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Modeling Rydberg gases using random sequential adsorption on random graphs
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The statistics of strongly interacting, ultracold Rydberg gases are governed by the interplay of two factors:
geometrical restrictions induced by blockade effects and quantum mechanical effects. To shed light on their
relative roles in the statistics of Rydberg gases, we compare three models in this paper: a quantum mechanical
model describing the excitation dynamics within a Rydberg gas, a random sequential adsorption (RSA) process
on a random geometric graph (RGG), and a RSA process on a decomposed random intersection graph (DRIG).
The last model refers to choosing a particular subgraph of a mixture of two other random graphs. Contrary to the
first two models, it lends itself for a rigorous mathematical analysis, and it is built specifically to have particular
structural properties of a RGG. We establish for it a fluid limit describing the time evolution of the number
of Rydberg atoms and show numerically that the expression remains accurate across a wider range of particle
densities than an earlier approach based on an RSA process on an Erdős-Rényi random graph (ERRG). Finally,
we also develop a heuristic using random graphs that gives a recursion to describe a normalized pair-correlation
function of a Rydberg gas. Our results suggest that even without dissipation, on long timescales the statistics are
affected most by the geometrical restrictions induced by blockade effects, while on short timescales the statistics
are affected most by quantum mechanical effects.
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I. INTRODUCTION

Ultracold gases with atoms in highly excited states—
Rydberg atoms—have attracted substantial interest over
recent years for their applications such as quantum computing
and the study of nonequilibrium phase transitions [1–5]. Ryd-
berg atoms are significant because a powerful Van der Waals
interaction causes the atoms to feel mutual interactions over
mesoscopic distances (tens of micrometers); a single Rydberg
atom in a gas causes energy level shifts that make it impossible
for neighboring atoms to excite to the same state. This dipole
blockade leads to intriguing networked and complex spatial
behavior, resulting in effects linked to fundamental problems
in condensed matter physics [1,3,6–11]. For an overview of
applications, we refer readers to Ref. [12].

The computational effort to accurately simulate the quan-
tum mechanical behavior of Rydberg gas grows exponentially
in the number of atoms. Exact numerical calculations are
commonly limited to the order of ten atoms, although ap-
proximations [13–15] including, e.g., state space truncation
techniques [16–19] can be used to raise this number. Theo-
retically, there has therefore also been focus on models that
are more tractable: for example, rate equations were pro-
posed to describe the Rydberg gas [20–22]; the Mandel Q
parameter was studied under reversible dynamics [23] and
using random sequential adsorption (RSA) processes on an
Erdős-Rényi random graph (ERRG) [24]; and the physics of
Rydberg atoms has e.g., been related to a nonlinear optical

polarizability model [25] as well as glassy soft-matter models
[26,27]. Also, ties to classical statistics can be found in re-
lated Ising models, dissipative approaches, and open quantum
systems [28–31].

The focus of this paper is on a generalized variant of the
RSA process described in Ref. [24], which is designed to
mimic the Rydberg gas even more closely. Recall that the
canonical, continuum two-dimensional RSA process is that
of randomly throwing disks of radius r > 0 one by one in a
two-dimensional box, and in such a way that the disks do not
overlap [32,33]. The spatial correlations in RSA processes are
notoriously challenging to analyze on such continuum, there
being only an exception for the one-dimensional case (a line)
[34]. To bypass this mathematical difficulty, one may opt to
conduct RSA on a random graph instead; and in fact, such
approach was used to provide a closed-form expression for the
Mandel Q parameter of a Rydberg gas as well as a description
of the average number of Rydberg atoms over time [24]. The
comparison to experiments there shows that such model is ca-
pable of describing the statistics of a Rydberg gas accurately.

This accuracy is surprising in light of the facts that RSA
and random graphs both belong to the realm of classical prob-
ability theory, and the vertices of, e.g., the ERRG [35] have
no property corresponding to a physical position of a particle.
This raises two fundamental questions. First, if we purposely
construct a random graph that shares structural properties of
the Rydberg gas, how effective can a RSA process on it be
at describing the excitation dynamics of the Rydberg gas?
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If there is a natural graph structure underlying the Rydberg
atoms then the random graph should be designed to capture
it. This is, however, challenging to achieve, because most
random graphs do not have a geometrical structure (usually
in order to remain mathematically tractable), and as we add
structure we typically complicate the analysis. Second, which
factor dominates the statistics of a Rydberg gas? When a
Rydberg gas is carefully created in a laboratory so as to fully
maintain its quantum mechanical behavior, the statistics of the
Rydberg atoms will be influenced by the interplay of two fac-
tors: geometrical restrictions induced by blockade effects, and
quantum mechanical effects. If geometrical restrictions pri-
marily dictate the excitation dynamics of Rydberg gases, then
even in a regime in which the Rydberg gas behaves completely
quantum mechanically and without dissipation, a classical
model capturing primarily the geometrical restrictions may
still be effective in accurately describing the Rydberg gas’s
statistics.

We aim to shed light on these questions by comparing
the statistics predicted by different models. Concretely, we
implement numerically:

A. a quantum mechanical model of a Rydberg gas
(QMMRG) and

B. a RSA process on a random geometric graph (RGG)
in order to study the influence of quantum mechanical

effects relative to the geometrical restrictions induced by
blockade effects. We compare then the statistical predictions
of models A and B to the statistical prediction of

C. a RSA process on a decomposed random intersection
graph (DRIG),

an alternative type of random graph purposely constructed
to more accurately describe a RGG than an ERRG while si-
multaneously maintaining mathematical tractability. The idea
here is that model C is constructed to mimic model B as
closely as possible and to have mathematically analyzable
features, while in turn model B is constructed to mimic
model A.

Models A and B are challenging to mathematically
analyze—it is hard, if not impossible, to derive an analytical
expression for, e.g., the ultimate number of Rydberg atoms.
Model C on the other hand lends itself better for a rigorous
analysis. For example, Theorem 1 in this paper gives an im-
plicit expression for the ultimate number of excited particles
on a DRIG when conducting RSA on it. A fortiori, Theorem
3 proves that the fluid limit of RSA on a DRIG is given
by a system of integral equations. Because model C mimics
model B more accurately than an ERRG, this automatically
also provides an improved approximation (see Fig. 4 below)
to the ultimate number of Rydberg atoms in model A when
compared to the closed-form expression derived in Ref. [24].

To summarize, we will use multiple random graph models
to accurately predict statistics of a quantum mechanical model
of a Rydberg gas. Concretely, the random graph models take
as input the particle density ρ, Rabi frequency induced by the
laser field � and the Van der Waals coefficient C6—in fact,
the models only depend on the average number of atoms in
the blockade volume. The models then output the average
fraction of excited vertices over time x(t ) for t � 0 (so as a
function of time) and a pair correlation h(r) for r ∈ [0, 2rb]
(so as a function of distance). Moreover, we note that when

TABLE I. Statistical features predicted approximately by our
random graph models.

Input Output

Particle density ρ

Rabi frequency �

Van der Waals coefficient
C6

Average fraction of excited particles
over time x(t ) for t � 0 (so as a

function of time)
A pair correlation function h(r) for

r ∈ [0, 2rb] (so as a function of
distance)

numerically implemented, the models do not actively fit to
data or tune parameters so as to achieve a desired outcome.
Table I summarizes the input, output, and statistical features
approximately predicted.

Theorems 1–3 also contribute to the mathematical perspec-
tive. The study of exploration processes of the RSA type on
random graphs has seen interest in recent years [24,36–42].
The tools necessary from probability theory to analyze said
processes include, e.g., random graph couplings, fluid and dif-
fusion limits, stochastic differential equations, and martingale
analyses, and the current work extends this framework in two
ways. First, we prove a fluid limit of an exploration process
on a subgraph of a mixture of two (random) graphs. This
alternative approach requires us to determine a plethora of
fluid limits, one for each of the relevant parts of the mixture
of (random) graphs (see Theorem 2 and Lemma 3 and its
proof in Appendix B 5) and then combine these fluid limits
carefully using a nonlinear time transformation that depends
on an inverse exploration process (see the explanation above
Theorem 3 and its proof in Appendix C). One further techni-
cal caveat of mixing exploration processes is that we lose a
global Lipschitz’s continuity property of the fluid limit. The
canonical approach to prove a fluid limit, that is to utilize
Lipschitz’s continuity prior to an application of Grönwell’s
inequality, therefore breaks down. Our second contribution
is the circumvention of this issue by conditioning only on
sample paths that satisfy a local Lipschitz’s continuity and
showing that these sample paths occur with probability one
in a large graph limit; see Appendix B 5.

This paper is structured as follows. Section II introduces
models A, B, and C. Thereafter Section III describes a graph
exploration algorithm that constructs a mixture of a so-called
random intersection graph (RIG) plus a graph of isolated ver-
tices (constituting a DRIG), while simultaneously conducting
RSA on it. Section III then gives our theoretical results for
model C, that is, Theorems 1–3. Section IV discusses an alter-
native heuristic using random graphs to describe a normalized
pair correlation function of a Rydberg gas, and Sec. V numer-
ically compares the statistics of models A, B, and C to each
other as well as to the heuristic. Finally, Sec. VI concludes
with a possibility for future research. The Appendixes give
rigorous mathematical proofs of Theorems 1–3.

II. MODELS

A. Quantum mechanical model of a Rydberg gas (QMMRG)

Consider an ensemble of n ∈ N+ atoms that are dis-
tributed uniformly at random over a two-dimensional box
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V = [a, b] × [c, d] ⊂ R2 with periodic boundary conditions
(essentially, a torus). By presuming periodic boundary condi-
tions, we ensure that all particles are exchangeable, by which
we mean that every particle’s random neighborhood is drawn
from the same distribution (see Sec. II C for a discussion).
The random graph models discussed in Secs. II B, II C, and
IV have exchangeable vertices. Each atom i ∈ {1, . . . , n} can
be in either its ground level, σi = 0; or an excited level,
σi = 1. The energy of level l ∈ {0, 1} will be denoted by εl .
A particular pure quantum mechanical state of the system is
e.g., |σ 〉 = |σ1 · · · σn〉.

The atoms will undergo a dynamical process driven by a
Hamiltonian H(t ). We assume that the Hamiltonian is made
up of three contributing terms,

H(t ) = Ha + Hl (t ) + HvdW. (1)

The first term Ha describes the total energy contribution of the
particles being in the ground or excited level. For σ ∈ {0, 1}n,
it satisfies

〈σ |Ha|σ 〉 =
∑

i

εσi .

The second term Hl (t ) describes the exposure of the atoms to
a laser field. The laser facilitates the excitation process from
the ground to the excited level, as well as the stimulated emis-
sion process from the excited to the ground level. Concretely,
for any two states σ, ζ ∈ {0, 1}n,

〈σ |Hl (t )|ζ 〉

=
{ h̄�

2 exp
[
iωt

∑
j (ζ j − σ j )

]
if

∑
j |σ j − ζ j | = 1,

0 otherwise.

Here � denotes the Rabi frequency induced by the laser field,
h̄ is the reduced Planck constant, and ω represents the atom’s
natural frequency. Finally, the third term HvdW describes a
strong Van der Waals interaction between any two atoms in
the excited level. For any σ ∈ {0, 1}n, we have

〈σ |HvdW|σ 〉 =
∑

i

∑
j �=i

1[σi = σ j = 1]
C6

2‖ri − r j‖6
2

.

Here C6 denotes the Van der Waals coefficient. Whenever
two excited atoms are close, the inverse relationship on the
distance in the Van der Waals potential creates states with
high energy resulting in a blockade effect. This geometric
effect disallows atoms close to an excited atom to populate
the excited level [13,15,20,22].

Together with Schrödinger’s equation, the Hamiltonian in
(1) yields a system of differential equations

ih̄
∂

∂t
|	(t )〉 = H(t )|	(t )〉, |	(0)〉 = |0 · · · 0〉, (2)

where |	(t )〉 = ∑
σ∈{0,1}n cσ (t )|σ 〉, which we will solve nu-

merically for the complex coefficients cσ ∈ C, σ ∈ {0, 1}n.
To tackle the exponential increase in computational effort, the
state space will be truncated to a set of reasonably reachable
states depending on the Van der Waals potential of the state
[16–19]; viz., only states with a Van der Waals potential below
a certain threshold have been included in the analysis. Our
numerical verification in Appendix D indicates that applying

such state truncation has no visible effect on the measured
statistics.

