
PHYSICAL REVIEW A 103, 033116 (2021)

Optimal control over high-order-harmonic ellipticity in two-color
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We investigate the generation of high-order harmonics with arbitrary ellipticity using synthesized two-color
(800-nm + 400-nm) cross-linearly-polarized laser fields. It is shown that one can realize control over harmonic
ellipticity by finely adjusting the relative phase and the crossing angle of such two-color fields. Through
analyzing the time-frequency distributions and the quantum orbits of harmonic radiations, we show that the
harmonic helicity is originated from the unsymmetrical contribution between different quantum orbits released
in one 800-nm cycle. And, we further reveal that the controllability of harmonic ellipticity in such two-color
fields is closely related to the modulation of crossing angle and relative phase on the driving light’s spin angular
momentum. Finally, we show the probability of producing and modulating isolated helical attosecond pulses
with few-cycle two-color cross-linearly-polarized laser fields.
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I. INTRODUCTION

The development of light sources with attosecond
timescales facilitates the capture and control of ultrafast
physical processes [1]. The high-order harmonic generation
(HHG) in the intense laser atom interaction enables the coher-
ently upconverting of the fundamental laser pulses, to produce
the attosecond burst of extreme ultraviolet (EUV) radiation
[2,3]. HHG process is typically described in terms of the
semiclassical three-step model [4]. Because of the growing
interest in probing EUV and x-ray circular dichroism and
photoelectron chirality in matter, HHG with controllable ellip-
ticity has become of great interest [5]. The polarization state
of high-harmonic beams is closely related to the ellipticity of
the driving laser [6]. However, when increasing the ellipticity,
the recollision probability of electrons will quickly decrease,
which consequently leads to the dramatically decreasing har-
monic generation efficiency [7,8].

There have been several methods proposed to circum-
vent this difficulty [9–12]. Employing collinear two-color
counter-rotating circularly polarized laser fields, one can ac-
cess the bright EUV radiation consisting of pairs of highly
helical harmonics with orders 3n + 1 and 3n−1 [13,14].
However, as the pairs of adjacent order harmonics ap-
pear of opposite helicity, the synthesized attosecond pulses
would manifest nearly linear polarization. To overcome this
flaw, an improved noncollinear circularly polarized scheme
was proposed, which can produce isolated circularly polar-
ized high-harmonic pulses [15–17]. Recently, a time-domain
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approach using the superposition of two independent orthogo-
nally polarized EUV sources was presented [18]. This scheme
can realize the direct ellipticity control in analogy with visible
light. Due to the intrinsic angular momentum conservation
and parity conservation, these methods are fundamentally un-
able to generate the bright high-order harmonics covering all
integer orders.

On the other hand, the two-color cross-linearly-polarized
laser fields with typically parallel and orthogonal polariza-
tions have also been widely applied in HHG [19–24], which
can also be used to generate elliptical high-order harmonics
[25–28]. In the geometry of two-color cross-linearly-polarized
laser fields, the crossing angle and the relative phase are two
important parameters. HHG using such laser fields at specific
crossing angles has been studied [25–27]. And the influence
of the relative phase, which would provide alternative freedom
to control the harmonic ellipticity, has never been revealed,
to the best of our knowledge. To realize the optimal control
over harmonic ellipticity in two-color cross-linearly-polarized
fields, the comprehensive control of harmonic ellipticity by
jointly adjusting these two parameters is requisite.

