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Drag in Bose-Fermi mixtures
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We use kinetic theory to model the dynamics of a small Bose condensed cloud of heavy particles moving
through a larger degenerate Fermi gas of light particles. Varying the Bose-Fermi interaction, we find a crossover
between bulk- and surface-dominated regimes—where scattering occurs throughout the Bose cloud or solely on
the surface, respectively. We calculate the damping and frequency shift of the dipole mode in a harmonic trap
as a function of the magnetic field controlling an interspecies Feshbach resonance. We find excellent agreement
between our stochastic model and the experimental studies of Cs-Li mixtures.
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I. INTRODUCTION

Many of the largest outstanding challenges in quantum
matter lie in nonequilibrium dynamics. Cold atom experi-
ments [1–4], and the associated theories [5–9], have been
instrumental in recent progress. One important theme, ex-
plored in an experiment by the Chicago cold atom group [10],
is how energy is transferred from coherent motion into heat.
There they created interpenetrating clouds of quantum de-
generate bosons and fermions, studying the dissipation which
occurs when the clouds move relative to one another. Here
we model that drag: For repulsive Bose-Fermi interactions,
we find a crossover between surface-dominated and bulk-
dominated scattering. For attractive Bose-Fermi interactions,
we find that individual fermions can spend substantial time
inside the Bose cloud, leading to enhanced scattering. We
also model the dispersive forces, calculating how the Bose-
Fermi interactions influence the dipole mode frequencies in a
harmonic trap.

In the experiment, a small cloud of bosonic 133Cs sits
within a larger gas of fermionic 6Li. They are both trapped in a
highly anisotropic “cigar-shaped” optical trap, with an aspect
ratio of roughly 10, but due to their different polarizabilites,
the fermions experience a trap with an oscillation frequency
that is roughly five times higher than the bosons. By using
a Feshbach resonance [11], the experimentalists control both
the Cs-Cs and Cs-Li scattering lengths. Because of quantum
statistics and the short-range nature of the interaction po-
tentials, the Li atoms do not interact with one another. The
main role of the Cs-Cs interactions is to set the density of
the bosonic cloud. When the Cs-Li scattering length, aBF ,
is small, the two clouds interpenetrate, and the drag force is
proportional to the overlapping volume, boson density, and the
square of the scattering length. On the other hand, when aBF

is large and positive, fermions cannot penetrate the bosonic
cloud. In that regime, the drag force is independent of both
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the scattering length and boson density but is proportional to
the surface area of the boundary. Attractive Bose-Fermi inter-
actions lead to a regime where the fermions become trapped
for a longer time in the boson cloud, leading to enhanced
scattering effects. We calculate the drag force throughout
these crossovers, capturing all of the structures seen in the
experiment.

In addition to damping, the experimentalists observe a shift
in the dipole-mode frequency of the bosonic cloud. We argue
that this shift is due to buoyancy forces. We precede our
discussion of dissipation by first modeling these buoyancy
forces in terms of the potential felt by fermions displaced
from the bosonic cloud. An equivalent model of these forces
is given in Appendix C, where the buoyancy forces come
from the “lensing” of fermion trajectories by the bosons. This
is analogous to the mechanism behind optical tweezers, and
more closely parallels our treatment of the dissipative forces.
As would be expected, these two approaches give identical
numerical results, to within stochastic error.

In Sec. II, we describe the buoyancy forces and how they
lead to a shift in the dipole mode frequency. In Sec. III B,
we write down kinetic equations for the fermion atoms and
produce expressions for the momentum transfer from the
bosons to the fermions. There we define a coefficient λ which
characterizes the drag force. In Sec. V, we relate this micro-
scopic quantity to the disipation of the dipole mode observed
in the experiment. Section IV gives results in the limit where
the Bose-Fermi scattering is weak. Section VI gives details
of the Monte Carlo algorithm that we use for our numerical
calculations. Results are in Sec. VII. Section VIII provides
further discussion and conclusions. Three Appendixes follow.
The first describes how we self-consistently find the shapes of
the boson and fermion clouds. The second gives a technical
argument regarding the weakly interacting limit. The third
gives our alternate model of the dispersive forces.

II. BUOYANCY

Archimedes’ principle states that the buoyancy force on an
object (in our case the Bose cloud) is equal and opposite to
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FIG. 1. Schematic of the density profiles of the harmonically
trapped BEC (red) and Fermi gas (blue) for the case where the
interspecies scattering length aBF is positive. The Fermi density in
the absence of the Bose cloud, n0

F , is shown as a dashed curve. Inset:
Top-down view showing the BEC moving through the Fermi gas.

the external forces on the fluid it displaces (in our case the
fermions). Because of the small size of our Bose cloud, this
force is well approximated by

Fbuoyancy ≈ mF �NF (ωx
F )2XB. (1)

Here XB is the displacement of the boson cloud, mF is the
mass of a single fermion, and ωx

F is the harmonic trapping
frequency of the fermions along the direction of the displace-
ment. We use a mean-field model to calculate the number
of excess fermions �NF = ∫

nF (r) − n0
F (r) d3r, where n0

F
is the Fermi density in the absence of the bosons and the
integral is taken over the region occupied by the bosons. For
sufficiently small velocities and displacements, �NF can be
taken from the equilibrium situation. Depending on the sign
of the interactions, �NF may be positive or negative.