B. Random geometric graphs (RGGs) and random sequential
adsorption (RSA)

Consider an ensemble of n ∈ N+ vertices that are dis-
tributed uniformly at random over a two-dimensional box V
with periodic boundary conditions, similarly to Sec. II A. De-
note the random position of a vertex u ∈ {1, . . . , n} by ru ∈ V .
A RGG is then constructed by drawing an edge between every
pair of vertices that are within a distance of each other less
than some fixed blockade radius rb � 0. In other words, the
RGG GRGG = (V, E ), where

V = {1, . . . , n} and E = {(u, v) ∈ V|‖ru − rv‖2 � rb}.
We now consider the process of RSA on such RGG

as a model for the excitation process. In RSA, we assign
each of the vertices one of the labels “UNAFFECTED, EX-
CITED, BLOCKED.” At iteration step t = 0, we label all of
the vertices UNAFFECTED. At iteration step t > 0, we pick
a vertex uniformly at random from the set of all vertices
labeled UNAFFECTED. This vertex is then relabeled EXCITED,
and we relabel all of its UNAFFECTED neighbors BLOCKED.
The relabeling process continues until the random iteration
step Tn ∈ {1, 2, . . . , n} at which all vertices are either la-
beled EXCITED or UNAFFECTED. Borrowing terminology from
Refs. [24,37,38], the resulting state is called a jamming limit,
and Tn is a so-called hitting time. Compared to the QMMRG,
we note that a vertex that is UNAFFECTED within the RSA
process corresponds to an atom that is still in a ground state
because it has not EXCITED yet, and moreover, this atom has
not yet been BLOCKED by another atom.

To ensure that the dynamics of |	(t )〉 in the QMMRG and
the process of RSA on a RGG give a comparable heuristic,
we opt to match model parameters. Concretely, we will look
for some function rb = rb(C6) that gives behavior as follows.
Consider the scenario in which there is no interaction in the
QMMRG, i.e., when C6 = 0. Each atom in the QMMRG will
then undergo a Rabi oscillation, independently of all other
atoms. In particular, the long-term mean fraction of excited
particles satisfies

lim
s→∞

1

s

∫ s

0

∑
σ∈{0,1}n

|cσ (t )|2
∑

i σi

n
dt = 1

2
.

Suppose now that we set rb = 0 in the RGG. Each vertex
would eventually be labeled EXCITED in the RSA process.
Consequently the long-term mean fraction of excited particles
would then equal one, in discrepancy with the QMMRG.
Supposing instead that rb > 0, we would then indeed have that
the long-term mean fraction of excited vertices is strictly less
than one. We therefore opt for a model blockade radius of the
form rb = α + (C6/�)1/6 with α > 0. The physics behind the
second term are, e.g., discussed in Ref. [4]. The parameter
α should be chosen such that the long-term mean fraction of
excited particles in the RGG is 1

2 if rb = α. Recall that for a
RGG no closed-form expression is available in the literature
for this number; hence, we have numerically solved for it and
found that α ≈ 2.03 μm.
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FIG. 1. Schematic depiction of the construction of a RIG. (Left)
First, the vertices VRIG, represented here using green circles, are
randomly connected to the attributes ARIG, represented here using
orange squares. (Right) Next, all vertices that share a common at-
tribute are connected using an edge to create the random graph GRIG.
For example, vertices 1 and 3 are connected by an edge as they share
attribute 1.

We will remark critically that choosing to set rb = α +
(C6/�)1/6 with α > 0 is unnatural from the modeling point of
view in parameter regimes where there are no particle inter-
actions (C6 ≈ 0). The effect of this choice, however, becomes
less pronounced in parameter regimes with stronger particle
interactions, i.e., when (C6/�)1/6 � α ≈ 2.03 μm. Notably,
our simulations in Sec. V were all conducted at realistic pa-
rameter values taken from experiments, and naturally, these
were conducted in parameter regimes with particle interac-
tions: (C6/�)1/6 ≈ 4.5 μm. It is in these parameter regimes
where particle interactions are present that the random graphs
have a descriptive role to play, as they can model many-
particle effects due to the interactions.

C. Decomposed random intersection graphs (DRIGs)

We now introduce the DRIG. The idea is to decompose a
RIG and replace its set of isolated vertices by a set of isolated
vertices of which we control the size precisely.

We will denote a RIG by GRIG(nRIG, β, γ ); it is of size
nRIG ∈ N+ and has parameters β, γ > 0. It has a set of
enumerable vertices, e.g., VRIG = {1, . . . , nRIG}, and a set of
enumerable attributes ARIG = {1, . . . , �βnRIG�} to it. The pa-
rameter β influences the number of attributes used to construct
the RIG, while the parameter γ is the average number of
attributes a vertex is connected to. The attributes’ purpose is to
tie different vertices together using edges when we construct
the graph. To construct the RIG, randomly connect every
vertex u ∈ VRIG to each of the individual attributes a ∈ ARIG

independently and with probability γ /nRIG. For u ∈ VRIG,
let Av ⊆ A be the set of attributes connected to vertex u.
We now define the edge set of the RIG as ERIG = {(u, v) |
Au ∩ Av �= ∅}, i.e., the set of pairs of vertices that have at
least one attribute in common. Figure 1 schematically depicts
the construction of a RIG.

Note that a RIG always has exchangeable vertices, by
which we mean that every vertex has a random degree drawn
from the same degree distribution, and this limits the appli-
cability of RIG as a model for the QMMRG or RGG. In
particular, a RIG will be a less accurate model for either
when particles exhibit strong asymmetrical interactions such
as may stem from a boundary beyond which are no parti-
cles (scenarios ignored in this paper because of the periodic
boundary conditions). In such a scenario, particles are not

TABLE II. Properties (i), (ii), and (iii) of a DRIG compared to
the other types of random graphs in the limit of N → ∞. Here
u �= v �= w, Nv denotes the number of neighbors of a vertex v chosen
uniformly at random, and I·(·, ·) the normalized incomplete beta
integral.

E[Nv] P [Nv = 0] P [{u, v}, {v, w}, {w, u} ∈ E]

RGG c e−c 2
∫ 1

0 xI
1− x2

4
( 3

2 , 1
2 )dx

ERRG c e−c 0
RIG βγ 2 ξ0 (1 + βγ )−1

DRIG 1−e−c

1−ξ0
βγ 2 e−c (1 + βγ )−1

exchangeable—this is because a particle at the boundary has
fewer neighboring particles in its blockade volume and is
therefore less likely to block other particles. Still, one prac-
tical method to collect statistics for exchangeable particles to
reasonable approximation is to conduct experiments in a suf-
ficiently large volume Vexperiment in which boundary effects are
present and then restrict your calculations to a smaller volume
V inside of and sufficiently far from Vexperiment’s boundaries.

We will denote a DRIG by GDRIG(nDRIG, β, γ , c), to indi-
cate that it is of size nDRIG ∈ N+ and has parameters β, γ , c >

0. The parameters β and γ have the same interpretation as in
a RIG, while c fixes the average number of neighbors of a ver-
tex. Given values for these parameters, we construct the DRIG
as follows. First, set nRIG = σnDRIG where we introduce

σ = 1 − e−c

1 − ξ0
and ξ0 = exp [−βγ (1 − e−γ )]

and then construct GRIG(nRIG, β, γ ) as described above. Now
decompose this RIG into the subgraph GRIG

0 that consists of
all of its isolated vertices, and the subgraph GRIG

1+ that consists
of all of its vertices that have at least one neighbor. We now
essentially remove the former subgraph and replace it: set
GDRIG = GDRIG

0 ∪ GRIG
1+ , where GDRIG

0 is a graph consisting
of nDRIG

0 = �e−cnDRIG� isolated vertices. The construction is
depicted schematically in Fig. 2.

The parameters of a DRIG can be chosen to match three
major features of the RGG: (i) the mean number of neighbors
of a vertex, (ii) the probability that a vertex is isolated, and (iii)
the probability that a triangle occurs in the graph. For each of
the four types of graphs that we have discussed so far, Table II
gives the explicit expressions for each of these quantities. The
ability to match feature (iii) is different from an earlier ap-
proach that uses an ERRG [24]. The DRIG therefore captures
more structural information of a RGG than an ERRG.

III. RESULTS

A. Time-dependent evolution of the for a DRIG relevant
quantities when conducting RSA on a RIG

We now analyze the time-dependent behavior of a graph
exploration algorithm that iteratively simultaneously con-
structs a mixture of a RIG and a graph consisting solely
of isolated vertices, as well as conduct RSA on this graph.
The RSA process mimics the excitation process that happens
within (a classical counterpart to) the QMMRG. This idea of
using a graph exploration algorithm to describe the excitation
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FIG. 2. Schematic depiction of the construction of a DRIG. (a) First, a RIG is constructed, which will usually be oversized. (b) Next, this
RIG is decomposed into the subgraph of isolated vertices and the remaining subgraph. (c) Finally, the subgraph of isolated vertices is removed
and replaced by a graph of isolated vertices of specified size, which will usually be smaller.

process in a Rydberg gas was first described in Ref. [24], and
here we first generalize the approach for application to a mix-
ture of a RIG and a graph consisting solely of isolated vertices,
and second lift the results through a time transformation for
application to a DRIG.

1. Graph exploration algorithm

Suppose that parameters nDRIG ∈ N+, β, γ , c > 0 are fixed
and given. The algorithm will give each vertex one of the
labels “UNAFFECTED, EXCITED, BLOCKED” iteratively as fol-
lows:

Initialization. First, we label all vertices as being UN-
AFFECTED. The initial number of UNAFFECTED vertices in
GRIG = GRIG

0 ∪ GRIG
1+ and GDRIG

0 are therefore

U RIG(0) = nRIG, U DRIG
0 (0) = �e−cnDRIG�,

respectively. The initial number of EXCITED vertices in GRIG
1+

and GDRIG
0 are

X RIG
1+ (0) = X DRIG

0 (0) = 0,

respectively. We will define n = nRIG + �e−cnDRIG� here for
notational convenience, which is the total number of vertices
in the mixture of the RIG and the graph consisting solely of
isolated vertices that we are about to explore.

Exploration. Consider now iteration t ∈ N+. For the t th
step of the exploration algorithm, select if possible a vertex
V (t ) uniformly at random from the set of UNAFFECTED ver-
tices, which has size

U RIG(t − 1) + U DRIG
0 (t − 1).

Adjust the label of this vertex to EXCITED. Change any label
of an UNAFFECTED neighbor of V (t ) into BLOCKED.

Case 1: Consider now the event that the vertex V (t ) was
picked from the graph GRIG. If this event occurs, then the
number of UNAFFECTED vertices will have decreased by one
plus its number of UNAFFECTED neighbors, i.e.,

U RIG(t ) = U RIG(t − 1) − 1 − NV (t )(t − 1),

where NV (t )(t − 1) denotes the number of UNAFFECTED neigh-
bors of V (t ) after iteration t − 1. Furthermore,

U DRIG
0 (t ) = U DRIG

0 (t − 1).

The number of EXCITED vertices within GRIG
1+ only increases

by one if V (t ) originated from GRIG
1+ . In other words,

X RIG
1+ (t ) = X RIG

1+ (t − 1) + 1[NV (t )(t − 1) > 0],

X DRIG
0 (t ) = X DRIG

0 (t − 1).

Conditional on the history F (t ), the event that V (t ) originates
from GRIG occurs with probability

U RIG(t − 1)

U RIG(t − 1) + U DRIG
0 (t − 1)

.

Case 2: Consider now the complementary event: viz., the
event that the vertex V (t ) came from GDRIG

0 . If this event
occurs, then the number of UNAFFECTED vertices decreases by
one since this particular vertex has no neighbors, i.e.,

U RIG(t ) = U RIG(t − 1), U DRIG
0 (t ) = U RIG

0 (t ) − 1.

