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Entropy production for quasiadiabatic parameter changes dominated by hydrodynamics
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A typical strategy of realizing an adiabatic change of a many-particle system is to vary parameters very
slowly on a time scale ¢, much larger than intrinsic equilibration time scales. In the ideal case of adiabatic state
preparation, #, — 00, the entropy production vanishes. In systems with conservation laws, the approach to the
adiabatic limit is hampered by hydrodynamic long-time tails, arising from the algebraically slow relaxation of
hydrodynamic fluctuations. We argue that the entropy production AS of a diffusive system at finite temperature in
one or two dimensions is governed by hydrodynamic modes resulting in AS ~ 1/,/f;ind = 1and AS ~ In(t,)/t;
in d = 2. In higher dimensions, entropy production is instead dominated by other high-energy modes with
AS ~ 1/t,. In order to verify the analytic prediction, we simulate the nonequilibrium dynamics of a classical
two-component gas with pointlike particles in one spatial dimension and examine the total entropy production

as a function of ¢..
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I. INTRODUCTION

The concept of adiabaticity plays a major role in physics
ranging from the classification of quantum states of matter to
the foundation principles of thermodynamics. For example,
the Carnot cycle describing an idealized heat engine is based
on a sequence of isothermal and adiabatic processes. It is also
of practical importance for many experiments ranging from
specific-heat measurements to the preparation of correlated
states in ultracold atom experiments.

Two types of adiabatic processes are usually discussed. In
quantum mechanics, one considers an isolated system pre-
pared in the ground state |¥y(A)) of a Hamiltonian H(X) and
a slow change of the Hamiltonian parameter A — A’ within
the ramp time #.. The adiabatic theorem [1-3] states that the
initial ground state |y(A)) transforms into the new ground
state |yo(A")) if A is changed on a time scale much slower
than 1/A, where A is the (finite-size) gap to excited states of
the system.

In the field of thermodynamics, adiabatic processes are in-
timately linked to the concept of entropy [4,5]. For an isolated
system, an adiabatic process connecting two states X — X' is
characterized by the conservation of entropy, AS = S(X') —
S(X)=0. In contrast to the quantum adiabatic theorem,
one considers classical and quantum-mechanical interacting
many-particle systems at finite temperature or finite energy
density. Entropy production vanishes in the limitz, — oo. The
goal of our paper is to investigate AS for large values of t;
by studying time scales much larger than the time scale 7 for
local equilibration, #, >> .

Quasiadiabatic protocols approaching the adiabatic limit
are of practical interest for experiments in which the Hamilto-
nian parameters can be controlled such as ultracold atoms on
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optical lattices [6-9]. Usually, the goal is to prepare a desired
state with low entropy. Some correlated states (e.g., an antifer-
romagnetic phase) are not easily produced by direct loading of
atoms into an optical lattice. An alternative approach is to first
generate an easily producible state and then change the Hamil-
tonian very slowly until the desired state is reached. However,
the state preparation cannot be performed arbitrarily slowly
since the system cannot be isolated for arbitrarily long times.
The optimal ramp time ¢, is a compromise between minimiz-
ing the internal entropy production (#, — 00) and minimizing
other perturbations like the increase of entropy due to external
heating or—in ultracold atom systems—atomic losses which
become minimal for #, — 0. The question arises at which
rate the adiabatic limit is reached if ¢, is increased more
and more. What is the asymptotic behavior of AS(#,) as a
function of #,.?

For quantum systems with a gapped spectrum at zero
temperature the answer can be given in the spirit of the
adiabatic theorem. If the ground state is protected by the
gap A, the probability to create excitations can be expo-
nentially suppressed by smooth parameter changes following
the Landau-Zener paradigm [10,11]. Therefore, we expect
AS(t,) ~ e~ 2" such that the adiabatic limit is reached for long
enough ramp times #, 3> A~!. However, the quantum adia-
batic theorem does not imply an exponential suppression of
the entropy production in gapless many-body systems [3,12—
15]. Entropy production is not exponentially suppressed if
a many-body system at 7 = 0 is gapless. Then the entropy
production is only weakly suppressed following a power law
AS(t;) tr_e, 6 > 0[13,15]. For small parameter changes the
exponent 6 can be calculated perturbatively [15]. For smooth
ramps, 6 only depends on the low-energy spectrum of the
initial state. If the ramp shape is not sufficiently smooth,
high-energy modes predominantly contribute to the entropy
production even for long ramp times #, — oo. In this case 0 is
fully determined by the ramp spectrum.

©2021 American Physical Society
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A more dramatic situation can occur for noninteracting
bosonic systems as has been pointed out by Polkovnikov and
Gritsev [13]. They could identify situations where the number
of excitations created during a slow ramp and, therefore, also
the entropy diverge in the thermodynamic limit, AS(f)
L+t =% with § > 0. In this situation the thermodynamic limit
L — oo and the adiabatic limit t, — 0o do not commute sug-
gesting that adiabatic processes with zero entropy production
cannot be realized for arbitrarily slow parameter changes. The
authors also showed numerically that some of these effects
even occur in a Bose-Hubbard model [13] if the interactions
are increased linearly in time starting from a noninteracting
model.

Another widely studied problem is slow parameter changes
across classical or quantum phase transitions, where the crit-
ical slowing down associated with a phase transition and the
Kibble-Zurek mechanism [16,17] leads to nonanalytic correc-
tions and an entropy production again characterized by power
laws, AS(t,) tr’e, where 6 depends on the universality class
and critical exponents of the phase transition.

We will focus on a much simpler situation and consider the
case of finite temperature omitting all complications arising
from phase transitions or Goldstone modes. If one assumes
that all modes relax to equilibrium with a finite rate 1/7, then
deviations from equilibrium due to slow changes of parame-
ters are proportional to T and the rate by which changes occur
scales with 1/f.. The rate of entropy production is therefore
proportional to 1/¢> which results in a total change of entropy
proportional to 1/t (see Appendix C for a calculation in the
context of the Boltzmann equation). This estimate is, how-
ever, based on the assumption of exponential relaxation of all
modes which is rarely met: systems with conservation laws
(e.g., energy or particle-number conservation) always possess
hydrodynamic modes with arbitrarily small relaxation rates.