Figure 1 shows a schematic of the expected densities.
Within the Thomas-Fermi approximation, the fermion density
profile is

nF = (2mF )3/2

6π2h̄3 [μF − VF − gBF nB]3/2. (2)

Here, and in similar expressions in the rest of the paper, one
should interpret [x]3/2 as max(x, 0)3/2. The Fermi trapping
potential is VF = VF (r) = (1/2)mF [(ωx

F )2x2 + (ωy
F )2y2 +

(ωz
F )2z2], and nB = nB(r, t ) is the equilibrium boson density.

The fermion chemical potential is μF . The coupling constant
gBF = 4π h̄2aBF /μ is tuned via a Feshbach resonance. The
reduced mass is μ−1 = m−1

F + m−1
B . The equilibrium boson

density is self-consistently found by numerically solving the
Gross-Pitaevskii equation,(

− h̄2∇2

2mB
+ VB + gBBnB + gBF nF

)
ψ = μBψ (3)

with the Bose trapping potential being VB = VB(r) =
(1/2)mB[(ωx

B)2x2 + (ωy
B)2y2 + (ωz

B)2z2], and the boson chem-
ical potential is μB. The details of the procedure are in
Appendix A. Similar analyses can be found in Refs. [12,13].

We use the experimentally relevant values ωx
B = 2π ×

6.65 Hz, ω
y
B = ωz

B = 2π × 118 Hz, ωx
F = 2π × 34 Hz,

and ω
y
F = ω

y
F = 2π × 320 Hz. The chemical potentials are

set by requiring that the total number of fermions and
bosons are NF = 20 000 and NB = 30 000. For the scattering
lengths, we take the s-wave Feshbach resonance curves to

FIG. 2. Dipole mode frequency shift δω for a small boson cloud
inside of a larger Fermi gas in terms of the scattering length aBF ,
corresponding to the experimental parameters in Ref. [10]. Small
red dots show the buoyancy model from Sec. II. Black points with
error bars show the experimental data. The analytic weak-interaction
expression, Eq. (7), is shown as a red line.

be aBB = 1602.75a0{1 − [60.53/(B − 820.37)]} and aBF =
−60a0[2/(B − 893) + 1] respectively [14], where a0 is the
Bohr radius and B is the applied external magnetic field in
Gauss. We calculate profiles for 888 < B < 896, roughly cor-
responding to the range of fields used in the experiments.

We relate these density profiles to the frequency shift of the
boson dipole mode by positing that the �NF excess fermions
move with the bosons. The equation of motion for the x
position of the boson cloud will then be

(NBmB + �NF mF )ẌB = −(NBmBω2
B + �NF mF ω2

F )XB. (4)

Assuming that �NF mF � NBmB and ω2
F � ω2

B, then to low-
est order in these quantities, the shift in the dipole mode
frequency is

δω = 1

2

�NF mF

NBmB

ω2
F

ωB
. (5)

The red dots in Fig. 2 show the resulting shift. As described
above and in Appendix A, we find �NF by self-consistently
solving a Gross-Pitaevskii equation coupled with a Thomas-
Fermi model for the fermions. Numerical values for all the
parameters are given above.

The small scattering length (i.e., weak interaction) behav-
ior can be understood analytically. To leading order,

nF = n0
F

(
1 − 3gBF nB

2μF

)
, (6)

where we have assumed that the Bose cloud is much smaller
than the Fermi cloud. Hence, �NF is proportional to aBF and
the total number of bosons. The resulting frequency shift is

δω ≈ −
(

μF m5
F

8

)1/2(
(ωx

F )2

π2h̄3mBωx
B

)
gBF . (7)

This weak coupling result is shown as a solid red line in Fig. 2.
The number of excluded fermions increases with aBF , and

hence the frequency shift becomes more negative as aBF in-
creases. The shift saturates at large positive aBF where the
boson cloud excludes all fermions within their volume. At
negative scattering length, there is instead an accumulation of
particles, and the frequency shift is predicted to be positive.
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While some of this structure is reproduced in the ex-
perimental data, there are notable differences. For instance,
the experimental data approaches the weak-interaction limit
at very high scattering lengths (aBF > 800a0) and very low
scattering lengths (aBF < −500a0). We believe that these
deviations are due to thermal effects: Inelastic collisions
lead to significant heating near the Feshbach resonance [15],
and the experimentalists report strong deviations from the
zero-temperature density profiles for these extreme scattering
lengths. At high temperatures, the boson density drops, and in
the limit of low boson densities our theory predicts that the
frequency shift should approach the weak-coupling line. We
do not attempt a detailed modeling of the thermal profiles,
as we do not have accurate estimates of the experimental
temperature.