In this paper, we theoretically study the modulation
of high-order-harmonic ellipticity by using two-color
cross-linearly-polarized laser fields. Within the framework
of the strong-field approximation (SFA) [29], we show the
dependence of harmonic ellipticity on the crossing angle
and the relative phase of such two-color fields. In particular,
two features of the ellipticity modulation are revealed:
(i) when increasing the crossing angle, the harmonic ellipticity
is not monotonously increased; (ii) the crossing angle and
the relative phase have different effects on controlling the
harmonic ellipticity. Based on the time-frequency analysis
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[30] and the quantum-orbit analysis [31], we show that the
asymmetry between different quantum orbits’ recollision
dynamics, i.e., their positions and velocities at the moment
of recollision, determines the high-order-harmonic helicity,
leading to feature (i). As for (ii), we inspect the instantaneous
spin angular momentum (SAM) of the driving light fields.
We find that the difference between the crossing angle
and the relative phase in ellipticity control is attributed
to their different effects on the driving field’s SAM. The
paper is organized as follows. In Sec. II, we present the
theoretical model and the simulation results. We interpret our
calculations in Sec. III, in which we investigate the harmonics’
temporal distributions, recollision electron trajectories and
the time-dependent SAM structures of the driving laser fields,
respectively. In Sec. IV, we present the simulation of isolated
attosecond pulse produced by the few-cycle driving fields.
Finally, we conclude our study in Sec. V.

II. THEORETICAL MODEL AND RESULTS

A. Theoretical model

According to the SFA, the time-dependent dipole moment
D(t ) can be written as

D(t ) = −i
∫ t

−∞
dt ′

[ −2π i

t − t ′ − iδ

]3/2

d∗[ps(t
′, t )+A(t )]E(t ′)

× d[ps(t
′, t ) + A(t ′)]e−iS(t ′,t ) + c.c., (1)

in which E(t ) is the electric field, A(t ) = − ∫ t
−∞ dt ′E(t ′)

is the vector potential of the laser field, δ is an arbitrary
small positive regularization constant introduced to smooth
out the singularity, d[ps(t ′, t ) + A(t ′)] is the dipole transition
matrix element from ground state to plane wave state, and
d∗[ps(t ′, t ) + A(t )] is the dipole transition matrix element
for the recombination process. Here, the ground state of the
hydrogenlike atoms is assumed in calculating the transition
dipoles. Specifically, the dipole transition maxtrix elements
d(p) are given by d(p) = i( 27/2α5/4

π
) p

(p2+α)3 , in which α =
2Ip and Ip is ionization potential of the target atoms. Also,
ps = − 1

t−t ′
∫ t

t ′ A(t ′′)dt ′′ is the saddle point momentum which
is calculated from the saddle point equation ∇pS(t, t ′) = 0.
Here S(t, t ′) = ∫ t

t ′ dt ′′( 1
2 [p + A(t ′′)]2 + Ip) is referred to as

the quasiclassical action. The saddle-point approximation for
the integral over p yields a factor (t − t ′)−3/2 that accounts for
the quantum diffusion effect. Accordingly, the electric field
of high-order harmonic can be calculated from the Fourier
components of D(t ) as

Eq ∝ ω2
q

∫
D(t )e−iωqt dt, (2)

where ωq = qω800 is the frequency of the qth harmonic and
ω800 is the 800-nm light frequency. Then, the qth harmonic’s
ellipticity can be expressed by [27]

εq= tan{asin[sin[2atan(|Eq,x|/|Eq,y|)]sin(φq,x − φq,y)]/2}.
(3)

Here, Eq,x and Eq,y are the x- and y-component elec-
tric fields, whose phases are given by φq,x = atan[Im(Eq,x )/
Re(Eq,x )] and φq,y = atan[Im(Eq,y)/Re(Eq,y)], respectively.

FIG. 1. (a) Illustration of producing the elliptical high-order har-
monics in the two-color cross-linearly-polarized laser field. (b) The
ellipticity (ε) distribution of the 28th harmonic with respect to the
crossing angle. The relative phase is π/2, i.e., the black solid line in
(d). (c)–(f) The ellipticity distributions (color scale) of the 27th-30th
harmonics as a function of the relative phase and crossing angle.
For each harmonic, to facilitate the observation, the distributions are
separated into five regions (I, II, III, IV, and V). In (c), the A point
(�θ = 67.4◦, �ϕ = 3.9 rad, εq = −0.93) and B point (�θ = 76.8◦,
�ϕ = 4.5 rad, εq = 0.98) indicate the conditions, in which the har-
monics are nearly circularly polarized.