Hydrodynamic modes, i.e., diffusive modes and sound
waves, are arguably the most common and most generic
source of nonanalytic behavior as they occur in any many-
body system with local conservation laws. For such systems
one can use hydrodynamic equations to describe all properties
on long time and long length scales as long as the sys-
tem remains sufficiently close to thermal equilibrium. (Here,
we assume that the temperature 7 is finite.) An important
consequence of hydrodynamics is the presence of so-called
hydrodynamic long-time tails [18-25]. These long-time tails
describe, for example, the slow decay of certain correlation
functions. More importantly, hydrodynamic modes provide
a bottleneck for equilibration. After a quench, i.e., a sudden
change of parameters, a generic interacting many-body sys-
tem does not relax exponentially towards thermal equilibrium
but approaches thermal equilibrium only algebraically. In a
diffusive, d-dimensional system, for example, typical observ-
ables approach their thermal expectation value only slowly,
~ t~4/2 [26]. These hydrodynamic long-time tails arise from
the long-distance fluctuations of hydrodynamic modes. Thus,
it takes a long time to build up the local thermal fluctuations
of conserved quantities.

As hydrodynamic long-time tails dominate equilibration
in the long-time limit, one can also expect that they can
give a dominant contribution to the entropy production when
parameters of a many-body system are changed slowly. In

the following, we will consider a simple hydrodynamic sys-
tem which contains only diffusive modes related to energy
and particle-number conservation. We compute analytically
the contribution to the entropy production due to the hy-
drodynamic modes and compare our results to numerical
simulations of a one-dimensional (1D) classical model.

II. HYDRODYNAMIC DESCRIPTION
OF QUASIADIABATIC PARAMETER CHANGES

A. Hydrodynamic equations

We consider a closed diffusive system in d dimensions
at finite temperature 7 > 0 where the parameters of the un-
derlying Hamiltonian change smoothly on a time scale 7 >
7, much larger than the relaxation time t in which a local
equilibrium state is established. Under this condition, the
system always stays close to equilibrium and hydrodynamic
approaches apply. Our goal is to calculate corrections to the
entropy production arising in a translationally invariant sys-
tem where no macroscopic currents are generated. Thermal
and nonthermal fluctuations do, however, activate hydrody-
namic modes.

The starting point of our analysis is the continuity equa-
tions for energy density e and a finite set of additional
densities n,, a € {A, B, ...}, that remain conserved during the
parameter change:

dde+ - j, = ore, (1)

9dng + 05 - j, = 0. 2)

de = e — {e) and én, = n, — (n,) denote the fluctuations of
the densities around their average values (e) = E/L¢ and
(na) = N,/L? where L is the linear system size. j, and j,
are the corresponding current densities. The average energy
density changes in time according to 9, (e) = (r.), where r,
simply parametrizes the rate of change of the energy density.
Energy is not conserved as the underlying Hamiltonian is time
dependent. For the same reason also de is not a conserved
density and we therefore have to include the source term
dr. in Eq. (1) (to be specified below). (r.) and 87, are only
finite during the time when the parameters of the Hamiltonian
are changed, 0 <t < f;, but vanish for ¢ > #.. In contrast,
N, = [d%x n, is always exactly conserved and one obtains the
standard continuity equation for this quantity.

Hydrodynamics is a theory valid on time and length scales
large compared to the microscopic scattering times and the
microscopic mean free path. Here we consider inelastic-
scattering processes arising from interactions, which relax the
system towards a thermal equilibrium state. As a consequence
of the coarse-grained description, the current densities are
fluctuating quantities that can be decomposed into two con-
tributions:

Jo =Jc[0ce, deng, 06, .1+ C,, (3a)
J+ ¢ (3b)

The constitutive relations J, and J, state that the average
current densities are caused by inhomogeneous distributions
of energy and the conserved quantities N,. In the long-
wavelength limit of a diffusive system, the linear terms are

ju = Ja[axnav axev axnzv .
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the most relevant contributions of the gradient expansion

Ji ==Y _Dij()dp; + O(0p®), )
J

with p; € {e, n,}. The diffusion constants (and similar quan-
tities discussed below) explicitly depend on time as the
underlying Hamiltonian is time dependent. For #, >> t and to
leading order in 1/t,, they can, however, be obtained from the
properties of the time-independent Hamiltonian H (ty) with
fh=t.

In addition, random transitions of particles between ad-
jacent volume cells give rise to the noise terms ¢, and ¢,
with (¢,) = (¢,) = 0. As noise is caused by fast modes on
the short time scale T < t,, the noise correlations can — to
leading order in 1/¢, — be calculated again from H (¢y) using
the fluctuation-dissipation theorem

(¢l @ ol o 1) = 2[D@) CO0)];;8" 5 (x — X))ot — 1),
5)

where the time dependence of C°(t) = C(ty) arises from
the time dependence of the underlying Hamiltonian and
can be determined from the equilibrium fluctuations of
the time-independent Hamiltonian H(fy) with [C O(to)]; =
L (i) (0 py) dx.

In a similar fashion, the source term §r, can be thought of
as consisting of deterministic and fluctuating contributions:

8r. = R.[8e, 8nga, (8€)%, ... 1+ ne. (6)

R, describes how the local rate of energy creation depends
on the deviations §p; = p; — (p;) from the (time-dependent)
average values, e.g., high-density regions may respond more
strongly to the parameter change than low-density regions.
Again, the linear term is the most relevant one in the
expansion

R. ==Y aj()sp; + 0(3p?). ™
j

A positive «,, describes a situation where energy fluctuations
are damped. Due to the external drive, ., can, however, also
be negative as can be checked within the model introduced
below in Sec. III. In this case fluctuations grow during the pa-
rameter change by a factor ~ el which remains, however,
finite for #, — 00 as o, ~ 1/t.. It is rather straightforward
to calculate o,; to leading order in 1/t from a microscopic
model simply by computing the thermal expectation value
(0;H(t)) as a function of the average energy and average
particle number. For the noise correlations, we use

(neCx, Dne(x’, 1)) = 2Ace(t) 8(x —x)3( — 1)) (8)

The noise correlations A, (¢) are nonthermal, i.e., they are not
determined by a fluctuation-dissipation theorem and should
be obtained from a microscopic calculation. Importantly, the
time-dependent coefficients o, ;(¢) and the noise term 7, have
to scale oc ! as they arise from the time-dependent changes
of the parameters of the system. The scaling of 7., implies that
the noise strength A, (¢) vanishes tr‘2 in the adiabatic limit.