One also sees deviations between the theory and exper-
iment when aBF ∼ 500a0 and when aBF ∼ −300a0. These
structures indicate that some extra physics is occurring in
the experiments. Possible ideas include the excitation of a
collective mode or hydrodynamic effects like the generation
of a wake or shockwave in the Fermi gas. It is also possible
that the excess fermions are not moving in lockstep with the
bosons. The source of these behaviors might be elucidated by
carefully studying the in situ density profiles.

III. DRAG

A. Setup

Having modeled the dispersive forces in Sec. II, we now
turn to the central focus of this paper, modeling the dissipative
forces.

We calculate the force that the fermions exert on the boson
cloud by following the trajectories of individual fermions.
Since the bosons are much heavier than the fermions, their
recoil can be neglected. We add the impulses that each of the
fermions experience, and use Newton’s third law to deduce
the force on the boson cloud. For this calculation, we neglect
all external forces on the atoms, treating the fermion cloud as
uniform, and taking the boson cloud to have the equilibrium
shape calculated in Sec. II.

As in the experiment, we take the boson velocity �v = vx̂
to point in the x̂ direction, which is aligned with the long axis
of the cloud. Under these circumstances, the net force on the
bosons will be in the x̂ direction, F̃ = F x̂. In Sec. III B, we
calculate the coefficient of proportionality between force and
velocity, F = −λv.

B. Kinetics

We find it convenient to work in the frame where the
bosons are stationary. Thus, we consider a stationary cloud of
bosons with density nB(r) surrounded by a Fermi gas, whose
center of mass is moving with velocity v. As illustrated in
Fig. 3, a single fermion of momentum h̄ki is incident on the
bosonic cloud. The fermion leaves with momentum h̄kf , and
the impulse imparted on the boson cloud is thus h̄(ki − kf ).
The total force is calculated by taking the total impulse im-
parted by all such collisions during time �t and dividing by
�t .

FIG. 3. Schematic depicting a trajectory of a fermion incident
on the boson cloud. Two collision events are shown as kinks in the
trajectory. Vectors ki, kf , and r⊥ are shown.

As Fig. 3 shows, the trajectory is characterized by the
incoming wave vector and the “impact parameter” r⊥, which
is the perpendicular displacement from the center of the cloud
to the ray defining the path of the incoming fermion. Because
of the nature of scattering, the motion of the fermion in the
bosonic cloud is stochastic: There is some probability that
the fermion scatters 0, 1, 2, . . . times. After each scattering
event, the fermion moves in a random direction. Because the
bosons are much heavier than the fermions, the magnitude of
the fermion momentum (in the rest frame of the Bose cloud) is
the same before and after scattering. Between scatterings, the
fermion moves in the mean-field potential from the bosons.
We define P(ki → k f , r⊥) as the probability density for a
particle to leave with momentum kf , given that it entered with
momentum ki, and impact parameter r⊥.

In a time �t , the number of fermions with momentum h̄ki
that will enter the cloud, with impact parameter within cross
section d2r⊥, is �N = f (ki)�V . Here f (ki ) is the fermion
phase space density, and �V = h̄|ki|�t d2r⊥/m f is the vol-
ume of space traced out by these particles during the time
interval. The mass of each fermion is mF . Consequently, the
total impulse can be expressed as

�p =
∫

d3ki

(2π )3
f (ki)

h̄|ki|
mF

�t
∫

d2r⊥
∫

d3kf

× P(kf → ki, r⊥)h̄(kf − ki). (8)

In equilibrium, f (ki) is a Fermi function, which, as long as
kBT is small compared to the Fermi energy, can be modeled
by its zero-temperature form

f (bmki ) = �
(∣∣∣ki − mF v

h̄

∣∣∣ − kfermi

)
, (9)

where �(x) is the step function. Linearizing for small v, f =
f0 + δ f with

δ f (ki) = mF v · ki

h̄|ki| δ(|ki| − kfermi), (10)

where δ(x) is the Dirac δ function. By symmetry, Eq. (8)
vanishes if we replace f with f0. Therefore, to linear order,
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�p = −λv�t with

λ = −
∫

d3ki

(2π )3
δ(|ki| − kfermi)(v̂ · ki)

∫
d2r⊥

×
∫

d3kf P(ki → kf , r⊥)h̄(kf − ki) · v̂. (11)

In Sec. VI, we explain how to sample from P and calculate λ

using a Monte Carlo algorithm. Section IV analytically calcu-
lates this integral in the limit of weak Bose-Fermi interactions.
Section V relates λ to the macroscopic observables.