Moreover, the number of EXCITED vertices increases by one,
so

X RIG
1+ (t ) = X RIG

1+ (t − 1), X DRIG
0 (t ) = X DRIG

0 (t − 1) + 1.

Conditional on the history F (t ), this event occurs with proba-
bility

U DRIG
0 (t − 1)

U RIG(t − 1) + U DRIG
0 (t − 1)

.

For the graph exploration algorithm just described, we are
able to prove results on its jamming limit and its fluid limit.

2. Jamming limit

Define for t ∈ N0,

U (t ) = U RIG(t ) + U DRIG
0 (t ) and

X (t ) = X RIG
0 (t ) + X RIG

1+ (t ) + X DRIG
0 (t ).

Consider now

T ∗ = min{t ∈ {0, 1, . . . , n} | U (t ) = 0},
the hitting time of zero of the stochastic process {U (t )}0�t�n.
Note that T ∗ is a random variable and in particular that T ∗
equals the number of EXCITED vertices in the jamming limit.
Leveraging this insight, we are able to prove convergence in
probability of the fraction of excited vertices in the jamming
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limit to an implicitly characterized constant φ by conducting
a hitting time analysis in Appendix A:

Theorem 1. Let T ∗
n = T ∗/n. For any γ > 0,

P [|T ∗
n − φ| � γ ] → 0

as n → ∞. Here

0 � φ = e−c + σ arg inf{0 � s � 1 : ũ(s) = 0}
e−c + σ

� 1, (3)

where ũ satisfies the following system of integral equations:
for 0 � s � 1,

ũ(s) = 1 − s −
∫ s

0
γ 2ũ(y)w̃(y) dy,

w̃(s) = β −
∫ s

0
γ w̃(y) dy.

(4)

Note that Theorem 1 establishes that in this mixture of a
RIG and a graph consisting solely of isolated vertices, the final
number of EXCITED vertices satisfies

X (n) ≈ φn.

Theorem 1 implies also that in a DRIG, the final number of
EXCITED vertices

X DRIG(nDRIG) = X (n) − X RIG
0 (n)

≈ φn − σξ0nDRIG

= [φ(σ + e−c) − σξ0]nDRIG = ηnDRIG.

Moreover, (3) together with (4) gives an implicit closed-form
expression for φ and η.

3. Fluid limits

In fact, we are able to prove stronger fluid limits for the
stochastic processes {U (t )}0�t�n, {X (t )}0�t�n in Theorem 2.
Its proof is relegated to Appendix B. Fluid limits are func-
tional laws of large numbers, and describe the function to
which (an appropriately scaled variant of) the process con-
verges to leading order. An example of the convergence of
the RSA process is shown in Fig. 3. We require these fluid
limits to ultimately describe the time-dependent behavior of
the RSA process on a DRIG in Theorem 3.

Theorem 2 (Fluid limits of U (t ), X (t ) when conducting
RSA on the mixture of a RIG and isolated vertices). For any
0 � S < φ � 1, ε > 0,

P
[

sup
s∈[0,S]

∣∣∣U (�sn�)

n
− (

uRIG + uDRIG
0

)
(s)

∣∣∣ > ε
]

→ 0

as n → ∞. Furthermore,

P
[

sup
s∈[0,S]

∣∣∣X (�sn�)

n
− (

xRIG
0 + xRIG

1+ + xDRIG
0

)
(s)

∣∣∣ > ε
]

→ 0

as n → ∞. Here the functions uRIG, uDRIG
0 , xRIG

0 , xRIG
1+ , and

xDRIG
0 satisfy the following system of integral equations: for

0 � s � S < φ � 1 and γ̃ = (σ + e−c)γ /σ ,

uRIG(s) = σ

σ + e−c
−

∫ s

0

uRIG(y)

uRIG(y) + uDRIG
0 (y)

[
1 + γ̃ 2uRIG(y)w(y)

]
dy,

uDRIG
0 (s) = e−c

σ + e−c
−

∫ s

0

uDRIG
0 (y)

uRIG(y) + uDRIG
0 (y)

dy,

wRIG(s) = βσ

σ + e−c
−

∫ s

0

uRIG(y)

uRIG(y) + uDRIG
0 (y)

γ̃wRIG(y) dy,

xRIG
0 (s) =

∫ s

0

uRIG(y)

uRIG(y) + uDRIG
0 (y)

exp
[−γ̃wRIG(y)

(
1 − e−γ̃ [ σ

σ+e−c −xRIG
0 (y)−xRIG

1+ (y)])]
dy,

xRIG
1+ (s) =

∫ s

0

uRIG(y)

uRIG(y) + uDRIG
0 (y)

{
1 − exp

[−γ̃wRIG(y)
(
1 − e−γ̃ [ σ

σ+e−c −xRIG
0 (y)−xRIG

1+ (y)])]}
dy,

xDRIG
0 (s) =

∫ s

0

uDRIG
0 (y)

uRIG(y) + uDRIG
0 (y)

dy. (5)

B. Time-dependent evolution of the fraction of excited vertices
when conducting RSA on a DRIG

The time evolution of U (t ) for t ∈ {0, 1, . . . , n} does not
describe the number of UNAFFECTED vertices when conduct-
ing RSA on a DRIG, D(t ) for t ∈ {0, 1, . . . , nDRIG}. Recall
for instance that n = nRIG + �e−cnDRIG�, which not necessar-
ily equals nDRIG; the graph we are exploring is bigger. To
obtain D(t ) one can utilize the graph exploration algorithm
of Sec. III A 1, but must then (i) filter out the vertices from
GRIG

0 , which are by definition not part of the DRIG and (ii) af-
terwards apply an appropriate nonlinear time transformation.

The latter must be done carefully and is nontrivial because
early in the graph exploration, relatively more vertices may
have come from GRIG

1+ . The issue of overcounting and rescal-
ing of iteration time is also illustrated using an example
sample path in Table III.

Concretely, the filtering out of vertices can be done by
setting for t ∈ {0, 1, . . . , n},

U DRIG(t ) = U DRIG
0 (t ) + U DRIG

1+ (t )

= U DRIG
0 (t ) + U RIG(t ) + X RIG

0 (t ) − X RIG
0 (n).
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TABLE III. A sample sequence of decrements that describes the number of UNAFFECTED vertices in the mixture of a RIG with isolated
vertices. We show how from it we can find a coupled sequence of decrements describing the number of UNAFFECTED vertices in a DRIG. This
illustrates the issue of overcounting and necessity of transforming iteration time when going from a result for the mixture of the RIG with
isolated vertices to a result for the DRIG.

Sequence Sample Remark

{U (t − 1) − U (t )}t=1,...,n 2, 1, 2, 3, 1, 5, 1, 4, 2, 1, 1, 1, 3, 4, 1, 6, 2, 1, . . . Decrements describing the number of
UNAFFECTED vertices in the RIG. Identically zero

after the random hitting time Tn.
{1[V (t ) ∈ V (GRIG

1+ )]}t=1,...,n 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, . . . Steps at which a vertex was activated from GRIG
1+ .

These vertices are in the DRIG.
{1[V (t ) ∈ V (GDRIG

0 )]}t=1,...,n 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, . . . Steps at which a vertex was activated from GDRIG
0 .

These vertices are in the DRIG.
{1[V (t ) ∈ V (GRIG

0 )]}t=1,...,n 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, . . . Steps at which a vertex was activated from GRIG
0 .

These vertices are not in the DRIG.
{D(t − 1) − D(t )}t=1,...,nDRIG 2, 1, 2, 3, 1, 5, 4, 2, 1, 1, 1, 3, 4, 6, 2, 1, . . . Decrements describing the number of

UNAFFECTED vertices in the DRIG. For
sufficiently large n, this is a shorter sequence with

high probability.

Rescaling iteration time can then be done appropriately by
levering the inverse process

(X DRIG)←(u) = inf
{
t ∈ N0

∣∣X DRIG
0 (t ) + X RIG

1+ (t ) = u
}

for u ∈ {0, 1, . . . , nDRIG} to only count those steps that involve
excitations from the DRIG. That is, for t ∈ {0, 1, . . . , nDRIG},
we define

DDRIG(t ) = U DRIG[(X DRIG)←(t )]. (6)

Fortunately, all fluid limits necessary for obtaining a fluid
limit for (6) are provided by Theorem 2. We prove the fol-
lowing in Appendix C:

Theorem 3 (Fluid limit of D(t ) when conducting RSA on
a DRIG). For 0 � S < η � 1, ε > 0,

P
[

sup
s∈[0,S]

∣∣∣D(�snDRIG�)

nDRIG
− d (s)

∣∣∣ � ε
]

→ 0

FIG. 3. The unaffected number of vertices of the RSA process
on the random graph for n = 10 and n = 100 vertices and the corre-
sponding fluid limit u(s) = uRIG(s) + uDRIG

0 (s) in Theorem 2.

as nDRIG → ∞. Here, for 0 � s � S < η � 1,

d (s) = (σ + e−c)uDRIG{(xDRIG)←[(σ + e−c)−1s]}
and

uDRIG(s) = (
uRIG + uDRIG

0 + xRIG
0

)
(s) − ξ0,

xDRIG(s) = (
xRIG

1+ + xDRIG
0

)
(s).

C. Translating from iteration steps to actual time

Finally, if one is interested in translating iteration steps (in
the arb. unit) to actual time (in, e.g., seconds), then one may
proceed as follows. Assume that the time between two steps
is exponentially distributed with parameter λD(m) > 0 [s−1]
and independent of the past, viz., Tm+1 − Tm ∼ exp[λD(m)] s
for all m ∈ N+. Define then for t � 0 [s], the process X ′(t ) =
X (sup{m ∈ N0 | t � Tm}) whose domain is actual time in sec-
onds. This process satisfies for all t � 0 [s],

E[X ′(t )]

nDRIG
[arb.] →

∫ t

0
λ d[x(s)] ds [arb.]

as nDRIG → ∞. This was also discussed in Ref. [24].

IV. HEURISTICS

In this section we develop a heuristic using random graphs
that gives a recursion to describe the following normalized
pair-correlation function

hε(r) = PN [v,w ∈ X̂ (∞) | d (v,w) ∈ (r − ε, r + ε)]

PN [v ∈ X̂ (∞)]2
(7)

for a Rydberg gas. Here X̂ (∞) denotes the set of excited
vertices in the jamming limit. We chose this function for
comparison purposes to Ref. [[13], Fig. 2].

Many random graphs are however not built around an ex-
plicit notion of distance d (v,w) between two vertices v,w ∈
V , so evaluation of the numerator of (7) is impossible. Given a
random graph without a notion of distance, such as an ERRG,
we need to instead use a proxy for the distance between two
vertices. Using such a proxy comes at a cost: the following
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approach is a heuristic, and we have no mathematical results
guaranteeing its accuracy. Nonetheless, the approaches will
turn out descriptive. As our proxy for a notion of distance, we

will specifically use the number of neighbors that two vertices
have in common. The idea is that if two vertices have more
neighbors in common, then their distance should be smaller.