In summary, the general structure of the linear hydrody-
namic equations for a quasiadiabatic parameter change can be

written as

8pi =Y _ Dij(t)d38p; — Y _ eij(t)dp;
J J

+0x - &+ mi, €))

with the time-dependent diffusion constants D;;(t), the coeffi-
cients o;;(¢) tr’l , and the noise correlations as defined in (5)
and (8). For the nonthermal noise we have A;;(t) = 0 except
for the matrix element A,.(t).

Nonlinear terms can be neglected for slow enough changes
since the deviations from global equilibrium are small. This
is a nontrivial statement which applies to diffusive systems
and can be proven using a straightforward scaling analysis
(see Appendix D). Note, however, that linear hydrodynamics
cannot be used for systems with momentum conservation in
d = 1[27-30], where the density dependence of the pressure
gives rise to nonlinearities which are formally relevant and
thus cannot be neglected.

B. Lag of hydrodynamic modes

The actual fluctuations (§;(t)8p;(t)) o< C;;(t) of hydro-
dynamic modes lag behind the target fluctuations C?j ).
In the following, we derive the corresponding correlation
function in Fourier space. A Fourier representation with dis-
crete wave vectors ¢ = (2w /L)m, m € VAR provides a natural
parametrization of the nonequilibrium space of hydrodynamic
slow modes in linear hydrodynamics as we demonstrate be-
low. The differences |C,(t) — C%(t)] measure the deviation
from the ideal adiabatic process giving rise to a finite entropy
production of the mode ¢. The contributions from all modes
accumulate to the total entropy production of the system AS.

Fourier transformation, 8p;, = [d?xe %8 p;(x), brings
the diffusion equation (9) into the standard Langevin form

88pfy = — Y _vg0idpT, + &7, (10)
J

with 0 = %+ indicating real and imaginary parts, Sp:rq =
Re{dpi 4} and dp;, = Im{é; 4}, respectively. The noise term
"g‘i‘fq collects the contributions from ¢; and »n; and has the
correlation function

(674670 = 2Lbg(0)]ij L 8qqr8°7", (1)

with b, (1) = %[qu(t YCO(t) + A(2)]. The hydrodynamic slow
modes 8,0,{"1 relax with g-dependent rates y,(t) = g*D(t) +
«o(t). As a consequence, the time scale of the relaxation
vanishes o ¢> in the long-wavelength limit ¢ — 0 for
long enough times. Note that y,(f)]j/|-cc = q2D(t)||tHOO as
a(t)j1j—»o0 = 0. The absence of a minimum time scale leads to
power-law behaviors of various observables in hydrodynamic
systems. This also implies the power-law scaling of the en-
tropy production as we will show in Sec. II C.
The linear equation Eq. (10) can directly be solved by

8pi,t) = Z/ dr' [g4(t, 1)]iE7 ("), (12)
j —00

with the matrix-valued Green function gq(t,t/) =

Te lrdsv®_ T is the time ordering operator which is
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needed as the matrices y,(s) do in general not commute
when evaluated at different times. The equal -time fluctuations
C,(t) defined by (80 q(t)(S,oj’q @) = 2[Cq(t)]u L8, 877
can directly be computed from Eq. (12) and one obtains

[Cq(t)]ij = Z/ dr’ [gq(tv t/)]im

X [gq(t9t/)]jn 2[bq(l‘/)]mn- (13)
This equation describes that the system does not adjust in-
stantaneously to b,(¢), and thus is always out of equilibrium.
This gets more and more severe for small g as relaxation gets
slower and slower in this limit.

C. Entropy production of hydrodynamic modes

Our prime goal is to find an expression for the total entropy
production in the framework of linear fluctuating hydrody-
namics. Our method of calculating the entropy production
induced by a quasiadiabatic parameter change is based on a
partition of the system into the hydrodynamic slow modes
8p{, and microscopic fast modes. The entropy balance of
the process can be evaluated by adding the contributions in
the slow and the fast sector, AS = ASSOV + ASTSt Ag we
argued earlier in Sec. IT A, the fast modes are responsible
for the noise terms ¢;, n;. These modes adjust rapidly to the
prescribed protocol as their dynamics occur on the short time
scale T < ;. As discussed in the introductory chapter and in
more detail in Appendix C, the relaxation of such fast modes
contributes to entropy production with a term proportional to
7 /t.. As the hydrodynamic modes relax much slower, we have
to consider their contribution to entropy production separately.

We consider the Gibbs entropy of the hydrodynamic modes
defined as

golow _ _ / P@p, 1) In [P(8p, 1)], (14)
3p

with the normalized probability distribution fs P@p,t)=1
and [y =1, [d8p{, We identify two contributions to
the change of (14) [31]:

SV (1) = (1) + T1(2). (15)
Coupling between fast modes and slow modes leads to the
entropy flux ®(¢). This rate merely refers to an internal re-
distribution of entropy between different degrees of freedom
in the system. The entropy production in the slow sector
[1(r) > 0 is caused by the irreversible dynamics of the slow
modes. Hence, the total entropy production due to hydrody-
namic modes is found as

AS = /oodt I1(). (16)

o0

As the entropy (14) is defined in terms of the time-
dependent probability distribution P(8p,?), we turn to the
Fokker-Planck equation equivalent to the Langevin equation

9):
Gl
o P@o. 1) = - Z 357, (30 DP(Bp, 1]
2

d
+>° b,w(t)WP(Sp, n, (17)

v

with a, = =", Yubpv, Vv = [yq]ideéqq/S""/, and by, =
1[4*DC° + A;;5446°°". For clarity we introduced container
indices u = (i, ¢, o). Using (17) in the time derivative of (14)
allows us to identify the entropy production rate as

B Ju(8p, )b, L (1)J,(8p, 1)
e = Z/a peopy Y

with the probability current
JM(6p7 t) = a#(6p7 t)P((sp’ [)
oP(8p, 1)
- b)) ——. 19
; =55 (19)

v

The straightforward derivation of (18) was discussed by Tomé
[32] (for the case by, o §,,). The intermediate steps are
given in Appendix A for completeness. In the further evalu-
ation of (18) we make use of the fact that the Fokker-Planck
equation is solved by a Gaussian probability distribution
P(8p, 1) x 2 L 3PulCT 0P \yith the time-dependent cor-
relation matrix Cp,,(t) = 3[Cy(1)];jL 84 8°° given in (13).
The Gaussian integral yields

d
1) = 5 / d*q f1¥gu bgsr Cail (20)
with FWairbgr, Corl = Tr{V;:tb;.}Vq,th,t + Cz;,tlbq,t -

2y,:}. We performed the continuum limit in the final
expression to obtain the integral in Fourier space. The
total entropy due to hydrodynamic modes produced by the
parameter change is given by

(27t)d/ fd Qf[)/qrs q.ts q[ 21
respectively.