Interactions between the Bose and Fermi clouds play two
roles here: (1) The fermions feel a mean-field potential from
the bosons, which causes their trajectories to curve. These
mean-field forces are proportional to gBF . (2) The fermions
can experience hard-scattering events. The cross section for
these events are proportional to g2

BF . In our analytic treatment
of the weak-interaction limit, we are able to separately con-
sider the contributions, but in our numerics in Sec. VI we
include both these effects together. This decomposition into
mean-field and scattering terms is standard [16].

IV. WEAK INTERACTIONS

Here we calculate λ in the limit of small aBF . We will find
that the leading behavior is

λ = 2h̄k4
fermi

3π
NBa2

BF . (12)

The lowest order contribution to the drag coefficient λ

comes from scattering and is therefore proportional to the
scattering cross section σ = 4πa2

BF . The result is proportional
to NB, as in this limit the probability of scattering off each
boson is independent. The dependence on kfermi has two com-
ponents: (1) The density of fermions is proportional to k3

fermi
and (2) their average velocity is proportional to kfermi.

In the following two subsections, we derive Eqs. (12) by
first showing that the contributions from mean-field effects
can be neglected: Section IV A shows the linear in aBF terms
vanish, and Appendix B shows that the quadratic terms also
vanish. Section IV B calculates the leading-order scattering
contributions, which give Eq. (12).

A. Contributions from the mean field potential

We consider the trajectory of a single fermion, defining
k(t ) to be its momentum as a function of time. The position of
the fermion is r(t ). In the absence of scattering, these obey

dk
dt

= −1

h̄
∇V (r(t )), (13)

dr
dt

= h̄k(t )

mF
, (14)

where V (r(t )) = gBF nB(r(t )). We expand k(t ) and r(t ) in
powers of gBF as

k(t ) = ki + gBF k(1)(t ) + g2
BF

2
k(2)(t ) + · · · , (15)

r(t ) = r(0)(t ) + gBF r(1)(t ) + g2
BF

2
r(2)(t ) + · · · , (16)

which define the approximants k(1) and r(1). Integrating the
zeroth-order term yields

r(0)(t ) = ri + h̄kit/mF . (17)

To this order, the momentum is a constant. Since the zeroth-
order path is a straight line, the final momentum can then be
expressed as a geometric integral

gBF k(1)(T ) = −
∫ T

0
dt

gBF

h̄
∇nB(r(t )) (18)

= −
∫

dr‖
mF gBF ∇nB(r)

h̄2|ki|
, (19)

where we have expressed the integral in terms of r‖, the
distance fermion has moved along the direction of motion:
r = r(0) = r⊥ + k̂ir‖.

When we substitute Eq. (19) into Eq. (11), the probability
distribution becomes a δ function, P(ki → kf , r⊥) = δ3(kf −
ki + gBF k(1)(T )), and the kf integral is trivial.

For ease of notation, we define∫
|ki|=kfermi

d2ki ≡
∫

d3ki δ(|ki| − kfermi) (20)

so that we may write

λ =
∫

|ki|=kfermi

d2ki

(2π )3
(v̂ · ki)

∫
d2r⊥

∫ L

0
dr‖

mF gBF v̂ · ∇nB(r)

h̄|ki|

=mF gBF

h̄

∫
|ki|=kfermi

d2ki

(2π )3
(v̂ · k̂i )

∫
d3r v̂ · ∇nB(r). (21)

In the second line, we have combined the integrals over r⊥
and r‖ into a volume integral, which is independent of ki.
The integrand in Eq. (21) is odd in ki, and hence the integral
vanishes. Thus, we see that there is no mean-field contribution
to λ which is linear in gBF .

B. Contributions from scattering

Since there are no linear or quadratic contribution to λ

from the mean field (see Sec. IV A and Appendix B), we
can neglect the mean field in calculating the leading-order
contribution from scattering. Thus, we treat the fermion tra-
jectory as a sequence of straight-line paths between scattering
events. In the weakly interacting limit, there will be at most
one scattering event. The probability that a fermion will have
a scattering event when it travels from position r to r + dr
is dP = σnB(r)dr. For a given incoming wave vector and
transverse position, the total probability of a scattering will
be