Heuristic 1 (Recursive system to approximate a normalized pair correlation function of a RGG or the QMMRG). For all
v,w ∈ V , r ∈ (0, 2rb], 0 < ε � 1: the numerator in (7) satisfies

PN [v,w ∈ X̂ (∞) | d (v,w) ∈ (r − ε, r + ε)] =
⎧⎨
⎩

0 if 0 < r < rb∑
i,k

AN
i,k (r)BN

i,k (r)CN
i (r) ≈

∑
i,k

ÂN
i,k (r)B̂i,k (r)ĈN

i otherwise . (8)

Here

AN
i,k (r) = PN [v,w ∈ X̂ (∞) | |N̂v ∩ N̂w| = k, Nv = i, d (v,w) ∈ (r − ε, r + ε)],

BN
i,k (r) = PN [|N̂v ∩ N̂w| = k | Nv = i, d (v,w) ∈ (r − ε, r + ε)],

CN
i (r) = PN [Nv = i | d (v,w) ∈ (r − ε, r + ε)], (9)

and

AN
i,k (r) ≈ ÂN

i,k (r)

= 1

N
ÊN−i−1(r) + 1

N

N−i−2∑
j=0

(
N − i − 2

j

)
(p(1 − F1(r))) j (1 − p(1 − F1(r)))N−i−2− j D̂N−k− j−1

i−k

+ N − i − 2

N
(1 − p(1 − F1(r)))

×
N−i−3∑

j=0

k∑
l=0

i−k∑
m=0

(
N − i − 3

j

)
(pF2(r)) j (1 − pF2(r))N−i−3− j

(
k

l

)
pl (1 − p)k−l

×
(

i − k

m

)
(p(1 − F1(r)))m(1 − p(1 − F1(r)))i−k−mÂN− j−l−m−1

i−l−m,k−l (r) (10)

as well as

BN
i,k (r) ≈ B̂i,k (r) =

(
i

k

)
[F1(r)]k[1 − F1(r)]i−k, (11)

CN
i (r) ≈ ĈN

i =
(

N − 2

i

)
pi(1 − p)N−2−i. (12)

Here p = c/N ,

D̂N
i (r) = 1

N
+ N − i − 1

N

N−i−2∑
k=0

i∑
l=0

(
N − i − 2

k

)
pk (1 − p)N−i−2−k

(
i

l

)
[p(1 − F1(r))]l [1 − p(1 − F1(r))]i−l D̂N−k−l−1

i−l (r),

ÊN (r) = 1

N
+ N − 1

N
[1 − p(1 − F1(r))]

N−2∑
k=0

(
n − 2

k

)
pk (1 − p)N−2−kÊN−k−1(r); (13)

and finally F1(r) = 1
π

[2 arccos r
2rb

− r
2rb

√
4 − ( r

rb
)2] and F2(r) = AREA(C1∩C2∩C3 )

AREA(C1 ) , where C1, C2 and C3 are circles with radii rb,

the distance between C1 and C2 is r, the distance between C1 and C3 is rb and the distance between C2 and C3 is rb (see Ref. [43]
for a closed-form expression).

To understand how Heuristic 1 is established, start by
noting that the first equality in (8) follows from the law of
total probability and is still exact; essentially, we have parti-
tioned the sample space according to the conditional events
implicitly defined in (9). Next, we approximate each of these
terms by relating them to a mathematical expression obtained

from a random graph. For each term we use a random graph
for which we believe the exploration process behaves sim-
ilar to a classical counterpart of the excitation process of a
QMMRG.

1. For the terms AN
i,k (r) and CN

i (r), we use what would be
their explicit recursions in a random graph with one geometric
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feature and four classes of distances, that is, the expressions
for Âi,k (r) and ĈN

i in (10) and (12). Concretely, in this random
graph:

a. None of the vertices have an explicit position
b. Vertices v and w are considered to be at exactly a

distance r of each other
c. All other vertices are either
Class 1—within a distance rb of v but not w or
Class 2—within a distance rb of w but not v or
Class 3—within a distance rb of both v,w or
Class 4—outside of a distance rb of both v,w.
Depending on which class a vertex belongs to, the ver-

tex’s probability of creating an edge with vertices of its own
class and of other classes changes. For example (ignoring
the precise conditioning for a moment), once w is explored
before v, then from that point onward, class 1 vertices will
connect to v with reduced probability p(1 − F1(r)) instead of
the originally higher probability p. Here the function F1(r)
describes the fraction of surface area of one circle of radius
rb that overlaps with the surface area of a second circle also
of radius rb and that is a distance r away from the first circle.
As a consequence, r can be at most 2rb for the heuristic to
work, otherwise the surface areas of the two circles would not
overlap. A similar argument is used for all other cases, and
for each case a suitable edge probability is chosen. It must
be noted that these choices do not correspond exactly to the
edge probabilities in, e.g., a RGG—this is in fact impossible
because there is almost no geometry in the present random
graph—and are chosen instead for them being reasonable
proxies (usually, they are upper bounds). The recursions are
then found by conditioning on the first excitation.

2. For the term BN
i,k (r) we use what would be its explicit

expressions in a RGG, viz., the expression B̂i,k (r) in (11).
The resulting formula in Heuristic 1 is not particularly

attractive. However, the right-hand side of (8) combined with
the expressions in (9)–(13) does constitute a recursive system
of expressions that can be evaluated. In particular, see Fig. 6
in Sec. V B as well as the surrounding discussion.

V. NUMERICS

A. Comparison: RSA on (a DRIG versus an ERRG)

For a range of atomic densities, Fig. 4 shows the rela-
tive difference between the ultimate mean number of excited
atoms as predicted by (1) RSA on an ERRG, (2) RSA on
a DRIG, and (3) RSA on a RGG. Note that a closed-form
expression is available in the literature for this number in
model 1 [24]; that we have derived an implicit expression for
this number in model 2 in Theorem 1 in this paper; and that
no analytical expression is available in the literature for this
number in model 3. Hence, the results for model 3 displayed
here were obtained via numerical simulation only. Observe
that the predictive power of model 2 for model 3 is improved
across a wider range of atomic densities when compared to
the predictive power of model 1 for model 3. Since model 3
mimics the excitation process in the QMMRG, we conclude
that a RSA process on a DRIG allows for more accurate
prediction of the statistics of the excitation dynamics in a
Rydberg gas, than what was achieved by RSA on an ERRG

FIG. 4. The relative difference between the mean ultimate num-
ber of excited atoms as predicted by RSA on an ERRG versus a RGG
and RSA on a DRIG versus a RGG, as a function of average number
of atoms in the blockade volume.

[24]. From the mathematical perspective, it is also noteworthy
that this observation indicates that the graph structure of a
DRIG matches the graph structure of a RGG better.

B. Comparison: QMMRG versus RSA on a (RGG versus DRIG)

For two different atomic densities, Fig. 5 shows the mean
number of excited atoms as a function of time as predicted
by (A) the QMMRG, (B) RSA on a RGG, and (C) RSA on
a DRIG. These curves were obtained numerically for models
A and B through simulation on n = 10 particles, while for

FIG. 5. The mean fraction of atoms in their excited level for
typical values of � = 5.8 MHz, C6 = 50 GHz μm6 as a function of
normalized time, and for two average number of atoms in the block-
ade volume, for models A, B, and C. These curves were obtained
numerically for models A and B through simulation for n = 10
particles, while for model C we implemented Theorem 3.
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FIG. 6. A normalized pair correlation function in the jamming
limit for the QMMRG as compared to the RGG and Heuristic 1
where E[Nv] = 2. The distance is normalized by the blockade radius
rb. The pair correlation is compared to the theoretical (r/rb)12 for
small r [44].

model C we implemented Theorem 3. Recall that, as dis-
cussed in Sec. II, these three models have been matched to
each other using only a linear model for the blockade radius;
rb = α + (C6/�)1/6 with α ≈ 2.03 μm kept fixed. Observe
from Fig. 6 that the Rydberg blockade is clearly at play in
each model, since ultimately only a fraction of atoms reaches
the excited level. The stable period that is entered after ap-
proximately 2.5 μs indicates the jamming limit. Note that in
the jamming limit, the prediction by each model is near iden-
tical. Prior to the jamming limit, the mean number of excited
atoms as predicted by models B and C also follows the mean
number of excited atoms as predicted by model A roughly;
the key difference are the observed quantum oscillations. We
can imagine from an experimental viewpoint that if there is a
large level of uncertainty in the time stamps of measurements
compared to the period of these quantum oscillations, then the
measurement curve will resemble the prediction of models
B and C. The difference between the predictions of models
A and B was 10% on average in all numerical experiments
performed. The difference between the predictions of models
A and C was 12% on average.

Figure 6 compares a normalized pair correlation function
when measured in the jamming limit of (A) the QMMRG,
(B) a RSA process on a RGG, and our heuristic of Sec. IV.
Observe that the normalized pair correlation functions are
quite similar: the heuristic is able to predict the normalized
pair correlation of the quantum mechanical model accurately
over the displayed domain. Hence, Fig. 6 also implies that
the eventual spatial ordering of excited atoms resulting from
either model is similar. The normalized pair-correlation func-
tion of the QMMRG differs most though from the normalized
pair-correlation function of the RGG: the latter peaks notably
higher. Next, we note that the displayed normalized pair-
correlation function’s shape here is also roughly the same as
in, e.g., Ref. [[13], Fig. 2], as it should be. Finally, observe

that the pair-correlation function of the QMMRG increases as
(r/rb)12 for small r, in agreement with Ref. [44].

One remaining, open question raised by Fig. 6 is whether
these findings generalize to higher atomic densities. Our goal
here was, namely, to simulate the quantum behavior as accu-
rately as possible, and we forbade ourselves from applying
advanced techniques to tackle the numerical complexities in-
herent in solving the Schrödinger equation. This meant that
the number of simulated atoms was limited by our computer
memory. Another open question is how these results compare
to experimental measurements. A quick comparison of our
results to, e.g., the measured pair-correlation function in Ref.
[[45], Fig. 3] is unfortunately inconclusive. First, the formula
for the displayed pair-correlation function there in Ref. [[45],
(2)] differs from (7) which we display in Fig. 6. In particular,
their denominator is radius dependent, which ties in with this
next point: their experimental setup differs from our model
setups. The atoms were fixed in position using a square optical
lattice instead of being distributed uniformly at random in
two-dimensional space, and this affects the statistics.

VI. CONCLUSION AND FUTURE WORK

We now revisit the question of the relative roles of geo-
metrical restrictions induced by blockade effects and quantum
mechanical effects, in the statistics of Rydberg gases. Our
numerical comparison of the mean number of excitations
over time shows that RSA processes on random graphs ac-
curately predict the mean behavior of a quantum mechanical
system over time but not the detailed oscillations induced
by Schrödinger’s equation. We conclude that even without
dissipation, on long timescales the statistics are affected most
by the geometrical restrictions induced by blockade effects,
while on short timescales the statistics are affected most by
quantum effects. Our heuristic for describing a normalized
pair correlation function shows that classical models can even
predict the spatial statistics of Rydberg atoms to a consider-
able degree. We emphasize that no experimental averaging
is taking place here: geometrical restrictions are the primary
cause. The better mathematical tractability of classical models
is an added boon.

If we take a wider viewpoint, we believe that incorporat-
ing geometrical restrictions into classical stochastic processes
on simpler random graph models may allow for quantitative
descriptions of also other statistical phenomena in strongly
interacting, ultracold Rydberg gases. For example, Rydberg
aggregates are networks of Rydberg atoms X [1], . . . , X [n] that
define a region S[n] ⊆ R3 that can nucleate, grow, and even-
tually reach a long-lived metastable arrangement when the
atoms are off-resonantly excited [19,46,47]. The off-resonant
excitation specifically causes that Rydberg atoms shift the
energy levels of atoms at a specific distance into resonance,
and as a consequence after the nucleation of one Rydberg
atom, regular arrangements of Rydberg atoms start to grow.
We can model the growth mathematically by allowing only
particles on the perimeter to become Rydberg atoms: X [n+1] ∼
Unif(∂S[n] ). The stochastic recursions for this growth process
will then be reminiscent of those in Sec. III and Appendix B
but more complex due to the shape of S[n] and the correlations
between X [1], X [2], etc. We anticipate that the mathematical
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framework of exploration processes on random graphs may
suitably be adapted to quantitatively describe the growth of
Rydberg aggregates.
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APPENDIX A: PROOF OF Theorem 1

The proof of Theorem 1 follows from two observations.
First, the jamming limit T ∗ equals the total time needed by an
exploration process on a RIG of the random adsorption type
plus an exploration process on a graph with isolated vertices.
Second, establishing a fluid limit for the former exploration
process can be done with a proof almost identical to the proof
of Theorem 2, which is given in Appendix B. The only dif-
ference is that the argumentation of Appendix B 5 simplifies:
the resulting fluid limit is Lipschitz continuous. Having estab-
lished a fluid limit result for the exploration process on a RIG
of the random adsorption type—for any 0 � S � 1, ε > 0,

P
[

sup
s∈[0,S]

∣∣∣Ũ RIG(�snRIG�)

nRIG
− ũ(s)

∣∣∣ > ε
]

→ 0 (A1)

as n → ∞, say—one then proceeds as follows. Fix ε >

0, S ∈ [0, 1] and suppose that at t = �SnRIG�, Ũ (�SnRIG�) �
nRIGε � 1 for otherwise T̃ ∗ < �SnRIG�. Regardless, this im-
plies that at t = �SnRIG + 1�, the hitting time T̃ ∗ satisfies the
bound

(�SnRIG� + 1)1[nRIGε � 1] � T̃ ∗ � �SnRIG�
+ Ũ RIG(�SnRIG�)1[nRIGε � 1] w.p. one.