B. Ellipticity features of harmonics in two-color
cross-linearly-polarized fields

Without losing generality, we use the model He atom as
the target, which can exclude the effect of nonzero orbital
angular momentum state of bound atomic electrons [32]. The
intensities of 800-nm and 400-nm light field are chosen to
be I800 = I400 = 7 × 1013 W/cm2. As shown in Fig. 1(a), the
polarization of 800-nm light is aligned along the y direction.
For simulations, the synthesized two-color electric field is
given by

E(t ) = [E800 f (t ) cos(ω800t )

+ E400 f (t ) cos(�θ ) cos(ω400t − �ϕ)]ey

+ E400 f (t ) sin(�θ ) cos(ω400t − �ϕ)ex, (4)

where E800 and E400 are the peak electric field strength of
800- and 400-nm field, respectively. �θ is the crossing angle
between these two light field polarizations, �ϕ is their relative
phase, and f (t ) is the pulse envelope (a ten-cycle trapezoidal
envelope is used).

Here, we simulate the harmonic fields near the cut-off
region of HHG spectra, in which SFA could have a more
accurate resemblance with the results from time-dependent
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Schrödinger equation [33]. In Figs. 1(c)–1(f), we present
the ellipticity distributions as a function of the crossing
angle and the relative phase. Closer inspection indicates
that highly helical harmonics can be obtained at suitable
parameters. For example, the ellipticity of the 27th harmonic
reaches ε27 = −0.93 at �θ = 67.4◦ and �ϕ = 3.9 rad [A
point in Fig. 1(c)]. A reversed high ellipticity ε27 = 0.98
can be reached at �θ = 76.8◦ and �ϕ = 4.5rad [B point in
Fig. 1(c)]. Remarkably, such ellipticities are much higher than
what can be obtained by directly using orthogonally polarized
two-color laser fields [25].

One can notice that the harmonic ellipticity is not
monotonously related to the crossing angle, as shown in
Fig. 1(b). When increasing the crossing angle, the ellipticity
slowly increases at first, and it will reach its maximum when
the crossing angle is �θ ∼ 80◦, then it will drop rapidly.
At �θ ∼ 90◦, the harmonic ellipticity unexpectedly becomes
very small.

Also, it can be further noticed that there are some
differences between the relative phase and the crossing angle
in modulating the harmonic ellipticity. For the relative phase,
it can significantly affect harmonic ellipticity’s magnitude and
sign. To facilitate the observation, we divide the ellipticity
distribution of each harmonic into five phase regions [as
shown in Figs. 1(c)–1(f)]. In the second and fourth regions
(II and IV), the harmonic ellipticity is positive. In other
regions (I, III, and V), the negative ellipticities are in the
majority. Compared to the relative phase, the crossing angle
has less influence on the sign of harmonic ellipticities.
That is, for most relative phases, the sign of ellipticity is
nearly unchanged when only varying the crossing angle. For
example, if the relative phase is �ϕ = π/2, the ellipticity
of the 28th harmonic is always positive even when varying
the crossing angle [see Fig. 1(b)]. The crossing angle mainly
affects the magnitude of harmonic ellipticity.

III. ANALYSIS AND DISCUSSION

A. Gabor time-frequency analysis

First, we investigate the modulation of the crossing
angle on harmonic ellipticity. To this end, the Gabor time-
frequency analysis [30] is employed to access the temporal
profiles of the harmonic radiations. The time-resolved har-
monic electric field can be given by E′

q(t ) ∝ ω2
qGD(t, ωq ) =

ω2
q

∫
D(τ )g(τ − t )e−iωqτ dτ , where the Gaussian function

g(τ − t ) is chosen to be the window function. And the full
width at half maximum (FWHM) of this Gaussian function is
T800/40 (T800 is one cycle of the 800-nm light field). Based on
E′

q(t ), the time-resolved ellipticity ε′
q(t ) can be obtained via

Eq. (3). Importantly, the harmonic electric field Eq which was
given by Eq. (2) can be recovered through integrating E′

q(t ):

∫ ∞

−∞
E′

q(t )dt

= ω2
q

∫ ∞

−∞
D(τ )

[∫ ∞

−∞
g(τ − t )dt

]
e−iωqτ dτ = Eq. (5)

Equation (5) indicates that the harmonic field Eq can be
regarded as the time accumulation of E′

q(t ).