Ptotal =
∫

d3kf P(ki → kf , r⊥) =
∫

dr‖ σnB(r), (22)

where, as before, r‖ is the component of the position parallel to
the incoming wave vector, r = r(0) = r⊥ + k̂ir‖. The scatter-
ing event will be isotropic, with the direction of kf uniformly
distributed on a sphere of radius kfermi. Thus,∫

d3kf P(ki → kf , r⊥)kf = 0, (23)
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∫
d3kf P(ki → kf , r⊥)ki = Ptotalki. (24)

Using these expressions in Eq. (11), we find

λ = h̄
∫

|ki|=kfermi

d2ki

(2π )3
v̂ · ki

∫
d2r⊥

∫
dr‖ σnB(r) v̂ · ki (25)

but
∫

d2r⊥
∫

dr‖ nB = ∫
d3r nB = NB, the total number of

bosons, and so we find

λ = h̄
∫

|ki|=kfermi

d2ki

(2π )3
(v̂ · ki)

2 σNB = h̄σNB

3

∫
|ki|=kfermi

d2ki

(2π )3
|ki|2

= h̄k4
fermiσNB

6π2
= 2h̄k4

fermia
2
BF NB

3π
, (26)

which is independent of the geometry of the boson cloud, as
expected in this weak scattering regime.

V. MACROSCOPIC DYNAMICS

We now connect the damping coefficient λ to the experi-
mentally observed decay of the dipole mode. If we neglect the
buoyancy forces, which are small, the equation of motion of
the center of mass of the boson cloud XB and the center of
mass of the fermionic gas XF is

(
MBẌB

MF ẌF

)
=

(−MBω2
BXB + FFB

−MF ω2
F XF − FFB

)
, (27)

where MB = NBmB and MF = NF mF are the total masses of
the bosons and fermions. FFB is the force on the bosonic cloud
from the fermionic cloud,

FFB = −λ(ẊB − ẊF ). (28)

Equation (27) is easily integrated. In particular, for the experi-
mentally relevant case where ωx

F and ωx
B are very different, the

normal modes consist of either the bosons moving with the
fermions stationary or the fermions moving with the bosons
stationary. These modes have frequencies near ωF and ωB.
Their damping rates are


F = λ

2MF
, 
B = λ

2MB
. (29)

Furthermore, NB ≈ NF and mB/mF = 133/6, so MB � MF

and hence 
F � 
B. The Fermion cloud’s motion rapidly
damps out. The experiment directly measures 
B, which is
related to the microscopic coefficient λ through Eq. (29).

VI. MONTE CARLO SIMULATION

To sample the fermion trajectories, we convert Eq. (11)
into a Monte Carlo sum. We write ki and kf in spherical
coordinates (|ki|, θ, φ) and (|kf |, θout, φout ). We align the po-
lar axis with the cloud, which is also aligned with v. Hence,
v̂ · ki = |ki| cos θ . Because of the cylindrical symmetry of the
cloud, we can always choose φ = 0. We denote the long axis
of the cloud as x̂ and take ki to lie in the x̂-ŷ plane. After

FIG. 4. Representative fermion trajectories in different regimes:
(a) small scattering lengths (shown: aBF = 60a0), (b) large positive
scattering lengths (shown: aBF = 340a0), and (c) large negative scat-
tering lengths (shown: aBF = −340a0). Red ellipsoids represent the
Thomas-Fermi radii of the boson cloud. Displayed trajectories begin
in the x-z plane with ky = 0 and positive kz, and are projected to 2D
for visualization. Scattering events are labeled with blue circles.

straightforward simplification, we have

λ = h̄k4
fermi

(2π )2

∫ 1

−1
d (cos θ )

∫
d2r⊥

∫
d3kf P(ki → kf , r⊥)

cos θ (cos θout − cos θ ).
(30)

We parametrize the impact parameter r⊥ as

r⊥ = r1ẑ + r2k̂⊥, (31)

where k̂⊥ is a unit vector in the x̂-ŷ plane, which is perpen-
dicular to ki. We denote the radius of the Bose cloud in the x̂
direction as a, and its radius in the other two directions as c.
We numerically find c and a from our calculation in Sec. II.

We then calculate λ in Eq. (30) by randomly generating a
set of trajectories. We first choose cos θ and r1 uniformly in
[−1, 1] and [−c, c] respectively. We then choose r2 uniformly
in [−ξ (θ, r1), ξ (θ, r1)], where

ξ (θ, r1) = 1

c

√
c2 − r2

1

√
c2 cos2(θ ) + a2 sin2(θ ). (32)

These bounds are chosen to give the tightest rectangular aper-
ture which fully contains the Bose cloud. The drag coefficient
is then

λ = h̄k4
fermi

2π2

1

N

N∑
j=1

Aj cos θ j (cos θout, j − cos θ j ), (33)

where j denotes the sample index, N is the total number of
samples, and Aj = 4cξ (θ j, r1, j ) is the area of the aperture.
Each sample is independent, so errors are simple to estimate.