This is because either the exploration process finishes imme-
diately in the next step (represented by the left-hand side) or
finishes in at most Ũ (�SnRIG�) more iteration steps (repre-

sented by the right-hand side). Note now that

�SnRIG�
nRIG

1[nRIGε � 1] − ũ←(0)

= �SnRIG�
nRIG

− ũ←(0) − �SnRIG�
nRIG

1[nRIGε < 1],

so that the scaled hitting time T̃ ∗
nRIG = T̃ ∗/nRIG in particular

satisfies the bound

�SnRIG�
nRIG

− ũ←(0) − �SnRIG�
nRIG

1[nRIGε < 1]

+ 1

nRIG
1[nRIGε � 1]

� T̃ ∗
nRIG − ũ←(0)

� �SnRIG�
nRIG

− ũ←(0) + ũnRIG (S)1[nRIGε � 1],

w.p. one, and consequently

SnRIG − 1

nRIG
− ũ←(0) − 1[nRIGε < 1]

� T̃ ∗
nRIG − ũ←(0) � SnRIG

nRIG
− ũ←(0) + ũnRIG (S) w.p. one.

(A2)

We can now prove immediately that for any γ > 0,

lim
nRIG→∞

P [|T̃ ∗
nRIG − ũ←(0)| > γ ] = 0. (A3)

To see this, let γ > 0. Bound the probability in (A3) using
(A2), specify, e.g., ε < γ /2 and 0 < S = ũ←(γ /2), and fi-
nally take the limit [while utilizing (A1)]:

P [|T ∗
nRIG − ũ←(0)| > γ ]

(A2)
� P

[
1

nRIG
+ 1[nRIGε < 1] + ũnRIG (S) > γ

]

= P

[
1

nRIG
+ 1[nRIGε < 1] + ũ(S) + ũnRIG (S) − ũ(S) > γ

]

� P

[
1

nRIG
+ 1[nRIGε < 1] + γ

2
+ ε > γ

]

+ P

[
sup

s∈[0,S]

∣∣∣∣Ũ (�snRIG�)

nRIG
− ũ(s)

∣∣∣∣ > ε

]
()→ 0

as nRIG → ∞. This completes the proof.

APPENDIX B: PROOF OF Theorem 2

Appendix B proves a fluid limit for the number of unaffected vertices in a mixture of a RIG and a graph consisting solely of
isolated vertices. The idea here is to track both the number of unaffected vertices, as well as the number of unaffected attributes in
the RIG and the number of unaffected vertices in an isolated graph. Their appropriately scaled counterparts can be decomposed
in a drift part, which converges to a deterministic function; and a martingale part which vanishes as n tends to infinity when
scaled by n.

This method finds its roots in Refs. [24,36–39], but the approach differs here in that we study an exploration process on a
subgraph of a mixture of two (random) graphs. This approach requires us to determine a plethora of fluid limits, one for each
of the relevant subgraphs of the mixture of (random) graphs (see Appendix B 5) and then combine these fluid limits using
a nonlinear time transformation that depends on an inverse exploration process; see Appendix C. One further caveat is that
because we mix two random graphs, a global Lipschitz’s continuity property of the fluid limit is lost. This therefore prevents
application of the canonical approach of proving a fluid limit by utilizing global Lipschitz’s continuity prior to an application of
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Grönwell’s inequality. We circumvent this issue by conditioning only on sample paths that satisfy a local Lipschitz’s continuity,
and subsequently showing that these sample paths occur with probability one in a large graph limit (see Appendix B 5).

1. Preliminaries

Recall that we are given parameters nDRIG ∈ N+, β, γ , c > 0 according to which we conduct the graph exploration algorithm.

a. Definitions

Let GRIG = GRIG
0 ∪ GRIG

1+ be a RIG with nRIG = �(1 − e−c)nDRIG/(1 − ξ0)� vertices for ξ0 = e−βγ (1−e−γ ) and parameters
m = �βnRIG� and p = γ /nRIG. Let GDRIG

0 be an isolated graph with �e−cnDRIG� vertices. Define n = nRIG + �e−cnDRIG� for
convenience. For any vertex v ∈ V (GRIG) ∪ V (GDRIG

0 ), let Nv be the set of neighbors of vertex v, i.e.,

N̂v =
{{w ∈ V (GRIG) | Âv ∩ Âw �= ∅, v �= w} if v ∈ V (GRIG),

∅ if v ∈ V
(
GDRIG

0

)
.

Simultaneously with the RSA process, the DRIG and following objects will be iteratively constructed:

Let X̂ RIG
0 (t ) ⊆ V (GRIG

0 ) be the set of isolated, excited vertices at iteration t from GRIG
0 .

Let X̂ RIG
1+ (t ) ⊆ V (GRIG

1+ ) be the set of nonisolated, excited vertices at iteration t from GRIG
1+ .

Let X̂ DRIG
0 (t ) ⊆ V (GDRIG

0 ) be the set of excited vertices at iteration t from GDRIG
0 .

Let Û RIG(t ) ⊆ V (GRIG) be the set of all unaffected vertices at iteration t from GRIG. A vertex is unaffected if it is neither
blocked nor excited.

Let Û DRIG
0 (t ) ⊆ V (GDRIG

0 ) be the set of unaffected vertices at iteration t from GDRIG
0 .

Let Ŵ RIG(t ) ⊆ A be the set of all unaffected attributes at iteration t from GRIG. An attribute is unaffected if no vertex connected
to it has been excited.

b. Graph exploration algorithm

Initially, at iteration t = 0, set

X̂ RIG
0 (0) = ∅, X̂ RIG

1+ (t )(0) = ∅, X̂ DRIG
0 (0) = ∅,

Û RIG(0) = V (GRIG), Û DRIG
0 (0) = V (GDRIG

0 ),

Ŵ RIG(0) = A.

At each iteration t ∈ {1, 2, . . . , n}, a vertex V (t ) ∈ Û RIG(t − 1) ∪ Û DRIG
0 (t − 1) is selected uniformly at random from Û RIG(t −

1) ∪ Û DRIG
0 (t − 1) as long as this set is nonempty. This vertex V (t ) is then labeled excited. Thus if Û RIG(t − 1) ∪ Û DRIG

0 (t − 1)
is nonempty, then the sets update:

X̂ RIG
0 (t ) =

{
X̂ RIG

0 (t − 1) ∪ {v} if v ∈ V (GRIG), N̂v = ∅,

X̂ RIG
0 (t − 1) otherwise,

X̂ RIG
1+ (t ) =

{
X̂ RIG

1+ (t − 1) ∪ {v} if v ∈ V (GRIG), N̂v �= ∅,

X̂ RIG
1+ (t − 1) otherwise,

X̂ DRIG
0 (t ) =

{
X̂ DRIG

0 (t − 1) ∪ {v} if v ∈ V
(
GDRIG

0

)
,

X̂ DRIG
0 (t − 1) otherwise,

Û RIG(t ) = Û RIG(t − 1) \ ({v} ∪ N̂v ),

Û DRIG
0 (t ) = Û DRIG

0 (t − 1) \ {v},
Ŵ RIG(t ) = Ŵ RIG(t − 1) \ Âv. (B1)

If otherwise Û RIG(t − 1) ∪ Û DRIG
0 (t − 1) is empty, then the jamming limit has been reached and we set X̂ RIG

0 (t ) = X̂ RIG
0 (t − 1),

X̂ RIG
1+ (t ) = X̂ RIG

0 (t − 1), etc., Ŵ RIG(t + 1) = Ŵ RIG(t ).

2. The vector of set sizes constitutes a Markov chain

In this paper, we only need to investigate the stochastic evolution of the size of each set. We therefore define for
t ∈ {0, 1, . . . , n},

X RIG
0 (t ) = ∣∣X̂ RIG

0 (t )
∣∣, X RIG

1+ (t ) = ∣∣X̂ RIG
1+ (t )

∣∣, etc.,

W RIG(t ) = |Ŵ RIG(t )|,
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and for t ∈ {1, . . . , n},
X RIG

0 (t ) = X RIG
0 (t − 1) + dX RIG

0 (t ), etc.,

W RIG(t ) = W RIG(t − 1) + dW RIG(t ). (B2)

Now: for t ∈ {0, 1, . . . , n}, consider the random vector

E (t ) = (
X RIG

0 (t ), X RIG
1+ (t ), X DRIG

0 (t ),U RIG(t ),U DRIG
0 (t ),

W RIG(t )
)
,

for which we prove the following.
Lemma 1 (Markov chain and its drift). The process {E (t )}t�0 is a Markov chain. Furthermore for t ∈ {1, . . . , n}: if U RIG(t −

1) + U DRIG
0 (t − 1) � 1, then

E[E (t )|E (t − 1)] − E (t − 1) =
(

U RIG(t − 1)

U RIG(t − 1) + U DRIG
0 (t − 1)

[
1 − p + p(1 − p)nRIG−X RIG

0 (t−1)−X RIG
1+ (t−1)]W RIG (t−1)

, (B3)

U RIG(t − 1)

U RIG(t − 1) + U DRIG
0 (t − 1)

{
1 − [1 − p + p(1 − p)nRIG−X RIG

0 (t−1)−X RIG
1+ (t−1)]W RIG (t−1)

}
, (B4)

U DRIG
0 (t − 1)

U RIG(t − 1) + U DRIG
0 (t − 1)

, (B5)

− U RIG(t − 1)

U RIG(t − 1) + U DRIG
0 (t − 1)

{1 + [U RIG(t − 1) − 1][1 − (1 − p2)W RIG (t−1)]}, (B6)

− U DRIG
0 (t − 1)

U RIG(t − 1) + U DRIG
0 (t − 1)

, (B7)

− U RIG(t − 1)

U DRIG
0 (t − 1) + U RIG(t − 1)

pW RIG(t − 1)

)
; (B8)

otherwise, if U RIG(t − 1) + U DRIG
0 (t − 1) = 0, then E[E (t )|E (t − 1)] = E (t − 1) because a fortiori E (t ) = E (t − 1).

Proof. To prove that {E (t )}t�0 is a Markov chain, we need to show that for all trajectories e(1), . . . , e(t + 1),

P [E (t + 1) = e(t + 1)|E (1) = e(1), E (2) = e(2), . . . , E (t ) = e(t )]

= P [E (t + 1) = e(t + 1)|E (t ) = e(t )]. (B9)

We will split the task of showing (B9) into examinations of the individual probability density functions describing the
components of the vector E (t ). Let 1[E] be the random variable that takes the value one if the event E is true, and zero otherwise.
Substitute (B1) into (B2) and note that if U RIG(t ) + U DRIG

0 (t ) > 0, then

dX RIG
0 (t ) = 1[V (t ) ∈ V (GRIG)]1[NV (t ) = 0],

dX RIG
1+ (t ) = 1[V (t ) ∈ V (GRIG)](1 − 1[NV (t ) = 0]),

dX DRIG
0 (t ) = 1 − 1[V (t ) ∈ V (GRIG)],

dU RIG(t ) = −1[V (t ) ∈ V (GRIG)](1 + NV (t ) ),

dU DRIG
0 (t ) = −{1 − 1[V (t ) ∈ V (GRIG)]},

dW RIG(t ) = −AV (t )1[V (t ) ∈ V (GRIG)];

(B10)

otherwise dX RIG
0 (t ) = · · · = dW RIG(t ) = 0. We now proceed component-wise.