An evaluation of Eq. (21) involves the computation of
the correlation function C,; from Eq. (13) which needs the
knowledge of the Green function g,(, t') for a set of coupled
diffusion equations with time-dependent parameters. Quanti-
tatively, such a problem can only be solved numerically. To
obtain qualitative analytical results in the limit of large f,
it is useful to perform a scaling analysis by introducing the
dimensionless variables 7 = ¢ /¢, and § = (Dt,)'/%q. Here, the
constant D carries the unit of D;;. We proceed by perform-
ing first a naive scaling analysis of all terms contributing to
the entropy production, Eq. (21). Introducing the rescaled
damping coefficient 7(g,7) = t, y[(Dt,)~'/?G, Dt,i] and the
rescaled correlation matrices b(g, ) = t, b[(Dt,)~"/2G, Dt,f],
C(g,7) = C[(Dt,)"'%gG, Dt,f] leads to

d
AS=F oo (22a)
oo 5 ddq
F = / di / Gyt /e bar ol 220

Hence, naive scaling predicts that the adiabatic limit is
reached algebraically with AS o 7 “2 in d spatial dimen-
sions. The dimensionless prefactor F' depends on the details
of the protocol encoded in the functions D;;(7)/D, C’ioj(t~ ), and
@;;(7). To obtain the scaling of b(q, t) to leading order we
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used that the nonthermal noise 7; only contributes subleading
corrections (see Appendix D).

However, the naive scaling relies on the assumption that
F converges to a f, independent value for 7, — oo. This is
only the case if the integrals defining F are convergent and
thus independent of a cutoff to the g modes. The time integral
is harmless as for ¢ > 1, or, equivalently, 7 > 1 the entropy
production vanishes. As we discuss in Appendix B, the §
integrand is proportional to §~2 for large §. Therefore, the
integral converges only ind = 1. Ind > 2, large momenta of
the order of the cutoff scale contribute. In rescaled variables
this cutoff is given by (Dr;)!/? A, where the momentum cutoff
A ~ 1/£ is of the order of the mean free path £ of the system.
As a consequence, the power-law exponent in (22a) is altered.
As we show in Appendix B, the leading-order contributions to
the entropy production arising from hydrodynamic modes are

As @072 d=1
=2~ YD) ' In(A*Dy)  d =2. (23)
(D)~ A2 d>?2

In d = 3, where high-g modes dominate, we recover the re-
sult AS o ¢! of the Boltzmann equation (see Appendix C).
This is not surprising as high-g modes relax exponentially
with a relaxation time of order t for ¢ ~ 1/£. One should,
however, note that in this case the hydrodynamic description
predicts the wrong prefactor as the hydrodynamic description
may cover only a small fraction of all modes of the system.
In contrast, in d < 2 entropy production is dominated by
hydrodynamics. While in d = 2 there is only a logarithmic
enhancement of little importance, hydrodynamic long-time
tails lead to an extremely slow decay of entropy production,
AS~t7"%ind = 1.

D. Overview of entropy productionind = 1

We can now connect the results obtained from the hy-
drodynamic calculations with the result from the Boltzmann
equation. For simplicity we focus on d = 1 where the effects
are most pronounced. The following discussion builds on the
assumption that a single scattering time t dominates all physi-
cal properties. More precisely, we assume that T changes only
by factors of order 1 during the parameter change. Further-
more, we assume that the transport scattering times for energy
and particle-number transport are similar and that these trans-
port scattering times differ only by factors of order 1 from,
e.g., the time scale which describes how inelastic-scattering
processes relax distribution functions towards equilibrium.
These conditions are met by the model considered in Sec. III
below but can also be violated, e.g., due to proximity to some
integrable model [33] or when disorder leads to localization.

The Boltzmann equation predicts %9 ~ l% for the entropy
production per particle (see Appendix C), while we find in
the hydrodynamic regime % ~ \/37, = ’;’ = where a is the
distance of particles and we introduce the time scale 79 = a/v
obtained from the distance a and the average velocity v of
the particles with D = v?z. Using this result, we obtain for

T > 19 three different regimes:

1 T2t
z <p<I
AS ~ SQuench Iy Tq'\“ LN T - (24)
70 L
JTh 2 ’S It

When the parameters are changed rapidly on the time scale set
by the scattering, ¢, < 7, the distribution function of quasipar-
ticles does not adjust during the time when the Hamiltonian is
changed and we expect that the entropy production is approx-
imately given by the result for a quench, , = 0. For 7 <, <

:—z the entropy production by high-energy modes dominates
0

and the entropy production scales with 1/z.. For #, > ;—; the
0

hydrodynamic long-time tails dominate with AS ~ 1/./;.

III. NUMERICAL EVIDENCE OF HYDRODYNAMIC
SCALING

A. Two-component-gas model

To verify the power-law scaling o< ¢~'/? of the entropy

production in one dimension, we consider a simple toy model
[26,34-36]: a 1D classical gas of two different particle species
A and B as illustrated in Fig. 1(a). The kinetic energy of the
two-component gas is

N Np
Hin =Y )+ ) € @), (25)
i=1 j=1

where k; denotes the momentum of particle i and Ny p are
the particle numbers. Interactions are taken into account by
elastic hard-core collisions. While a collision of two classi-
cal particles with the same dispersion does not change the
momentum-distribution function (as their momenta are sim-
ply exchanged), the two-body scattering of particles with
different dispersion leads to equilibration [26].

In this setup the mean free path £ is approximately given by
the average distance a of A and B particles, £ & a. Similarly,
the scattering time t = £/v is of the order of 7y = a/v where
v is the typical velocity of particles, T & 1.

To be able to tune the ratio of the scattering length £ and the
distance of particles a or, equivalently, of T and 7, we further-
more introduce a “tunneling probability” I', 0 < I < 1: when
two particles meet, they pass each other with the probability
I', while they scatter with the probability 1 — I'. Therefore,
the scattering time for finite I is given by

T
1-T

For our simulations, we determine for each I' the scattering
time T = St% in the initial thermal state (r < 0) by counting
the number of collisions per A particle, N,/N4, in a time
interval §t.