To calculate the trajectory, and hence θout, j , we use a tem-
poral finite difference scheme. We start with an initial r = r0
that is outside of the cloud and set k0 = ki. We choose a
small time step �t . In each time step, we use the symplec-
tic algorithm, updating ri+1 = ri + (h̄/m f )�tki and ki+1 =
ki − ∇ Vmf (ri+1)�t/h̄. We then calculate the probability of
scattering during that time step, p = σnB(ri )(h̄/m f )�tki. We
generate a random number s ∈ [0, 1], and if s < p we rotate
k to point in a random direction. We repeat until the fermion
exits the cloud.
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FIG. 5. Drag constant 
 as a function of of the Bose-Fermi
scattering length aBF . Red points with small error bars represent
our Monte Carlo calculations. Black points with large error bars
correspond to the experimental data from Ref. [10]. The analytic
weak-interaction limit is shown as a solid red line. For the Monte
Carlo results, each point represents 10000 samples of fermion tra-
jectories, with error bars corresponding to the standard error of the
mean.

Representative trajectories are shown in Fig. 4. For small
scattering lengths, trajectories are nearly straight, with rare
scattering events. For large repulsive scattering lengths, the
trajectories are highly curved, with the fermions unable to
penetrate far into the Bose cloud. Despite the large cross
sections, scattering events are relatively rare—as the curved
trajectories mean that the fermions spend very small amounts
of time in the cloud. For large attractive interactions, one
occasionally sees spiral trajectories where the fermions spend
large amounts of time in the Bose cloud. These lead to many
more scattering events.

VII. DRAG CONSTANT RESULTS

The results of the simulation from Sec. VI, are shown in
Fig. 5, along with the experimental results from Ref. [10]. For
small scattering lengths, the drag coefficient is quadratic in
aBF , agreeing with what one expects from our analytic weak
coupling calculation.

At large positive scattering length, the drag constant satu-
rates, representing a crossover to a surface-dominated regime.
Full saturation is not achieved in this figure. For attractive in-
teractions, the numerical data largely track the weak-coupling
curve.

There is good quantitative agreement between the exper-
iment and our simulation, with the exception of the regime
where aBF is between −400 and −200a0. There the experi-
mental data show a pronounced plateau, which is not seen in
our numerics. There is a similar anomaly in the the frequency
shift data (Fig. 2). We therefore hypothesize that these two
features may be related in some way. Note that the other
anomalies from Fig. 2 do not appear to have counterparts in
Fig. 5.

VIII. SUMMARY AND OUTLOOK

We used a simple kinetic model to quantitatively explain
the behavior of a Bose condensate of heavy atoms immersed
in a larger cloud of quantum degenerate fermions.

We treated the Bose condensate as a monolithic object,
characterized by its center-of-mass position. We described the
fermions via a quantum Boltzmann equation, which leads to
a fluid mechanics picture of the dynamics. For example, the
Bose cloud experiences a buoyancy force, which we model us-
ing Archimedes principle. The bosons also experience a drag
force, which we calculate through a Monte Carlo algorithm
that follows the trajectories of individual fermions. There are
natural parallels with classical models of Brownian motion. It
is profoundly satisfying that these simple mechanical models
are able to quantitatively describe dissipation in a Bose-Fermi
mixture. We believe that such models can be used to describe
other types of experiments involving Bose-Fermi mixtures
[17–19], as well as other types of cold-atom experiments with
nonequilibrium dynamics.

It is exciting to contemplate the ways in which this setup
can enable other explorations. For example, the Fermi gas
would be useful in damping out any excitations that are caused
by transferring the bosons into an optical lattice [20,21]. Al-
ternatively, if one stirred the Fermi gas, the dissipative forces
would bring the BEC into equilibrium in the rotating frame,
producing a vortex lattice. More generally, engineered dis-
sipation is a powerful tool, which we are just beginning to
explore.
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APPENDIX A: SIMULATION OF BOSON AND FERMION
DENSITY PROFILES

Here we give details about how we numerically solve
Eqs. (3) and (2). We work in cylindrical coordinates, with the
symmetry axis labeled as x̂. We choose a simulation box that
is sufficiently large to enclose the entire Fermi cloud. We then
set up a 100 × 100 grid, and initialize the boson wave function
ψ and the Fermi density nF to the values they would take in
the absence of gBF .

First fixing nF , we optimize ψ using gradient descents,
minimizing the energy of the system (this has been done be-
fore in Refs. [13,22]). We then update nF via Eq. (2), adjusting
μF to keep NF fixed. We continue to cycle through these
two steps until convergence. Typically about 10 iterations are
needed. Figure 6 shows a typical result for a moderately strong
repulsive Bose-Fermi interaction strength. The Fermi density
vanishes in the central region, rises as one approaches the edge
of the Bose cloud, then falls again as one moves toward the
edge of the trap. The Bose density simply falls monotonically.

