correlation function F (ω) is given by Eq. (16), which is a
sum of Lorentzian functions with different spectral weight
factors. The eigenvalue which has minimum nonzero real
part (in absolute magnitude) is denoted λg or the Liouvil-
lian gap. In Fig. 7 we plot the real part of two eigenvalues
as continuous functions of F . The blue dashed curve cor-
responds to the eigenvalue with zero imaginary part, while
the red solid curve corresponds to nonzero imaginary parts.

0 1 2
-1

-0.5

0

0 5 10

FIG. 7. The real parts of two low-lying eigenvalues of the Li-
ouvillian superoperator M̂ are plotted as functions of F for the
parameters (a) U = 1 and (b) U = 10. The other fixed parameters
are J = 1 and �ω = 2.

Since complex eigenvalues appear in complex conjugates, the
red curve corresponds to two equal and opposite imaginary
parts. Let us denote the eigenvalues with nonzero imaginary
part but with finite real part as λ2 while the eigenvalue with
zero imaginary part as λ1. Figure 7(a) shows that Re[λ1]
and Re[λ2] as functions of F have a crossing point at a
low value of F . So, below the crossing point, the red solid
curve is the Liouvillian gap, but above the crossing point, the
blue-dashed curve serves as the gap. So, below the crossing
point, the eigenvalue corresponding to the red-dashed curve
having equal and opposite nonzero imaginary parts primarily
determines the nature of the spectral features in the F (ω) vs
ω curves. Above the crossing point but F and U being not
very large, the spectral features are primarily determined by
the Liouvillian gap with zero imaginary part. For large U , as
Fig. 7(b) shows, Re[λ1] and Re[λ2] have two crossing points.
So, for F ranging between the two crossing points, both zero-
and nonzero frequencies will dominate in the spectrum, as
Fig. 6(c) indicates, while for large F , the zero-frequency part
will be suppressed, as Fig. 6(d) illustrates. The positions of
the spectral peaks or dips are found to coincide with the
imaginary parts of λ1 or λ2 while the HWHM of the peak or
dip structures is given by the real part of λ1 or λ2.

IV. CONCLUSIONS

In conclusion, we have studied the time- and frequency-
domain HBT two-particle correlations of a driven-dissipative
Bose-Hubbard model (BHM) and analyzed in detail the var-
ious temporal and spectral features of the correlation that
reflect quantum statistical properties of the system at, below,
and above the DPT of the model. Our results show that,
except at or very near to the phase-transition point, g(2)(τ )
in general exhibits oscillatory decay leading to multiple peak
or dip structures in the correlation function in the frequency
domain. The details of spectral structures such as the central
frequencies of the peak or dip structures and their widths are
explained in terms of the Liouvillian eigenvalues and eigen-
functions. We have shown that, right at the phase-transition
point, the correlation spectrum has a single Lorentzian with
zero central frequency and minimum HWHM. Our results fur-
ther show that the quantum statistical properties of the steady
-state can be controlled by tuning the on-site interaction U , the
detuning �ω, and the drive strength F . For small U and small
F , the system at steady state exhibits coherent or bunching
behavior, while the strongly driven steady state in the strong-
interaction regime (U � 1) can exhibit strong antibunching or
a strongly correlated phase. In this paper, we have carried out
our investigation under a homogeneous mean-field approx-
imation. Going beyond this approximation and taking into
account spatial inhomogeneity in a driven-dissipative many-
body system will be an important step forward to explore an
interplay between HBT and density-density or current-current
correlations of the model, which we hope to address in our
future communications.
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APPENDIX A: SOLUTIONS OF THE STEADY-STATE
DENSITY MATRIX

In this Appendix we present the method of the numerical
solutions of density-matrix elements. Under the decoupling
approximation, the density matrix ρ̂ = ∏

j ρ( j), where ρ( j)
is the density matrix for the jth site. But under the same
approximation, ρ( j) is site-independent and so we solve for
a single-site density matrix ρss in the steady state. It then
follows from Eq. (8) that the elements ρss

m,n in steady-state can
be cast into a set of linear coupled algebraic equations which
can be expressed in the matrix form