Proof that dX RIG
0 (t )|E (1), . . . , E (t − 1)

(d)= dX RIG
0 (t )|E (t − 1): First, note that by construction,

P [V (t ) ∈ V (GRIG)|E (1), . . . , E (t )] = U RIG(t − 1)

U RIG(t − 1) + U DRIG
0 (t − 1)

1[U RIG(t − 1) + U DRIG
0 (t − 1) � 1] (B11)

because V (t ) is selected uniformly at random from Û DRIG
0 (t − 1) ∪ Û RIG(t − 1), independently. Note in particular that (B11)

also implies that P [V (t ) ∈ V (GRIG) | E (1), . . . , E (t )] = P [V (t ) ∈ V (GRIG) | E (t )]—a fact that we will use later—but that this
is not sufficient for proving the current claim.
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To prove the current claim, note that dX RIG
0 (t ) ∈ {0, 1}. Therefore, using (B10) and (i) the law of total probability, we find

that

P [dX RIG
0 (t ) = 1|E (1), . . . , E (t − 1)]

(B10)= P [V (t ) ∈ V (GRIG), NV (t ) = 0|E (1), . . . , E (t − 1)]
(i)= P [V (t ) ∈ V (GRIG), NV (t ) = 0|E (1), . . . , E (t − 1),V (t ) ∈ V (GRIG)]P [V (t ) ∈ V (GRIG)|E (1), . . . , E (t − 1)]

+ P [V (t ) ∈ V (GRIG), NV (t ) = 0|E (1), . . . , E (t − 1),V (t ) �∈ V (GRIG)]P [V (t ) �∈ V (GRIG)|E (1), . . . , E (t − 1)]

= P [V (t ) ∈ V (GRIG)|E (1), . . . , E (t − 1)]P [NV (t ) = 0|E (1), . . . , E (t − 1),V (t ) ∈ V (GRIG)]. (B12)

Now by construction of the graph exploration algorithm, we have that

P [NV (t ) = 0|E (1), . . . , E (t − 1),V (t ) ∈ V (GRIG)] = E
[
(1 − p)AV (t ) (n−X RIG

0 (t−1)−X RIG
1+ (t−1))

∣∣∣E (1), . . . , E (t − 1),V (t ) ∈ V (GRIG)
]

= [
1 − p + p(1 − p)nRIG−X RIG

0 (t−1)−X RIG
1+ (t−1)

]W RIG (t−1)
. (B13)

Substituting (B11) and (B13) into (B12) implies that

P [dX RIG
0 (t ) = 1|E (1), . . . , E (t − 1)] = P [dX RIG

0 (t ) = 1|E (t − 1)],

with the right-hand side here being equal to (B3) because dX RIG
0 (t ) ∈ {0, 1}. Hence, this substitution also proves (B3).

Proofs that dX DRIG
0 (t )|E (1), . . . , E (t − 1)

(d)= dX DRIG
0 (t )|E (t − 1) and dU DRIG

0 (t )|E (1), . . . , E (t − 1)
(d)= dU DRIG

0 (t )|E (t −
1): The first claim follows immediately from (B11); see the discussion below it. Because dX DRIG

0 (t ) ∈ {0, 1}, (B11) also implies
(B5). Combined with linearity, the exact same argumentation also proves the second claim as well as (B7).

Proof that dX RIG
1+ (t )|E (1), . . . , E (t − 1)

(d)= dX RIG
1+ (t )|E (t − 1): Combine the two previous arguments; linearity proves the

current claim. On account of dX RIG
1+ (t ) ∈ {0, 1}, this approach also proves (B4).

Proof that dU RIG(t )|E (1), . . . , E (t − 1)
(d)= dU RIG(t )|E (t − 1): Let k ∈ N+. By (i) the law of total probability,

P [dU RIG(t ) = −k|E (1), . . . , E (t − 1)]
(B10)= P [V (t ) ∈ V (GRIG), NV (t ) = k − 1|E (1), . . . , E (t − 1)]
(i)= P [V (t ) ∈ V (GRIG), NV (t ) = k − 1|E (1), . . . , E (t − 1),V (t ) ∈ V (GRIG)]P [V (t ) ∈ V (GRIG)|E (1), . . . , E (t − 1)]

+ P [V (t ) ∈ V (GRIG), NV (t ) = k − 1|E (1), . . . , E (t − 1),V (t ) �∈ V (GRIG)]P [V (t ) �∈ V (GRIG)|E (1), . . . , E (t − 1)]

= P [NV (t ) = k − 1|E (1), . . . , E (t − 1),V (t ) ∈ V (GRIG)]P [V (t ) ∈ V (GRIG)|E (1), . . . , E (t − 1)]. (B14)

Note now that by construction, for v ∈ Û RIG(t − 1),

P [NV (t ) = k − 1|E (1), . . . , E (t − 1),V (t ) ∈ V (GRIG),V (t ) = v]

=
W RIG (t−1)∑

a=0

P [NV (t ) = k − 1|E (1), . . . , E (t − 1),V (t ) = v, |Av| = a]P [|Av| = a|E (1), . . . , E (t − 1), v ∈ V (GRIG)]

=
W RIG (t−1)∑

a=0

(
U RIG(t − 1) − 1

k − 1

)
(1 − (1 − p)a)k−1(1 − p)a(U RIG (t−1)−k)

(
W RIG(t − 1)

a

)
pa(1 − p)W RIG (t−1)−a. (B15)

Substituting (B11) and (B15) into (B14), we find that for all k ∈ N+,

P [dU RIG(t ) = k|E (1), . . . , E (t − 1)] = P [dU RIG(t ) = k|E (t − 1)].

Here the right-hand side is implicitly given by the expression that results after the substitution.
We now proceed and calculate the drift. By (i) symmetry and (ii) after substitution of (B15) and algebraic manipulation, we

find that

E[dU RIG(t )|E (t − 1)] = − U RIG(t − 1)

U RIG(t − 1) + U DRIG
0 (t − 1)

×
U RIG (t−1)∑

k=1

k
∑

v∈Û RIG (t−1)

P [NV (t ) = k − 1|E (1), . . . , E (t − 1),V (t ) ∈ V (GRIG),V (t ) = v]

(i,ii)= − U RIG(t − 1)

U RIG(t − 1) + U DRIG
0 (t − 1)

{1 − [U RIG(t − 1) − 1][1 − (1 − p2)W RIG (t−1)]}.

This proves (B6).
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Proof that dW RIG(t )|E (1), . . . , E (t − 1)
(d)= dW RIG(t )|E (t − 1): Let k ∈ N0. By (i) the law of total probability and (ii)

symmetry of the vertices v ∈ Û RIG(t − 1),

P [dW RIG(t ) = −k|E (1), . . . , E (t − 1)]

(B10)= P [AV (t ) = k,V (t ) ∈ V (GRIG)|E (1), . . . , E (t − 1)]

(i)=
∑

v∈Û RIG (t−1)∪Û DRIG
0 (t−1)

P [AV (t ) = k,V (t ) ∈ V (GRIG)|E (1), . . . , E (t − 1),V (t ) = v]P [V (t ) = v|E (1), . . . , E (t − 1)]

(ii)= U RIG(t − 1)

U RIG(t − 1) + U DRIG
0 (t − 1)

(
W RIG(t − 1)

k

)
pk (1 − p)W RIG (t−1)−k . (B16)

Consequently, for all k ∈ N0,

P [dW RIG(t ) = −k, |E (1), . . . , E (t − 1)] = P [dW RIG(t ) = −k|E (t − 1)].

This proves the current claim.
Inspecting (B16), we can conclude that

− dW RIG(t )|E (t − 1),V (t ) ∈ V (GRIG)
(d)= Binomial(W RIG(t − 1), p), and

− dW RIG(t )|E (t − 1),V (t ) �∈ V (GRIG)
(d)= 0 w.p. one.

These two observations imply (B8), which concludes the proof. �

3. Martingale decompositions and integral representations of the elements of X RIG
0 (t ), X RIG

1+ (t ), . . . ,W RIG(t )

For s ∈ [0, 1], define scaled variants of the set sizes by

xRIG
0,n (s) = X RIG

0 (�sn�)

n
, xRIG

1+,n(s) = X RIG
1+ (�sn�)

n
,

xDRIG
0,n (s) = X DRIG

0 (�sn�)

n
, etc. wRIG

n (s) = W RIG(�sn�)

n
. (B17)

Integral representation of X RIG
0 (t ). Using Doob-Meyer’s decomposition theorem [48] on, e.g., X RIG

0 (t ), we find the martingale
decomposition

X RIG
0 (t ) =

t∑
i=1

dX RIG
0 (t )

= M
X RIG

0
n (t ) +

t∑
i=1

U RIG(i − 1)1[U RIG(i − 1) + U DRIG
0 (i − 1) � 1]

U RIG(i − 1) + U DRIG
0 (i − 1)

[
1 − p + p(1 − p)nRIG−X RIG

0 (i−1)−X RIG
1+ (i−1)

]W RIG (i−1)
,

(B18)

with M
X RIG

0
n (t ) a square-integrable martingale. To see why, note that

M
X RIG

0
n (t ) =

t∑
i=1

[
X RIG

0 (i) − X RIG
0 (i − 1) − E[dX RIG

0 (i)|Zi−1]
] =

t∑
i=1

[
dX RIG

0 (i) − E[dX RIG
0 (i)|Zi−1]

]

by telescoping. Clearly E[(MX RIG
0

n (t ))2] � 4t2 � 4n2 < ∞ by construction of the exploration algorithm, and hypothesis. Substi-
tuting (B18) into (B17), we find that the scaled process xRIG

0,n (s) can be written to leading order as an integral:

xRIG
0,n (s) = M

X RIG
0

n (�sn�)

n
+ 1

n

�sn�∑
i=1

U RIG (i−1)
n · 1[U RIG(i − 1) + U DRIG

0 (i − 1) � 1]
U RIG (i−1)

n + U DRIG
0 (t−1)

n

× [
1 − p + p(1 − p)n( σ

σ+e−c − XRIG
0 (i−1)

n − XRIG
1+ (i−1)

n )]W RIG (i−1)

= M
X RIG

0
n (�sn�)

n
+

∫ s

0

uRIG
n (x)1

[
uRIG

n (x) + uDRIG
0,n (x) � 1/n

]
uRIG

n (x) + uDRIG
0,n (x)

× exp
(

− γ̃wRIG
n (x)

{
1 − e−γ̃ [ σ

σ+e−c −xRIG
0,n (t )−xRIG

1+,n(t )]
})

dx + oP (1),

where γ̃ = (σ + e−c)γ /σ .
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Integral representations of X RIG
1+ (t ) and X DRIG

0 (t ). Similarly, we can directly obtain integral representations of the scaled
processes of X RIG

1+ (t ) and X DRIG
0 (t ) up to leading order; that is,

xRIG
1+,n(s) = M

X RIG
1+

n (�sn�)

n
+

∫ s

0

uRIG
n (x)1

[
uRIG

n (x) + uDRIG
0,n (x) � 1/n

]
uRIG

n (x) + uDRIG
0,n (x)

×
[
1 − exp

(
− γ̃wRIG

n (x)
{

1 − e−γ̃ [ σ

σ+e−c −xRIG
0,n (t )−xRIG

1+,n(t )]
})]

dx + oP (1),

xDRIG
0,n (s) = M

X DRIG
0

n (�sn�)

n
+

∫ s

0

uDRIG
0,n (x)1

[
uRIG

n (x) + uDRIG
0,n (x) � 1/n

]
uRIG

n (x) + uDRIG
0,n (x)

dx,

where M
X RIG

1+
n (t ) and M

X DRIG
0

n (t ) are again square-integrable martingales.
Integral representation of U RIG(t ). Executing the same methodology for U RIG(t ) yields

U RIG(t ) = nRIG +
t∑

i=1

dU RIG(t )

= nRIG + MU RIG

n (t ) −
t∑

i=1

U RIG (i−1)
n · 1[

U RIG(i − 1) + U DRIG
0 (i − 1) � 1

]
U RIG (i−1)

n + U DRIG
0 (t−1)

n

× {
1 + [U RIG(i − 1) − 1][1 − (1 − p2)W RIG (i−1)]

}
,

where MU RIG

n (t ) is once more a square-integrable martingale. Now, expand the multiplicative term in the summand, and note that
W RIG(t ) � �βn� w.p. one, to conclude that

1 − (1 − p2)W RIG (i−1) = 1 − {1 − p2W RIG(i − 1) + OP [p4W RIG(i − 1)2]} = γ̃ 2W RIG(i − 1)

n2
+ OP (n−2).