APPENDIX B: SECOND-ORDER EXPANSION OF λ

Here we continue the argument from Sec. IV A and show
that there are no mean-field contributions to the damping at
second order in λ.
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FIG. 6. Simulated density profiles of bosons (top, red) and fermions (bottom, blue) for aBF = 340a0. The long axis is x, and the perpen-
dicular direction is r. Lighter colors correspond to higher densities. Note the nonmonotonic behavior of the Fermi density, as schematically
shown in Fig. 1.

Recall that we have introduced the perturbative expansions

k(t ) = ki + gBF k(1)(t ) + g2
BF

2
k(2)(t ) + · · · , (B1)

r(t ) = r(0)(t ) + gBF r(1)(t ) + g2
BF

2
r(2)(t ) + · · · . (B2)

Substituting these into Newton’s laws yields

dkμ

dt
= −1

h̄
∇μV (r) (B3)

= −1

h̄
∇μV (r(0) ) −

∑
ν

gBF
1

h̄
r (1)
ν ∇μ∇νV (r(0) ) + · · · .

The potential V is proportional to gBF , and hence

k(2)
μ = − 1

mF

∫ t

0
dt1

∑
ν

r (1)
ν ∇μ∇νV

(
r(0)) (B4)

=
∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3 ∇μ�(r(0)(t3)), (B5)

where we used

r(1)(t1) = − 1

mF

∫ t1

0
dt2

∫ t2

0
dt3 ∇V (r(0)(t3))

to get

�(r) = 1

h̄mF
|∇V (r)|2. (B6)

The second-order contribution to λ is then

λ(2) ∝
∫

|ki|=kfermi

d3ki

(2π )3
(v̂ · ki)

∫
d2r⊥F (B7)

with

F =
∫ T

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3 v̂ · ∇�(r(0)(t3)). (B8)

We swap the order of integrals, to make the inner integral

I =
∫

d2r⊥∇�. (B9)

The gradient can be broken into parts parallel and perpendic-
ular to ki: ∇ = ∇⊥ + ∇‖. The integral of the perpendicular
part vanishes by Stoke’s theorem. The parallel part can also

be shown to vanish by converting the t integrals into spatial
integrals, and using the fundamental theorem of calculus.

APPENDIX C: LENSING MODEL OF FREQUENCY SHIFT

Here we give an alternative model for the frequency shift
of the boson dipole mode, which is based directly upon kinetic
theory. In particular, we will show that if the boson cloud
is immersed in a Fermi cloud of nonuniform density, it will
experience a force. Following our treatment of the drag forces
in Sec. III, we will calculate this force as the third law pair to
the forces experienced by individual fermions incident on the
cloud.

As illustrated in Fig. 4, when gBF > 0, fermions which hit
the right side of the Bose cloud tend to bend to the right.
Conversely, fermions which hit on the left side tend to bend
to the left. Thus, if there are more fermions on the right then
the bosons will experience a net force to the left. The opposite
happens when gBF < 0.

This approach is another way of thinking of buoyancy:
Buoyancy forces can be calculated by adding up the forces
from fluid pressure. When the pressure is nonuniform (as is
the case with a density gradient) there will be a net force.

Within error bars, this kinetic approach agrees with the
buoyancy model.

1. Linearizing

We linearize the fermion trap potential around the center of
the Bose cloud, so that the potential felt by the fermions is

VF (r) = gBF nB(r) + Fx, (C1)

where nB is the equilibrium configuration of the bosons, cal-
culated in Appendix A. The force F comes from the external
potential, leading us to take

F = mF ω2
F XB, (C2)

where XB, the center of mass of the bosons, is considered fixed
during our calculation of the fermion trajectories.

Similar to the argument in Sec. III B, we will calculate the
momentum transferred from the bosons to the fermions in a
time �t and to linear order in F will have �p = χF�t . The
dimensionless proportionality constant χ will be a function of
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FIG. 7. Dipole mode frequency shift plot identical to Fig. 2, but
with the lensing model predictions added as blue points. Each point
represents 10 000 samples of fermion trajectories, with error bars
representing the standard error of the mean. The lensing model gives
predictions that are consistent with the buoyancy model.

scattering lengths. Including the drag force, the equation of
motion for the boson cloud is

ẌB = −ω2
BXB − 2
ẊB + χm2

F ω2
F XB

MB
. (C3)

The frequency shift of boson cloud oscillations is therefore
proportional to χ :

δω ≈ − m2
F ω2

F

2ωBMB
χ. (C4)

Consider a fermion which is initially at position R with
momentum h̄ki. In a stochastic process, it will interact with
the boson cloud. We denote the average momentum transfer as
G(F )

ki,R
. The F dependence comes from the fact that the external

force causes the fermion’s trajectory to curve. We can find the
total momentum transfered to the boson cloud in time �t as

�p =
∫

d3ki

(2π )3

∮
�

d2R
h̄|ki|
mF

G(F )
ki,R

f

(
k2

i

2mF
+ Fx

)
�t .