[X ]N2×1 = ([A]N2×N2 )−1[B]N2×1, (A1)

where A is a square matrix containing coefficients of ρss
m,n, X

is a row matrix that has components ρss
m,n, and B is another

matrix which holds the steady-state information.
We can write the steady-state density matrix ρ̂ss in the

following way:

ρ̂ss =
∑
m,n

ρss
m,n|m〉〈n|. (A2)

The exact value of ψ is evaluated numerically in a self-
consistent manner, resulting in

ψ = 〈b̂〉 = Tr[b̂ρ̂ss] =
∑

n

√
n + 1ρss

n+1,n.

The steady-state density-matrix elements are calculated
from the set of coupled equations

− i
[
β
(√

mρss
m−1,n − √

n + 1ρss
m,n+1

) + β∗(√m + 1ρss
m+1,n

− √
nρss

m,n−1

)] − i(m − n)
[U

2
(m + n − 1) − �ω

]
ρss

m,n

+ �

2

[
2
√

(m + 1)(n + 1)ρss
m+1,n+1 − (m + n)ρss

m,n

] = 0.

(A3)

APPENDIX B: FREQUENCY-DOMAIN HANBURY
BROWN–TWISS CORRELATION

Using the eigenvalue decomposition of M̂, we obtain

∫ ∞

−∞
g(2)(τ ) exp[iωτ ]dτ = −

N2∑
μ=0

Wμ

[
1

i(ω + λμi ) − |λμr | + 1

i(−ω + λμi) − |λμr|
]
, (B1)

where λμr and λμi stand for the real and imaginary parts, respectively, of the eigenvalue λμ. The weight factor Wμ can be
calculated in the following way: The N2 × N2 matrix D that diagonalizes the matrix M̂ can be constructed as an array of the
column vectors uμ in the form D = [u0 u1, u2 · · · uN2

]. So we can write

eM̂τ = D · diag[exp(λ0τ ) exp(λ1τ ) exp(λ2τ ) · · · exp(λN2
τ )] · D−1, (B2)

where diag[· · · ] stands for diagonal matrix. Let X(τ ) = eM̂τ . Then we can express X = ∑
ν,ν ′ Xνν ′ | ν〉〈ν ′ | where the element

Xνν ′ can be expressed as Xνν ′ = ∑
μ Dνμ exp[λμτ ]Dν ′μ. Here ν and ν ′ run from 1 to N2. Since the vectors uμ can be expressed in

the Fock basis uμ ≡ uμ
nm | n〉〈m |, where n, m = 1, 2, . . . , N , the matrix X can also be written in terms of Fock basis operators

by making a proper correspondence between the operators | ν〉〈ν ′ | and the Fock-basis operators | n〉〈m |. Thus one can calculate
the weight factor

Wμ = Tr
{
b̂†(0)b̂(0)

∑
ν,ν ′ DνμDν ′μ | ν〉〈ν ′ | [b̂(0)û0b̂†(0)]

}
{Tr[b̂†(0)b̂(0)u0]}2

. (B3)

In the limit τ → ∞ only nonzero contributions to g(2)(∞) will come from the term associated with zero eigenvalue; that is,
λμ with μ = 0. g(2)(∞) then reduces to W0. Setting λ0i = 0 and taking the limit |λ0r | → 0+, and using the relation

limε→0
1

x ± iε
= P (x) ∓ iπδ(x), (B4)

where P stands for principal value, we obtain

lim|λ0r |→0Re

[
W0

iω − |λ0r |
]

= −πW0δ(ω) (B5)

Substituting Eqs. (B1) and (B5) into Eq. (15), using the fact that, except for μ = 0, all the eigenvalues appear in complex-
conjugate pairs, we obtain

F (ω) = 2�

N2∑
μ=1

[
Wμ|λμr |

(ω + λμi)2 + λ2
μr

]
. (B6)
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