The dispersion of the particles
el (t) = —27%(t) cos(k), 27

~
~

(26)

for particles of type X = A, B, respectively, is time-dependent
and changes slowly. The cos dispersions can be understood as
being derived from a lattice Hamiltonian with lattice constant
a=1 and time-dependent hopping parameters JX(t). The
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(a)
(b)

JB,ﬁt)

JX(t)

JB,ini

JA,ini

JA,ﬁt)

FIG. 1. (a) Illustration of a typical configuration of particle species A and B in real space. (b) The hopping parameters of particle species
A and B are changed linearly from JX™ to J¥f" (X = A, B) in time ¢,. (c), (d) The bandwidth of particle type A (B) is decreased (increased) in

the parameter change.

semiclassical description (in terms of a continuum model)
is only valid on length scales much larger than the lattice
spacing a and it can only be applied if also the average dis-
tance of particles is much larger than a [26,34]. The particle
momenta are restricted to the Brillouin zone —w < k < 7.
Thus, umklapp scattering between particles of type A and B
occurs which violates momentum conservation and leads to a
diffusive behavior [26].

We consider a linear ramp of the hopping parameters in
time ¢, as defined by the functions

JX(@) = JEM — h()] + J5 (), (28a)
0, t<0

ht)={t/t,, 0<t<t,. (28b)
1, t>t

The ramp protocol is illustrated in Figs. 1(b)— 1(d). The nu-
merical results presented in the subsequent section Sec. III B
are obtained for JA-fin = .5 jAini gB.fin — 5 yB.ini 34 jA.ini —
1, JB = 2 Importantly, these parameters avoid a special
integrable point obtained when the two hopping rates are
equal, JA(t*) = JB(t*) [36]. The ramp protocol is continuous
but nonanalytic att = 0 and ¢t = #,. We have checked that such
a nonanalytic dependence does not invalidate our analytic
predictions for the entropy production to leading order in 1/1,.

From the viewpoint of hydrodynamics, our model pos-
sesses for I' > 0 three diffusive modes for energy conserva-
tion and the number conservation of each particle species and
is thus described by Eqgs. (1)—(3b). As discussed above, energy
conservation is weakly violated due to the slow change of
the dispersion. If we consider only hard-core collisions by
setting I = 0, the situation is a bit more complicated. As A
particles cannot pass B particles, diffusion of the difference
of densities, p4 — pp, is prohibited. Furthermore, our model
also has extra “hidden” conservation laws: a given sequence

of particles ABAAB . .. does not change as a function of time.
Such a nonlocal “string order” is not expected to give rise
to further hydrodynamic modes. As we show below, we find
numerically for the model with I' = O the same asymptotic
behavior for entropy production as in the models with I" > 0.

B. Simulation

We prepare the particles in a homogeneous initial state at
the inverse temperature 8™ = 1. The momenta are distributed
according to the thermal distribution fOX = e=#"%" /zX with
the fugacities z¥. The positions in real space are drawn
from a uniform distribution. Our simulation is based on the
bookkeeping algorithm used in [26] to study the emergence
of hydrodynamic long-time tails after a sudden interaction
quench in the 1D Bose-Hubbard model. Here, we introduce
the time dependence of the dispersion (27) as an additional
feature. The linear ramp introduced in Eq. (28) has the ad-
vantage that it allows us to calculate analytically, when a
future collision of neighboring particles occurs. The algorithm
consists of keeping a list of such future collisions, which is
updated after each scattering event. Here, the momenta of
the scattered particles are determined by the conservation of
energy and lattice momentum. The algorithm can easily be
solved for the dynamics of 10° particles, tracking about 10'°
collisions.

The entropy of the classical particles can be obtained from

S =84+58, (29a)

L /g
S =—— | dkffm(£Y). (29b)
27 J_»
ka denotes the momentum distributions of particle types
X = A, B, respectively. This formula has, however, two dis-
advantages for practical calculations. First, it requires a

033309-6



ENTROPY PRODUCTION FOR QUASIADIABATIC ...

PHYSICAL REVIEW A 103, 033309 (2021)

0.015
1072
|TA—TB| 0.01
VTATB
0.005
0 3 4 5 10_3
1000 2000 3000 4000 10 10 10
t/T t/T
ITA—T8

FIG. 2. The normalized temperature difference “——

of the two subsystems [obtained by solving Egs. (30b) and (30c); see text] can be

used to track how far the system is out of equilibrium. The left and right figure show the same data, which are plotted on a linear scale (left)
to emphasize the short-time dynamics and on a logarithmic scale (right) for long times. In the shown example, parameters change very slowly
according to the quench protocol defined in Fig. 1 with ¢, & 2200 7, where t is the average time between two AB scattering events of a single
particle (N4 = Nz = 103/2, T' = 0). During the parameter change, 0 < t < t,, the temperature difference grows linearly in time and relaxes
slowly for ¢ > 1,. For t — o0, an equilibrium state with T4 = T5 is reached.

numerical calculation of the distribution function ka by some
binning procedure which introduces some (small) numeri-
cal error. More importantly, the system relaxes very slowly
~1/4/t to its final thermal state for ¢ > f,. Thus stopping
the simulation at some finite time ¢ > f. introduces a sub-
stantial error. For a high-precision determination of the final
entropy, we therefore use a trick which is based on two
observations: (i) For ¢ > t, the energy is exactly conserved,
E(t > 1) = E(t,) = const, and (i) for t — oo the system
reaches a thermal state. The temperature of this final state
can easily be computed from the knowledge of E(z.). Here
one uses that the interaction energy of the point particles is
exactly zero, therefore the thermodynamics of a gas of clas-
sical point particles scattering elastically is exactly given by
the thermodynamics of a noninteracting gas. One can easily
compute the entropy difference of the initial state and the
final state for + — oo, using a thermal distribution function,
f)? (B, 7B, JAIB) = epe” /z*/B with the inverse temperature
B and the fugacities z*/% obtained from

E= ) EX (30a)
X=A,B
L T
EX = — | dkel f2(eX, g%, %), (30b)
27 J_
L g
NY = = [ ak f2X, g5, 29, (30c)

2

-7

with X = A, B and g4 = % = B. The entropy of final and
initial state is then calculated from

S= Y BEX—N In@"). (31)

X=A,B

which is equivalent to Eq. (29) for equilibrium systems.