(C5)
The launch points lie on a closed surface �, which encloses
the boson cloud, and the result should not depend on the
choice of surface. In our simulation, we choose to use a cylin-
drical “box” that is large enough to enclose the boson cloud
fully. The unit vector n̂ points perpendicular to this surface.
As used elsewhere, f (E ) = θ (μF − E ) is the Fermi function.
The combination (h̄|ki|/mF )�t is a geometric factor which
gives the volume of particles which pass through � in time
�t .

We linearize for small F to arrive at χ = χ1 + χ2, where

χ1 =
∫

d3ki

(2π )3

∮
�

d2R
h̄|ki|
mF

G(0)
ki,R

x δ

(
k2

i

2mF
− μ

)
, (C6)

χ2 =
∫

d3ki

(2π )3

∮
�

d2R
h̄|ki|
mF

∂G(F )
ki,R

∂F
f

(
k2

i

2mF
+ Fx

)
. (C7)

Here χ1 involves particles at the Fermi surface and is related
to the effect of F on the distribution function. Conversely, χ2

involves particles within the Fermi sea and is related to the
effect of F on their trajectories. Note that each component

above depends on x, the x coordinate of each fermion’s launch
point, and both χ1 and χ2 depend on the choice of launch
surface �. However, this dependence should cancel out in the
final result for χ .

2. Calculation of G(0)
ki,R

and ∂G(F )
ki,R

/∂F

Consider the trajectory of a fermion moving through the
boson cloud. At a time t , the fermion is specified by positions
r(t ) and p(t ). Further, let t = ti be the time at the start of the
trajectory and t = t f be the end time of the trajectory in the
simulation. To first order in F , we can linearize both variables:

r(t ) = r0(t ) + Fδr(t ) + O(F 2), (C8)

p(t ) = p0(t ) + Fδp(t ) + O(F 2). (C9)

That is, r0(t ) and p0(t ) are the trajectories in the absence of
F , while Fδr(t ) and Fδp(t ) are the first-order corrections. We
substitute these into Newton’s laws: ∂r/∂t = p/m, ∂p/∂t =
−∇VF (r) = −gBF ∇nB(r) − Fx̂ and expanding to linear order
in F :

∂p0

∂t
+F

∂δp
∂t

(C10)

= −gBF (∇nB(r0) + F (δr · ∇)∇nB(r0)) − Fx̂.

Separately equating terms which are independent of F and
those which are of first order in F, we get

p0(t + δt ) = p0(t ) − gBF δt ∇nB(r0),

δp(t + δt ) = δp(t ) − δt (gBF (δr · ∇)∇nB(r0) + x̂),

r0(t + δt ) = r0(t ) + δt p0(t + δt )/mF ,

δr(t + δt ) = δr(t ) + δt δp(t + δt )/mF . (C11)

As in Sec. VI, we use these stepping rules to evolve the
fermion trajectory, including scattering through a stochastic
process. We then calculate

G(0)
ki,R

= p0(t f ) − p0(ti ), (C12)

∂G(F )
ki,R

∂F
= δp(t f ) − t f x̂. (C13)

We evaluate Eqs. (C6) and (C7) as a Monte Carlo sum:

χ1 = h̄k3
fermi

2π2mF

1

N

N∑
i=1

Aixi G(0)
ki,R

, (C14)

χ2 = h̄kfermi

2π2mF

1

N

N∑
i=1

Ai|ki|3
∂G(F )

ki,R

∂F
, (C15)

where i denotes the sample index, N is the total number of
samples, xi is the x coordinate of each sample’s launch point,
and Ai = 4cξ (θi, r1,i ) is the area of the aperture as described in
Sec. VI. In choosing the sample parameters, we again choose
cos θ and r1 uniformly in [−1, 1] and [−c, c] respectively,
and then choose r2 uniformly in [−ξ (θ, r1), ξ (θ, r1)]. We use
separate trajectories for calculating χ1 and χ2 sums. For χ1,
|ki| = kfermi for all samples; while for χ2, |ki| is chosen uni-
formly in [0, kfermi]. G(0)

ki,R
and ∂G(F )

ki,R
/∂F are then calculated

using the expression in Eq. (C11).
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Finally, we calculate the frequency shift via Eq. (C4).
Figure 7 compares the results of this lensing model to the

buoyancy model. They agree within error bars, and both devi-
ate from the experimental data in the same way.
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