FIG. 2. Interpretation for the modulation of the harmonic ellip-
ticity in the two-color cross-linearly-polarized field. First column:
Lissajous curves (green) of the electric field of the driving two-color
light field in one 800-nm light cycle (T800 ). Second column: temporal
distribution of 28th harmonic’s ellipticity (blue) and amplitude (red),
which is obtained by performing the Gabor transform. The distribu-
tion of amplitude is zoomed to be observable. The relative phase is
�ϕ = π/2 and the crossing angles are (a) �θ = 90◦, (b) �θ = 80◦,
and (c) �θ = 45◦, respectively.

In Fig. 2, we present the Lissajous curves of the driv-
ing electric fields at different crossing angles (first column)
and their 28th harmonics’ temporal profiles (second column),
i.e., E′

q(t ) and ε′
q(t ). As shown, for two-color cross-linearly-

polarized laser fields, there are four electric field peaks in one
800-nm light cycle (labeled by A, B, C, and D). The electrons
released from the field peaks A and C are more likely to
recollide with the nucleus [34]. As for the electrons born at
the field peaks B and D, their recombination probabilities are
much smaller [34]. Thus, there are two dominated harmonic
bursts emitted in one 800-nm light cycle, corresponding to the
field peaks A and C [35], as shown in Figs. 2(a2)–2(c2).

When the crossing angle is �θ = 90◦, the driving electric
field peaks A and C have the same strength [Fig. 2(a1)]. No-
tably, their corresponding harmonic bursts A and C have the
same amplitudes but reversed helicities [Fig. 2(a2)]. Accord-
ing to Eq. (5), after the accumulation of these two symmetrical
harmonic bursts, the overall helicity of the 28th harmonic
radiation E28 will cancel. Therefore, the ellipticity is small
at �θ = 90◦ [see Fig. 1(b)]. When the crossing angle is
�θ = 80◦, the harmonic burst C is suppressed [Fig. 2(b2)]
as the corresponding electric field peak becomes weaker
[Fig. 2(b1)]. The ellipticity distributions of the harmonic
bursts A and C are not exactly opposite anymore. Because
of such broken symmetry between these harmonic bursts,
the 28th harmonic is elliptically polarized to some extent at
�θ = 80◦ [see Fig. 1(b)]. With the crossing angle further
reducing to �θ = 45◦, the dominated harmonic burst A does
not have a significant ellipticity [Fig. 2(c2)]. In contrast, the
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ellipticity of harmonic burst C is large, however, its amplitude
is very small. Thus, in the case of �θ = 45◦, the overall
harmonic ellipticity is much smaller than that at �θ = 80◦
[see Fig. 1(b)].

B. Quantum-orbit analysis

To further reveal the deeper mechanism of producing el-
liptical harmonics in two-color cross-linearly-polarized laser
fields, we then perform the quantum-orbit analysis [31] for
the inherent dependence of harmonic ellipticity on electron
quantum orbits. The quantum orbits are the trajectories along
which the phase of the multidimensional integral Eq. (1) is
stationary. They can be numerically obtained by solving the
saddle point equations:

ps = − 1

tr − ti

∫ tr

ti

A(t ′′)dt ′′, (6)

[ps + A(ti )]
2 + 2Ip = 0, (7)

[ps + A(tr )]2 + 2Ip = 2ω. (8)

Here, ps is the canonical momentum of the electrons, ti is
related to the moment of ionization, and tr is associated with
the recombination time. Equation (6) describes the return con-
dition for the electrons. Equations (7) and (8) express energy
conservation at the moment of ionization and recombination,
respectively. Due to the constraint imposed by Eq. (7), all the
solutions ps, ti, and tr are complex valued. To gain an intuitive
picture about the quantum orbits, we inspect the real part of
electron trajectories during the classical motion. For real times
t ∈ [Reti, Retr], the electron position R(t) is obtained by [36]

R(t ) = Re

[
ps(t − ti ) +

∫ t

ti

A(t ′)dt ′
]
. (9)

We solve Eqs. (6)–(8) for the 28th harmonic and plug the
solutions into Eq. (9). The obtained electron trajectories are
displayed in Figs. 3(a)–3(c). For each crossing angle, four
electron trajectories (also labeled by A, B, C, and D) which
correspond to the four electric field peaks, are presented. The
directions of the electron trajectories are marked by arrows.
The starting points of the trajectories indicate the tunneling
exits and the endpoints of the trajectories represent electrons’
positions at the moment of recollision.