One way to track how far the system is out of equilibrium
is to define two separate temperatures 74(¢) and 75(¢) at each
time for the two subsystems A and B by tracking the energies
E“ and E? and by solving Egs. (30b) and (30c) for gX =

1/TX. T and T® are not true thermodynamic temperatures,

. . |TA—T8|
but the normalized difference “JrarE

track how far the system is out of equilibrium. As shown
in Fig. 2, the temperature difference grows approximately
linearly in ¢ during the parameter change, 0 < ¢ < ¢,. Taking
into account that for the example shown in Fig. 2 each particle
undergoes collisions of the order of 10* during the parameter
change, the dimensionless temperature difference of 1072 is
relatively high. For ¢ > 1., the temperature difference relaxes
very slowly back to zero. Fluctuating hydrodynamics predicts
|TA — T8 ~ 1/4/t in this regime [26], consistent with our
numerics. Note, however, that the entropy production is not
proportional to (T4 — T#)? ~ 1/t as one would expect from
the coupling of two thermal reservoirs as such a large entropy
production rate would lead to a divergence of the total change
of entropy when integrated over time. This shows that the lo-
cal temperatures do not correctly represent the nonequilibrium
state.

In Fig. 3 we show the central result of our numerical
study: the entropy production AS(#) as a function of the
ramp time #, measured in units of the single-particle col-
lision time. The entropy production for a sudden change
of parameters, i.e., a quench with 7, < 7, can be calcu-
lated analytically using that the distribution function does
not change for ¢+ < t, which allows us to calculate the final
energy using the initial distribution function. For our pro-
tocol, we find that the entropy increases by 12% in this
limit. As expected, the entropy production is reduced when
parameters change more slowly. For #, 2 107, the entropy
production can approximately be described by a power law,
AS ~ t7%, as can be seen on the double-logarithmic plot of
Fig. 3. A linear fit yields 6 =~ 0.57. We attribute the apparent
deviation from the predicted value 6 = 1/2 to subleading
corrections beyond linear hydrodynamics, discussed in Ap-
pendix D. A fit with the function co (z/t,)""? 4 ¢; (t/t;)~!
describes the data also very well (see Fig. 3), and yields the
prefactors ¢y = 0.047 and c¢; = 0.120. Thus, the nominally
subleading correction can distort the leading-order behavior

is a useful measure to
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FIG. 3. Our numerical simulation (I' = 0 and all parameters as
in Fig. 2) shows that the entropy production of the two-component
gas decays algebraically for large quench times #, > 7 (thick dots).
The dashed line shows a linear fit, AS ~ =%, slightly deviating
from the prediction of linear hydrodynamics, AS ~ ¢~1/2. The dotted
line shows the fit, SATﬁ ~ o (T/t)7? + ¢ (1)) (co = 0.047, ¢, =
0.120), which includes subleading corrections. The dash-dotted line
denotes the entropy production for a sudden change of parameters

which can be obtained analytically (see text).

on intermediate time scales. Nevertheless, we conclude that
the simulation results are clearly consistent with our analytical
approach.

To investigate whether our predictions for prefactors and
for the interplay of hydrodynamic and other modes discussed
in Eq. (24) are valid, we study the entropy production for
our model in the presence of a finite tunneling rate in Fig. 4.
Most importantly, we can use the parameter I' to increase the
scattering time t and to vary the ratio of 7y and t according to
Eq. (26).

The Boltzmann equation predicts that the entropy produc-
tion increases for larger v while our hydrodynamic theory

1071 E
1072}
AS B
Sini :
10—3 H|——T=0
| —~——T'=04
|—~-T=08
T =09 h
10_4 ; T T T O AT R
1072 107* 10° 10' 10* 10® 10*

tr/T()

AS T2
ini -2
Sini s

shows the opposite effect. This is reflected in the left panel

of Fig. 4. For larger I" and thus larger 7 the entropy produc-

tion increases for short times but is reduced in the long-time

limit where hydrodynamics dominates. To extract the different

regimes described by Eq. (24) we use a scaling plot in the right

panel of Fig. 4. We consider a rescaled entropy production
AS 72

Y=g which is plotted as a function of the scaling vari-

able x = %g According to Eq. (24) we expect (for, > t) a
crossover from the Boltzmann regime y ~ 1/x for x < 1 to
the hydrodynamic regime y ~ 1/4/x for x > 1. This is fully
confirmed by our numerical data.

IV. CONCLUSIONS

When the initial state is prepared in a typical ultracold
atom experiment, changing parameters slowly is important to
keep entropy production at a minimum while approaching the
desired state of matter. In a harmonic trap, the initial and final
state will typically have a very different distribution of atoms
and energy. Reaching the final thermal state is therefore as-
sociated with the transport of energy and atoms over a length
scale set by the radius of the cloud. These transport processes
generate entropy and are a major bottleneck for isentropic
state evolution [37].

As our paper shows, a similar bottleneck for isentropic pro-
cesses arises even in translationally invariant systems, where
there is no need to transport energy or particles over large
distances. Here the bottleneck is the buildup of fluctuations
of conserved quantities which characterize each thermal state.
The longer the wavelength of these fluctuations, the longer it
takes to equilibrate them. Our paper has shown that in diffu-
sive systems this is the limiting factor for entropy production
in dimensions d < 2. The effect is most pronounced ind = 1
where entropy production scales with 1/,/z; when parameters
change slowly on the time scale f.. In d = 2 there is only a

101 ;‘* . . —— 1" =0
B = “ —— I =02
[ ——1'=04
10*1é ‘t;;ESER
1072 %
10—3é
E | | | | | “ed

102 109 102 104

trTg/ 3

10~4

FIG. 4. Entropy production in a model with a finite tunneling rate I" [all other parameters chosen as in Fig. 3; 7p = 7(I" = 0) is obtained
from the scattering time for I' = 0]. Left panel: At intermediate times, entropy production is enhanced when the scattering time 7 ~ 7,/(1 — I')
gets larger. In contrast, for long times, the entropy production is reduced. Right panel: A scaling plot shows that the analytical estimates of
Eq. (24) are valid (see text). The dashed lines show that the rescaled entropy production AS 72/(S™M1Z) scales with 1/x at intermediate times

and with 1/./x in the long-time limit for x = #,73/7>.
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logarithmic enhancement of the 1/# dependence of entropy
production expected for d > 2.