Consequently, U RIG’s scaled process uRIG
n (s) has, to leading order, the integral representation

uRIG
n (s) = σ

σ + e−c
+ MU RIG

n (�sn�)

n
− 1

n

�sn�∑
i=1

U RIG (i−1)
n · 1[U RIG(i − 1) + U DRIG

0 (i − 1) � 1]
U RIG (i−1)

n + U DRIG
0 (t−1)

n

(
1 + Ui−1

n

γ̃ 2W RIG
i−1

n

)
+ OP (n−1)

= σ

σ + e−c
+ MU RIG

n (�sn�)

n
−

∫ s

0

uRIG
n (x)1

[
uRIG

n (x) + uDRIG
0,n (x) � 1/n

]
uRIG

n (x) + uDRIG
0,n (x)

[1 + γ̃ 2un(x)wRIG
n (x)] dx + OP (n−1). (B19)

Integral representation of U DRIG
0 (t ). It will now be little surprise that the scaled process uDRIG

0,n (s) is given by

uDRIG
0,n (s) = e−c

σ + e−c
= +M

U DRIG
0

n (�sn�)

n
−

∫ s

0

uDRIG
0,n (x)1

[
uRIG

n (x) + uDRIG
0,n (x) � 1/n

]
uRIG

n (x) + uDRIG
0,n (x)

dx, (B20)

where MU RIG

n (t ) is another square-integrable martingale.
Integral representation of W RIG(t ). Finally, the Doob-Meyer decomposition of W RIG(t ) yields the martingale decomposition

W RIG(t ) = m +
t∑

i=1

dW RIG(t ) = m + Mw
n (t ) −

t∑
i=1

U RIG(i − 1)1[U RIG(i − 1) + U DRIG
0 (i − 1) � 1]

U RIG(i − 1) + U DRIG
0 (i − 1)

pW RIG(i − 1),

where Mw
n (t ) is (one more time) a square-integrable martingale. Its scaled partner variable is therefore given by

wRIG
n (s) = m

n
+ Mw

n (�sn�)

n
− 1

n

�sn�∑
i=1

pW RIG(t − 1)

= βσ

σ + e−c
+ Mw

n (�sn�)

n
−

∫ s

0

uDRIG
0,n (x)1

[
uRIG

n (x) + uDRIG
0,n (x) � 1/n

]
uRIG

n (x) + uDRIG
0,n (x)

γ̃wRIG
n (x)dx. (B21)
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4. Quadratic variation and convergence of the martingales

To prove the almost sure convergence of the scaled processes xRIG
0,n , xRIG

1+,n, . . . to xRIG
0 , xRIG

1+ , . . . as claimed in Theorem 2, we

will investigate the quadratic variation of each of the martingales M
xRIG

0
n , M

xRIG
1+

n , . . .. These quadratic variations are given by

〈
M

xRIG
0

n
〉
(t ) =

t∑
i=1

Vi−1[dX RIG
0 (i)], etc.,

〈
Mw

n

〉
(t ) =

t∑
i=1

Vi−1[dW RIG(i)], (B22)

where we have introduced the short-hand notations Vt [·] � V [·|E (t )], Et [·] � E[·|E (t )] for these conditional expectations.
Concretely, we prove the following in this section:
Lemma 2 (Convergence of martingales). For any α > 1/2 it holds that

1

nα
sup

s∈[0,1]

∣∣MxRIG
0

n (�sn�)
∣∣ P−→ 0,

1

nα
sup

s∈[0,1]

∣∣MxRIG
1+

n (�sn�)
∣∣ P−→ 0, etc.,

1

nα
sup

s∈[0,1]

∣∣Mw
n (�sn�)

∣∣ P−→ 0

as n → ∞.
Proof. We are going to prove that for any s ∈ [0, 1],

〈
M

xRIG
0

n
〉
(�sn�) � n,

〈
M

xRIG
1+

n
〉
(�sn�) � n,

〈
M

xDRIG
0

n
〉
(�sn�) � n,〈

MuRIG

n

〉
(�sn�) � βγ 2(1 + γ )n,

〈
M

uDRIG
0

n
〉
(�sn�) � n,

〈
Mw

n

〉
(�sn�) � βγ (1 + βγ )n (B23)

with probability one. The result then follows after an application of Doob’s inequality [49], because, e.g.,

P

[
1

nα
sup

s∈[0,1]
|MxRIG

0
n (�sn�)| � ε

]
� 1

ε2n2α
E

[
(Mgi

n (n))2
] = 1

ε2n2α
E

[〈Mgi
n (n)〉],

and therefore, under (B23), for all ε > 0

lim
n→∞P

[
1

nα
sup

s∈[0,1]

∣∣MxRIG
0

n

∣∣ � ε

]
� lim

n→∞
1

n2α−1ε2
= 0.

The remaining claims follow mutatis mutandis.

Proof that 〈MxRIG
0

n (�sn�)〉, 〈MxRIG
1+

n (�sn�)〉, 〈MxDRIG
0

n (�sn�)〉, 〈MuDRIG
0

n (�sn�)〉 � n w.p. one. Note that

Vi−1
[
dX RIG

0 (i)
]
,Vi−1

[
dxRIG

1+ (i)
]
,Vi−1

[
dX DRIG

0 (i)
]
,Vi−1

[
dU DRIG

0 (i)
]

� 1 w.p. one

because dX RIG
0 (t ), dX RIG

1+ (t ), dX DRIG
0 (t ), dU DRIG

0 (t ) ∈ {0, 1}. Bound (B22) directly and the claim follows.
Proof that 〈MuRIG

n (�sn�)〉 � βγ 2(1 + γ )n w.p. one. Consider a summand in the quadratic variation of MuRIG

n (t ) in (B22). The
law of total variance implies for it that

Vt−1[dU RIG(t )] = Vt−1[dU RIG(t ) | AV (t )] + Vt−1[Et−1[dU RIG(t ) | AV (t )]]. (B24)

Recall now that by construction of the exploration algorithm, dU RIG(t )|E (t − 1), AV (t ) is binomially distributed with param-
eters U RIG(t − 1) − 1 and (1 − p)AV (t ) if U RIG(t − 1) + U DRIG

0 (t − 1) � 1. Recollect in addition that for n ∈ N0, p ∈ [0, 1],
E[Binomial(n, p)] = np and V [Binomial(n, p)] = np(1 − p). If U RIG(t − 1) + U DRIG

0 (t − 1) � 1, then the first term in (B24)
expands therefore as

Et−1[Vt−1[dU RIG(t ) | AV (t )]] = [U RIG(t − 1) − 1]Et−1[(1 − p)AV (t ) [1 − (1 − p)AV (t ) ]]

= [U RIG(t − 1) − 1]
(
Et−1[(1 − p)AV (t ) ] − Et−1[(1 − p)2AV (t ) ]

)
= [U RIG(t − 1) − 1]

{
[1 − p + p(1 − p)]W RIG (t−1) − [1 − p + p(1 − p)2]W RIG (t−1)

}
= [U RIG(t − 1) − 1]

[
(1 − p2)W RIG (t−1) − (1 − 2p2 + p3)W RIG (t−1)

]
,

and the second term in (B24) as

Vt−1[Et−1[dU RIG(t ) | AV (t )]] = [U RIG(t − 1) − 1]2Vt−1[(1 − p)AV (t ) ]

= [U RIG(t − 1) − 1]2{
Et−1[(1 − p)2AV (t ) ] − Et−1[(1 − p)AV (t ) ]2}

= [U RIG(t − 1) − 1]2
[
(1 − 2p2 + p3)W RIG (t−1) − (1 − p2)2W RIG (t−1)

]
= [U RIG(t − 1) − 1]2[

(1 − 2p2 + p3)W RIG (t−1) − (1 − 2p2 + p4)W RIG (t−1)].
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Note now the algebraic (in)equalities that (i) for all a, b ∈ R and m ∈ N+, am − bm = (a − b)
∑m

i=1 am−ibi−1, U RIG(t − 1) � n
w.p. one, (ii) 0 � 1 − 2p2 + p3 � 1 − p2 � 1, and finally (iii) W RIG(t − 1) � �βnRIG� w.p. one. We therefore have

Et−1[Vt−1(dU RIG(t ) | AV (t ) )]
(i)
� nRIG1[W RIG(t ) > 0]p2(1 − p)

W RIG (t )∑
i=1

(1 − p2)W RIG (t )−i(1 − 2p2 + p3)i−1

(ii)
� nRIG p2(1 − p)W RIG(t )

(iii)
� γ 2�βnRIG�

nRIG
� γ 2β w.p. one.

Similarly Vt−1[Et−1[dU RIG(t ) | AV (t )]] � γ 3β with probability one. This proves the claim.
Proof that 〈Mw

n (�sn�)〉 � βγ (1 + βγ )n w.p. one. Finally, if U RIG(t − 1) + U DRIG
0 (t − 1) � 1, the summand in the quadratic

variation of Mw
n (t ) in (B22) satisfies

Vt−1[dW RIG(t )]
(B10)= Et−1[Vart−1[dW RIG(t )|V (t ) ∈ V (GRIG)]] + Vart−1[Et−1[dW RIG(t )|V (t ) ∈ V (GRIG)]]

= Et−1[Vart−1[−AV (t )1[V (t ) ∈ V (GRIG)]|V (t ) ∈ V (GRIG)]]

+ Vart−1[Et−1[−AV (t )1[V (t ) ∈ V (GRIG)]|V (t ) ∈ V (GRIG)]]

= Et−1[1[V (t ) ∈ V (GRIG)]W RIG(t − 1)p(1 − p)] + Vart−1[−1[V (t ) ∈ V (GRIG)]W RIG(t − 1)p]

= U RIG(t − 1)

U DRIG
0 (t − 1) + U RIG(t − 1)

W RIG(t − 1)p(1 − p) + [W RIG(t − 1)]2 p2Vart−1[dX DRIG
0 (t ) − 1]

� γ

nRIG

(
1 − γ

nRIG

)
�βnRIG� +

( γ

nRIG

)2
�βnRIG�2 � γ �βnRIG�

nRIG
+ γ 2�βnRIG�2

(nRIG)2
� βγ (1 + βγ ) w.p. one.

This completes the proof. �

5. Uniform convergence in probability of the scaled processes

Recall our definitions for xRIG
0 , xRIG

1+ , xDRIG
0 , uRIG, uDRIG

0 ,w in (5). We are going to prove the following:
Lemma 3 (Uniform convergence in probability). For any 0 � S < φ, ε > 0:

P [ sup
s∈[0,S]

|xRIG
0,n (s) − xRIG

0 (s)| � ε] → 0, etc., , P [ sup
s∈[0,S]

|wRIG
n (s) − w(s)| � ε] → 0

as n → ∞.
Proof that for 0 � S < φ, uRIG

n → uRIG, uDRIG
0,n → uDRIG

0 and wRIG
n → w uniformly on [0, S] in probability. Start by noting that

the vector-valued function f (x1, x2, x3) = (x1(1 + γ̃ 2x1x3), x2, γ̃ x1x3)/(x1 + x2) is Lipschitz continuous on Dε = {(x1, x2) ∈
[0, 1]|x1 + x2 � ε} × [0, βσ/σ + e−c] for all ε > 0; viz.,

∀ε > 0 ∃Lε > 0 : ‖ f (x1, x2, x3) − f (y1, y2, y3)‖1 � Lε‖(x1, x2, x3) − (y1, y2, y3)‖1 ∀x, y ∈ Dε.

Also note that consequently, for the vector-valued function hn(x1, x2, x3) = f (x1, x2, x3)1[x1 � 1/n], it holds that

∀ε > 0∃Lε > 0 : ‖hn(x) − f (y)‖1 � ‖hn(x) − f (x)‖1 + ‖ f (x) − f (y)‖1

� Cβ,γ̃1[x1 + x2 ∈ [ε, 1/n)] + Lε‖x − y‖ ∀x, y ∈ Dε. (B25)

for some absolute constant Cβ,γ̃ (i.e., independent of n).
Now let 0 � S < φ, and choose 0 < δ < (uRIG + uDRIG

0 )(S), and 0 < εδ � (uRIG + uDRIG
0 )(S) − δ. Consider the events

�n(δ) =
{

sup
s∈[0,S]

∥∥(
uRIG

n , uDRIG
0,n ,wRIG

n

)
(s) − (

uRIG, uDRIG
0 ,w

)
(s)

∥∥
1 < δ

}
, En(ε) =

{
inf

s∈[0,S]

(
uRIG

n + uDRIG
0,n

)
(s) � ε

}
.