The angular momentum of the driving light field is closely
related to the dynamics of intense-light-matter interaction
[37]. As known, light field’s ellipticity is directly associated
with its spin angular momentum (SAM) [38]. Due to the
angular momentum conservation, the SAM of the radiated
harmonic field is essentially transferred from the orbital angu-
lar momentum (OAM) of recollision electrons at the moment
of recombination. In the classical picture, the OAM (L) can be
expressed as the cross product of electron’s velocity (v) and
the distance to the nucleus (r) [see Fig. 3(a)], i.e., L = r × v.
Therefore, the harmonic helicity is closely related to the elec-
tron trajectories.

As shown in Fig. 3, for each crossing angle, trajectory A
recollides with the nucleus with a positive OAM (L is in-
wards perpendicular to the x-y plane). One can notice that the

FIG. 3. (a)–(c) The quantum orbits in the different cross-linearly-
polarized laser fields whose crossing angles are (a) �θ = 90◦, (b)
�θ = 80◦, and (c) �θ = 45◦, respectively. (d) Comparison of the
28th harmonic yields between different laser fields. For comparison,
the intensity of the single-color 800-nm linearly polarized light field
(black line) is chosen to be 1.4 × 1014 W/cm2, which is the same
as the intensity of the two-color light fields (blue, yellow, and purple
lines). In (d), some typical ellipticity values of harmonics are marked.

ellipticity of the corresponding harmonic burst is also positive,
as shown in Fig. 2. As for trajectory C, it recombines with
the nucleus with a negative OAM (L is outwards perpendic-
ular to the x-y plane). Its corresponding harmonic burst also
has a negative ellipticity. Besides, trajectories A and C are
symmetric at �θ = 90◦ [Fig. 3(a)]. In this case, the OAMs
values of these two recollision electron wave packets are
exactly opposite as well as their induced harmonic ellipticity
[see Fig. 2(a2)]. When the crossing angle becomes �θ = 80◦
[Fig. 3(b)], the symmetry between the electron trajectories is
slightly broken. Compared with the case of �θ = 90◦, the
velocities and positions of the recollision electrons are shifted.
Trajectory A is dragged towards the nucleus and meanwhile,
trajectory C is dragged away from the nucleus. Consequently,
their induced harmonic radiations have asymmetrical elliptici-
ties [see Fig. 2(b2)]. If the crossing angle is further reduced to
�θ = 45◦, the electron trajectory A collides with the nucleus
straightly (L ∼ 0). That is why the generated harmonic has a
very small ellipticity [see Fig. 2(c2)].

One may notice that the exit points of trajectories B and D
are counterintuitive, which is not opposite to the direction of
the instantaneous electric field. Here, we have to stress that
the trajectory calculated within saddle point approximation
is a special trajectory in an electron wave packet. This spe-
cial trajectory has the maximum recollision probability for
the electron. However, the electron wave packets B and D
actually tend to be directly ionized. Therefore, in order to
satisfy the return condition [Eq. (6)], the initial states of the
electron trajectory for B and D are rigorous, leading to the
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counterintuitive exit points. Besides, it should be noted that
the though the electric field A (C) and B (d) are symmetrical in
the Lissajous diagram (Fig. 2), the temporal evolutions of the
electric fields are different for the corresponding trajectories
[39]. Thus, these electron trajectories are asymmetrical.