To reduce entropy production in a slow process, the Boltz-
mann equation predicts that it is best to have a short scattering
time so that the system remains always close to equilibrium.
Remarkably, the situation is opposite in the hydrodynamic
regime, especially ind = 1. Here, a larger diffusion constant —
obtained for large scattering times — helps to build up thermal
fluctuations. Therefore, it is better to have large scattering
times in this regime to reduce entropy production. We can also
determine the optimal scattering time t to achieve the minimal
entropy production for a fixed time scale 7, on which the
Hamiltonian is modified. According to Eq. (24) the optimal
relaxation time 7 is given by (trrg)l/ 3 which leads to an en-
tropy production proportional to (o/#)*/3. It is an interesting
open question whether the entropy production can be reduced
further by using time-dependent protocols, e.g., by controlling
the Feshbach resonance in an ultracold atom experiment. Fast
changes of a time-dependent protocol can also be used in
principle to control the energy fluctuations of the initial state
and to adjust them to the desired final state thus providing a
shortcut to adiabaticity using optimal control techniques [38].
This is especially promising in systems where energy is the
only relevant conservation laws.

A further question is the entropy production arising from
hydrodynamic modes in models with momentum conserva-
tion, discussed briefly in Appendix E. In this case nonlinear
terms in the hydrodynamic equations turn out to be relevant
(in the renormalization-group sense). They change the expo-
nents in thermal correlation functions [29,30] in dimensions
d < 2 (with logarithmic corrections in d = 2) and are thus
expected to also modify the exponents describing entropy
production, especially ind = 1.
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APPENDIX A: SEPARATING RATES OF ENTROPY
PRODUCTION AND ENTROPY FLUX USING THE
MULTIVARIATE FOKKER-PLANCK EQUATION

Our derivation of the entropy production rate of hydrody-
namic modes I1(¢) closely follows the discussion in Ref. [32].
We take the time derivative of the Gibbs entropy (14),

SSIOW —

—/ o, P(8p,t)In[P(8p,1)], (A1)
dp

and insert the Fokker-Planck equation (17) in the form
of a continuity equation (reflecting the conservation of
probability):

3 3
5P(a,o, )= — Z 730, ——J,(8p.1). (A2)

The probability current J,(8p, t) is defined in (19). We in-
tegrate by parts and use that aﬁ% =Y b;'(a,P—J,) and

v 7 v
obtain
aJ, (Sp,t)
Selow — / n[P(8p,t
Z by, MIPGR0]
1 9P@p, 1)
= — J.(8p,
;/a,, w0 b ap. 1) 080
= o)+ I(¢), (A3)
with
o) ==Y [ 1,000,100 Ep.),
v Y0P
Ju(8p, )b ()], (8p, 1)
I1(t) = . A4
=) fs PG (A4)

Thus, we can identify IT1(¢) > O as the entropy production
rate of hydrodynamic modes. ®(¢) # 0 is caused by the en-
tropy flux between the fast modes and the slow modes.

APPENDIX B: ENTROPY PRODUCTION
OF HYDRODYNAMIC MODES: DEPENDENCE
ON DIMENSIONALITY

In this Appendix, we examine the dependence of the
hydrodynamic entropy production on the number of spatial
dimensions d. For simplicity, we consider a system with a
single conserved mode [« () = O] and set the diffusion con-
stant to the final value D(t) — D" = 1. For small changes,
the entropy production Eq. (21) is

AS_/ dtfdd

%W/ @ / dqq"IC,(0) = C°OF. (B

Cy(r) = C°)P
- CC0)

The convergence properties are easily analyzed in frequency

space. Using that C,(w) = 242 = —L_C%w), we obtain

ASo</ g—:/ddq IC° (@), (w). (B2)

Following the terminology of [15] the behavior of AS depends
on the ramp spectrum |C%(w)|? and the intrinsic spectrum of
hydrodynamic modes

2, 2 A d+1, 2
o o
L) = [ d o [ d
o(@) /q4q4+a)2 /o 123+
W d=1

o fe’n(1+4Y) d=2. (B3)
d>?2

a)2Ad72

The ¢ integral is UV divergent for d > 2 and requires a
cutoff A. The w integral is convergent for continuous ramps.
Even for ramps with nonanalytic kinks [like the linear ramp
in Eq. (28)] C%(w) decays fast enough ~ w2 for large fre-
quencies. Thus, the behavior of AS(#) does not depend on
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the shape of the ramp. The scaling of the ramp spectrum
|ICO%@)|? = t72|C%(@t,1)|? leads to the power laws

(Dt,)~17? d=1
AS(t;) o § (D7) In(A%Dy)  d =2. (B4)
(Dt,)"'A?2 d>?2

The hydrodynamic description of a quasiadiabatic ramp
breaks down for d > 2 as fast modes dominate the entropy
production. Adding the full time dependence in terms of the
diffusion constant D(¢) and the source term o «(#) can change
the prefactor by order O(1), but does not affect the conver-
gence properties of the integral (B1).

APPENDIX C: ENTROPY PRODUCTION OF THE
BOLTZMANN EQUATION FOR QUASIADIABATIC
PARAMETER CHANGES

We contrast the hydrodynamic result with the prediction
of the Boltzmann theory and calculate the change of the
Boltzmann entropy of a classical system:

S=—fﬂkﬁmm> (C1)

We consider the particle-number- and energy-conserving
relaxation-time approximation

fe = f20)

T

Ofe=— (C2)
where 7 is the relaxation time. The equilibrium distri-
bution function f,?(t) = fo[ek(t), B(t), z2(t)] = e POD /7(1)
depends on the time-dependent dispersion €, (¢) (which fol-
lows a ramp protocol), but also on the time-dependent inverse
temperature B(¢) and the fugacity z(¢). Particle-number and
energy conservation is ensured by choosing B(¢) and z(¢) in
such a way that

/ﬂﬂﬂ—ﬁ%ﬂ=a (C3a)

/ddk &l — ] =o. (C3b)

Using (C2) and (C3) we obtain the entropy production rate

. LA\¢
s:-@—)/ﬁ%@ﬁMMﬁ)
T

d
- (i) ! /ddkafkln (1 + S ) (C4)
2n/ T f,? )
with §fi = fi — fko(t). To derive (C4), we used that
[d% 5 fi In () = 0 which follows from In (f?) = —Be, —
In(z) and (C3). In the limit of a slow parameter change,
>, 8~ f{ becomes smaller and smaller. We can there-
fore expand in this parameter. Terms linear in § f; vanish and
thus 9,S ~ tiz Therefore, we recover AS = 0 in the adiabatic
limit, t, — 00. The leading contribution to the total entropy
production is given by