Critically, note that ∀ω ∈ �n(δ) : ∀s ∈ [0, S], (uRIG
n + uDRIG

0,n )(s) = uRIG
n (s) − uRIG(s) + uDRIG

0,n (s) − uDRIG
0 (s) + uRIG(s) +

uDRIG
0 (s) � −|uRIG

n (s) − uRIG(s)| − |uDRIG
0,n (s) − uDRIG

0 (s)| + uRIG(s) + uDRIG
0 (s) � uRIG(s) + uDRIG

0 (s) − δ � (uRIG +
uDRIG

0 )(S) − δ � εδ > 0 since uRIG + uDRIG
0 is nonincreasing, and by hypothesis. Hence �n(δ) ⊆ En(εδ ).

Because of (B19), (B20), (B21), and (B25), we have that for arbitrary ε > 0, it holds on the event En(ε) that

sup
s∈[0,S]

‖(uRIG
n , uDRIG

0,n ,wRIG
n )(s) − (uRIG, uDRIG

0 ,w)(s)‖1

(B19,B20,B21)
� sup

s∈[0,S]

|MuRIG

n (�ns�)|
n

+ sup
s∈[0,S]

|MuDRIG
0

n (�ns�)|
n

+ sup
s∈[0,S]

|Mw
n (�ns�)|

n

+ sup
s∈[0,S]

∫ s

0

∥∥∥{uRIG
n (s)[1 + γ̃ 2uRIG

n (s)wRIG
n (s)]1[uRIG

n (s) + uDRIG
0,n (s) � 1/n]

uRIG
n (s) + uDRIG

0,n (s)
− uRIG(s)[1 + γ̃ 2uRIG(s)]

uRIG(s) + uDRIG
0 (s)

,

033302-18



MODELING RYDBERG GASES USING RANDOM … PHYSICAL REVIEW A 103, 033302 (2021)

uRIG
n (s)1[uRIG

n (s) + uDRIG
0,n (s) � 1/n]

uRIG
n (s) + uDRIG

0,n (s)
− uRIG(s)

uRIG(s) + uDRIG
0 (s)

,

uRIG
n (s)1[uRIG

n (s) + uDRIG
0,n (s) � 1/n]

uRIG
n (s) + uDRIG

0,n (s)
γ̃wRIG

n (s) − uRIG(s)

uRIG(s) + uDRIG
0 (s)

γ̃w(s)
}∥∥∥

1
dx

� martingale terms +
∫ S

0
sup

s∈[0,x]
‖hn(uRIG

n (s), uDRIG
0,n (s),wRIG

n (s)) − f (uRIG(s), uDRIG
0 (s),wRIG(s))‖1 dx

(B25)
� martingale terms + Cβ,γ̃ )1[(uRIG

n + uDRIG
0,n )(S) ∈ [ε, 1/n)]

+ Lε

∫ S

0
sup

s∈[0,x]
‖(uRIG

n , uDRIG
0,n ,wRIG

n )(s) − (uRIG, uDRIG
0 ,wRIG)(s)‖1 dx, (B26)

where the last inequality also relies on the fact that uRIG
n + uDRIG

0,n is nonincreasing and S � 1. Applying Grönwall’s inequality to
(B26) reveals that on the event En(ε),

sup
s∈[0,S]

∥∥(
uRIG

n , uDRIG
0,n ,wRIG

n

)
(s) − (

uRIG, uDRIG
0 ,wRIG

)
(s)

∥∥
1 �

(
martingale terms + Cβ,γ̃1

[(
uRIG

n + uDRIG
0,n )(S) ∈ [ε, 1/n

)])
eLε.

(B27)

We now tie the arguments up to (B27) together: for any 0 � S < φ, 0 < δ < (uRIG + uDRIG
0 )(S) and 0 < εδ � δ, all indepen-

dent of n,

P
[

sup
s∈[0,S]

∥∥(
uRIG

n , uDRIG
0,n ,wRIG

n

)
(s) − (

uRIG, uDRIG
0 ,wRIG)

(s)
∥∥

1 < δ
]

(B27)
� P

[
martingale terms + Cβ,γ̃1[(uRIG

n + uDRIG
0,n )(S) ∈ [εδ, 1/n)] < δe−Lεδ

]
∵ �n(δ) ⊆ En(εδ )

→ 1

as n → ∞ by Lemma 2 i f P [En(εδ )] → 1.
One final step therefore remains, that is, to prove that P [En(εδ )] → 1. Assume that nε > 1. Note that T ∗ > �Sn� + nε implies

U RIG(�Sn�) + U DRIG
0 (�Sn�) � nε. Therefore

T ∗
n >

�Sn�
n

+ ε ⇒ En(ε).

Hence as long as S + ε < φ, then

P [En(ε)] � P

[
T ∗

n >
�Sn�

n
+ ε

]
� P [T ∗

n > S + ε] → 1

by Theorem 1. This proves the claim.
Proof that for 0 � S < φ, xDRIG

0,n → xDRIG
0 uniformly on [0, S] in probability. Because xDRIG

0,n = 1 − uDRIG
0,n and xDRIG

0 = 1 −
uDRIG

0 , the claim follows from the arguments above.
Proof that for 0 � S < φ, xRIG

0,n → xRIG
0 and xRIG

1+,n → xRIG
1+ uniformly on [0, S] in probability. The proof approach is almost

identical to what was done to prove that uRIG
n → uRIG and uDRIG

0,n → uDRIG
0 uniformly on [0, S] in probability. The only necessary

change is to observe first that the vector-valued function

g(x1, x2, x3, x4, x5) =
(

f (x1, x2, x3),
x1

x1 + x2
e−γ x3[1 − e−γ (1−x4−x5 )],

x1

x1 + x2

{
1 − e−γ x3[1 − e−γ (1−x4−x5 )]

}}

is Lipschitz continuous on Dg
ε = {x1, x2 ∈ [0, 1]|x1 + x2 � ε} × [0,

βσ

σ+e−c ] × [0, 1]2, say, with constant Kg
ε , and continue the

arguments from there (mutatis mutandis). This concludes the proof. �

APPENDIX C: PROOF OF Theorem 3

Appendix C converts the fluid limit results of Appendix B to a fluid limit result for RSA on a DRIG by applying a nonlinear
time transformation. Recall that for t ∈ {0, 1, . . . , n},

X DRIG(t ) = X RIG
1+ (t ) + X DRIG

0 (t ), U DRIG(t ) = U DRIG
0 (t ) + U RIG(t ) + X RIG

0 (t ) − X RIG
0 (n)

and

DDRIG(t ) = U DRIG[(X DRIG)←(t )].
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First, Lemma 3 implies that for 0 � S < φ, X DRIG(�sn�)/n converges to x(s) = (xRIG
1+ + xDRIG

0 )(s) uniformly on [0, S] in
probability as n → ∞. Note furthermore that because x is continuous and nondecreasing, its inverse exists; denote it by x←.
Recall that

(X DRIG)←(u) = inf{t ∈ {0, 1, . . . , n}|X DRIG(t ) = u} for u ∈ {0, 1, . . . , nDRIG}.
Let r ∈ [0, 1], and observe that

(X DRIG)←(�rnDRIG�) = inf{t ∈ {0, 1, . . . , n}|X DRIG(t ) = �rnDRIG�}

= inf{� f n�|X DRIG(� f n�) = �rnDRIG�, f ∈ [0, 1]}

=
⌊

n inf

{
f ∈ [0, 1]

∣∣∣∣X DRIG(� f n�)

n
= �r(nDRIG/n)n�

n

}⌋
.

This implies that for any 0 � R � 1, ε > 0,

P

[
sup

r∈[0,R]

∣∣∣∣ (X DRIG)←(�rnDRIG�)

n
− x←(rnDRIG/n)

∣∣∣∣ � ε

]
→ 0 (C1)

as nDRIG → ∞. Second, note that Lemma 3 implies that for 0 � S < φ, U DRIG(�sn�)/n converges to uDRIG(s) = (uDRIG
0 +

uRIG + xRIG
0 )(s) − ξ0 uniformly on [0, S] in probability as n → ∞.

Let 0 � R < η and r ∈ [0, R]. Using the triangle inequality,

∣∣∣∣D(�rnDRIG�)

nDRIG
− d (r)

∣∣∣∣ =
∣∣∣∣U DRIG[(X DRIG)←(�rnDRIG�)]

nDRIG
− uDRIG[x←(rnDRIG/n)]

nDRIG/n

∣∣∣∣
�

∣∣∣∣U DRIG[(X DRIG)←(�rnDRIG�)]

nDRIG
− U DRIG[nx←(rnDRIG/n)]

nDRIG
)

∣∣∣∣
+

∣∣∣∣U DRIG[nx←(rnDRIG/n)]

n(nDRIG/n)
− uDRIG[x←(rnDRIG/n)]

nDRIG/n

∣∣∣∣.
By (C1) and continuity of U DRIG(·), the first term converges to zero in probability as nDRIG → ∞; recall that nDRIG � n. The
second term converges to zero by uniform convergence of U DRIG(�sn�)/n to uDRIG(s) as nDRIG → ∞ since then also n → ∞.
This last step is allowed, because x←(rnDRIG/n) < φ as long as r < η.

APPENDIX D: SIMULATION OF THE QUANTUM
MECHANICAL SYSTEM

Here we briefly summarize our numerical implementation
of the QMMRG model. The simulation was created imple-
mented in Matlab in order to efficiently solve the system of
differential equations (2).

First of all, we uniformly random distribute the N atoms
over a two-dimensional torus. The positions of the atoms are
saved in a matrix r ∈ RN×2. The next step is to compute
the state space. A state is represented by a logical vector
s ∈ {0, 1}N . The state space is then truncated to a set of rea-
sonably reachable states to tackle the exponential increase of
memory consumption in the number of atoms. Our numerical
experiments have shown that only a fraction of the states
in the state space actually contribute in the solution of the
Schrödinger equation as Fig. 7(a) exemplifies. Consider, for
example, the simulation with 8 atoms which has 28 = 256
states in total. The state with the highest contribution has a
probability of 10% of occurring in the jamming limit. More-
over, with probability at least 99% the system is in one of
the first 44 states, which is only 17% of the total number of
states. To capture the majority of the behavior of the quantum

system it therefore seems enough to only use a fraction of the
state space.

We also observe that the probability a state occurs is neg-
atively correlated with its contribution to the Hamiltonian
due to the Van der Waals interaction. Figure 7(b) shows the
probability a state occurs as a function of its Van der Waals
potential. Clearly the probability diminishes for larger values
of the Van der Waals potential. For our simulation we have
truncated all states with a Van der Waals potential higher
than 108 resulting in a truncation of states with a probability
of less than 10−4 of occurring. To verify we computed the
maximum absolute difference between the mean number of
excitations over time for a small truncated system and the
statistics obtained without truncation and observed only frac-
tional differences in all cases, confirming that the truncation
does not influence our observations in any significant way.

After truncating the state space, each state is ordered lex-
icographically in the truncated state space such that it can
equivalently be represented by an index π (s) ∈ N. We then
compute the Hamiltonian matrix H . An element in the matrix
Hi, j is computed by determining the interaction energy of the
states s, s′ ∈ S corresponding to the indices i, j. To compute
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FIG. 7. (a) The cumulative probability of states in the solution of the Schrödinger equation in the jamming limit without using state
truncation for � = 5.8 MHz, C6 = 50 GHz μm6, and ρ = 0.031 μm−2. The states are in order of decreasing probability. (b) The probability
of a state in the solution of the Schrödinger equation in the jamming limit without using state truncation over its Van der Waals potential.

the interaction energy the input parameters and the position
matrix r are used as stated in the main text. The Hamiltonian

matrix results in the Schrödinger equation which we solve
numerically as an ordinary system of differential equations.
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