C. Analysis of the SAM of the driving light field

As shown in Fig. 1, the relative phase and the crossing
angle have different effects on modulating the harmonic ellip-
ticity. To inspect the origin of such difference between these
two parameters, we now focus on the SAM of the driving laser
fields. Recently, the dual symmetric Lagrangian formulation
of classical electromagnetism was put forward by Bliokh and
coworkers [40,41]. Compared with the standard field-theory
formulation of electromagnetism, the dual electromagnetism
ensures a self-consistent separation of the spin and orbital
degrees of freedom [40]. Here, we adopt this dual-symmetry
formalism to calculate the SAM density, S, of the two-color
light field:

S = 1
2 (E × A + B × C), (10)

in which E is the electric field, A is the electric vector po-
tential, B is the magnetic field, and C is the magnetic vector
potential. In the Coulomb gauge ∇ · A = 0, the electric and
magnetic fields can be expressed via the vector potential as
E = −∂t A, B = ∇ × A, B = −∂t C and E = −∇ × C. With
the approximation f ′(t ) = 0, the electric vector potential can
be expressed as

A(t ) =
[
−E800 f (t )

ω800
sin(ω800t )

− E400 f (t )

ω400
cos(�θ ) sin(ω400t − �ϕ)

]
ey

− E400 f (t )

ω400
sin(�θ ) sin(ω400t − �ϕ)ex, (11)

Since HHG process is dominated by the electric field of
light [4], we neglect the magnetic field portion in Eq. (10).
And then, we substitute the electric field [Eq. (4)] and the
electric vector potential [Eq. (11)] into the expression of SAM
density [Eq. (10)]. After the simplification, we will finally
have

S = 1

2
E800E400[ f (t )]2 sin(�θ )ez

×
[

1

ω400
cos(ω800t ) sin(ω400t − �ϕ)

− 1

ω800
sin(ω800t ) cos(ω400t − �ϕ)

]
. (12)

In our configuration, the longitudinal component of elec-
tric fields is ignored, and hence only the z-component SAM
density exists.

According to Eq. (12), the SAM density of the two-color
field is a function of time, crossing angle, and relative phase.
And, it can be noticed that the crossing angle affects the
magnitude of light’s SAM density, but it imposes little effect
on the sign of SAM density. As for the relative phase, it can
significantly affect both. The influence of the crossing angle

and the relative phase on the instantaneous SAM density of the
driving field coincides with that on the harmonic ellipticity.
There is an intrinsic correlation between the SAM of driving
laser fields and the high-order-harmonic ellipticity in the HHG
process.

As known, for a single-color elliptical light field, the SAM
is dependent on the relative phase between its two orthogonal
field components. As for two-color cross-linearly-polarized
light fields, the SAM is also associated with the relative phase
between the 800- and 400-nm components. Here, the largest
difference between these two fields is that the SAM of the
two-color fields is time-dependent, as indicated by Eq. (12).
Such a unique feature leads to an important consequence that
the photoelectrons ionized at different instants will obtain
different angular momentums from the driving light field.
For each crossing angle, electrons ionized at the driving field
peaks A and B “feel” an anticlockwise electric field during
their classical motion [see Fig. 2(a1)]. Also, the electrons
will possess positive OAMs in recollision. As for the elec-
trons ionized at the peaks C and D, they “feel” a clockwise
electric field after tunneling, and hence their OAMs turn to
be negative. These different OAMs transfer to the emitted
high-energy photons at different recollision times, therefore
manifesting the time-dependent ellipticity for the harmonic
bursts, as shown in Fig. 2. Furthermore, when the relative
phase of the two-color field is increased by π , the shape of
the field’s Lissajous curve will remain the same. Therefore,
the ellipticities of harmonics are periodically controlled by the
relative phase with the cycle of π , as shown in Figs. 1(c)–1(f).