(LN de o, )
AS~<Z) LO? /dkf]?(t). (C5)

Using the Boltzmann equation (C2) and f; &~ f, we obtain
Sfr = —T0; f,? (). A rescaling of the equilibrium distribution
f,?(f) = f,?(f t;) with the dimensionless parameter 7 =t /1,
yields

LT LN RO T
ASNZ<Z) /_oodt/dkwoc;. (Co)

To leading order in 1/f, one can use the adiabatic approxi-
mation, i.e., the assumption that the entropy remains constant
in time, S(¢) = const, to calculate 8(¢) and z(z). Using these
functions, one can directly calculate the entropy production
using Eq. (C6). The integral is finite and does not diverge as
long as €,(¢) is a continuous function. Thus, we find that the
total entropy production per volume is directly proportional to
. Note that the Boltzmann equation misses all contributions
from hydrodynamic fluctuations and therefore fails to predict
the correct entropy production in d < 2.

APPENDIX D: SCALING ANALYSIS

To evaluate the importance of terms ignored within our
analysis of the fluctuating diffusion equation, we perform a
scaling analysis with the goal to analyze the properties of the
system in the limit of ¢, — oo. The starting point is the linear
diffusion equation, Eq. (9).

We introduce dimensionless time coordinates 7 = ¢ /1, and
also spatial coordinates, ¥ = x/ «/Dt,, where some diffusion
constant D is used for dimensional reasons and to match
with the analysis given in Eq. (22). A rescaled noise term
¢ = ;i(%)l/2 is chosen so that its correlation function
is independent of . and depends only via the ratio D;;/D on
diffusion constants. With this convention one obtains dy - {; =
W Of - Z‘i, while 0,6 p; = t'-ra,«s p;. To obtain the same pref-
actor for these two terms, one has to rescale the densities
according to 8p; = 8p;(Dt,)*. Now we use that o;(7) is
proportional to the rate of change of the energy and there-
fore proportional to 1/f to define &;;(f) =t «;;(t,7) which
becomes independent of 7. The correlation of the nonequi-
librium noise 7, defined in Eq. (8) is proportional to 1/¢2.
Therefore we introduce 7, = 1, t.(t:(Dt,)"/ 2)1/ *. For t, —> 00
the linearized diffusion equation Eq. (9) obtains in the new
variables a form which is independent of ¢,:

~ Di;(f) ., .. s -
0dpi = ) —5—020p; — Y88 + ¢ - & (D)
j J

Note that we omitted the term proportional to the nonequilib-
rium noise 7 as this obtains a prefactor t.'/* and thus vanishes
for t. — oo. In the language of renormalization-group theory,
this term is “irrelevant.” Importantly, one can use the scal-
ing analysis to estimate the importance of terms omitted in
the linearized diffusion equation, Eq. (9). The higher-order
derivative term 978, for example, is suppressed by 1/(Dt,).
The “leading irrelevant perturbations” and thus the most im-
portant correction arise from the density dependence of the
diffusion constant and of the heating term proportional to
0, (800,6p) and %8,02, respectively. These terms give rise to
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corrections to Eq. (D1) proportional to

1

1 ~ ~ ~2

(Dt )4/
Both scale to zero for f, — oo, but only very slowly, especially
in d = 1. To estimate the importance of such terms for the
entropy production, it is important to note that the terms
are even in §p and the corresponding action is thus cubic
in §p. Therefore, they contribute only to quadratic order in
perturbation theory (a fact not properly taken into account
in Ref. [26]) and become equally important to corrections of
the form Wax(a p20:8p) or WS 5 which contribute to
linear order. The correction to the entropy production from
all these terms is suppressed by a factor ﬁ relative to the
leading-order term, where a is some microscopic length scale,
which cannot be obtained from our simple scaling analysis.
As the leading correction in d = 1 scales with 1/ /Dt,, the
subleading term is proportional to 1/(Dt,) which motivates
the higher-order fit used in Fig. 3.

(D2)

APPENDIX E: MOMENTUM CONSERVATION

In the main text, we focused on the entropy production
of diffusive systems. Nonlinear terms in the diffusion equa-
tion only contribute subleading corrections for these kinds
of systems as shown in Appendix D. In d = 1 we found the
leading-order power law AS t;'/?. The situation is differ-
ent if one considers a system with momentum conservation.
Here a different type of nonlinearity arises as the momentum
current (which can be identified with the pressure) obtains a
correction proportional to 8 p2. This term is relevant in d = 1
and linear hydrodynamics breaks down [27-30]. As a con-
sequence, the exponent of the entropy production AS o< #7¢
is expected to differ from the value 6 = 1/2 obtained for
diffusive systems.

To study the scaling of the entropy production in presence
of momentum conservation, we modify the dispersions of
our two-component-gas model. We replace (27) by a time-
dependent quadratic dispersion,

k2
&0 =107, (ED)

» ° o\ e simulation
10 g AN - - - linear fit
r .\ quench limit
|- .\
—2 | \.\
AS 10 g \o\
Sini i “.\
L \.\
10_3 = \\
F e,
L LN
‘e
v vl el vl sl sl Yo
1072 10! 10° 10 10% 10 10%
te/T

FIG. 5. Similar to our main result Fig. 3, the entropy production
of the two-component gas decays algebraically for 7. > 7 if mo-
mentum conservation is added (thick dots). However, the exponent
changes: From a linear fit, we find AS o< #7965 ( dashed line). In
the quench limit, the maximum entropy production of AS(f, —
0)/S™ a2 0.19 is reached (dash-dotted line). In our simulation, we
used the time-dependent quadratic dispersion (E1) and I = 0.

for particles of types X = A, B. The momentum is conserved
since umklapp scattering is absent. We still use the linear ramp
protocol JX (¢) defined by (28).

Figure 5 shows the entropy production AS as a function
of t,/t (I'=0). A fit AS o9 for large ramp times yields
6 ~ 0.65. It is tempting to relate this exponent to the expo-
nents describing the decay of various correlation functions as
a function of time in thermal equilibrium which have been
worked out by Spohn [30] for a momentum-conserving hy-
drodynamic theory. Depending on which correlation function
is considered, one obtains the exponents 2/3, 5/3, or 1/2,
typically with large subleading corrections. While our data are
remarkably well described by the exponent 2/3, further ana-
Iytic insight is required to obtain a conclusive interpretation of
the numerical data.
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