In Fig. 3(d), we further compare the 28th harmonic yields
in two-color cross-linearly-polarized laser fields with that in
a single-color 800-nm linearly polarized light field. Here,
the intensity of the 800-nm field (I ′

800) is chosen to be
1.4 × 1014W/cm2, which is the same as the intensity of the
two-color fields used previously, i.e., I ′

800 = I800 + I400. In-
terestingly, one can find that, at most relative phases, the
harmonic yields driven by the two-color laser fields can
be larger than that driven by the single 800-nm light field
[Fig. 3(d)]. When driving by a single-color laser field, the
harmonic yields are typically extremely low when the po-
larization is not close to linear. However, it is different in
the case of two-color driving laser field. The enhancement
of harmonic yields in a two-color laser field has been widely
studied [20,35,42,43]. In brief, the traveling time of electrons
in a two-color laser field is much smaller than that in an
800-nm linearly polarized field, so the electron wave-packet
spreading effect is significantly weaken. Moreover, when the
crossing angle is large, the electron wave packet at the time
of ionization is denser. Therefore, the harmonic yield in the
two-color laser field can be several orders of magnitude higher
than that by using the 800-nm linearly polarized field.

IV. GENERATING HELICAL ATTOSECOND PULSE
IN TWO-COLOR CROSS-LINEARLY-POLARIZED

LASER FIELD

As known, HHG is an important method to produce at-
tosecond pulses [2,44]. A natural interest is whether one can
employ two-color cross-linearly-polarized laser fields to fur-
ther control the helicity of the attosecond pulse produced in
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FIG. 4. Attosecond wave forms of the produced isolated attosecond pulses in the high-order harmonic generation driven by few-cycle
(τ800,FWHM = τ400,FWHM= 2 fs) two-color cross-linearly-polarized laser fields. The corresponding carrier-envelop-phase of the 400-nm light
field and the crossing angle are presented in the inset.

HHG [45]. Here, we consider a few-cycle two-color cross-
linearly-polarized driving laser fields whose mathematical
description is also given by Eq. (4) and the pulse duration of
the 800-nm and 400-nm components are τ = 2fs (FWHM).
In Fig. 4, we present the wave forms of the attosecond pulses
calculated by Fourier transformation of the corresponding
harmonic spectra, in which the harmonics above the 20th are
preserved to obtain the synthesized pulses. Using the few-
cycle pulses for the driving laser fields, the produced radiation
is confined to an isolated pulse of attosecond emission [46].
The pulse durations (at the amplitude FWHM) of the gener-
ated isolated pulses are nearly 950 as [Figs. 4(a) and 4(b)] and
700 as [Fig. 4(c) and 4(d)], respectively.

The projection of the isolated attosecond pulses over the
plane of the electric field shows the helicity of the pulses.
In general, through adjusting the crossing angle and the rel-
ative phase, the ellipticity can be tuned. At �θ = 80◦ and
�ϕ = π/4, the attosecond pulse can reach a high ellipticity
(|ε| ∼ 0.5 at the peak field) [Fig. 4(a)]. As for �ϕ = π/2,
the produced attosecond pulse is almost linearly polarized
(|ε| ∼ 0.1 at the peak field) [Fig. 4(c)]. Also, if enlarging
the crossing angle [Fig. 4(b) and 4(d)], the ellipticity of the
attosecond pulses will accordingly decrease. Such ellipticity
controllability is attributed to the change of the amplitude
ratio and the phase delay between the x and y component of
the synthesized attosecond pulses. The simulations indicate
that it would be an effective method to generate an elliptical

attosecond pulse and control its ellipticity with few-cycle two-
color cross-linearly-polarized driving fields.

V. CONCLUSION

In summary, we have investigated the capability of two-
color cross-linearly-polarized laser fields in controlling the
ellipticity of high-order harmonics. Through finely adjusting
the crossing angle and the relative phase of the driving laser
fields, harmonic ellipticity can be fully controlled. We re-
veal that the harmonic helicity depends on the unsymmetrical
contribution between the quantum orbits. When adjusting the
relative phase and the crossing angle, the temporal structure
of light’s SAM is manipulated, which accordingly affects the
angular momentum transfer process in HHG. In the same light
field configuration, we have also illustrated the probability
of producing chiral isolated attosecond pulses. This work
shows the inherent relationship between the driving field’s
time-dependent SAM structure and the produced harmonic
features, which has been rarely recognized. Meanwhile, the
calculation results will facilitate the employment of the two-
color laser fields in producing helical high-order harmonics
and attosecond pulses.
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