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Quantum interferences between rescattering orbits with multiexcitation channels in the recollision
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Based on the strong-field approximation (SFA), we investigate the interference between different returning
orbits of the rescattering electron in nonsequential double ionization. We find that the effect of interference
is negligible in the recollision-impact ionization process but is prominent in the recollision excitation with
subsequent ionization process and induces fast oscillation with constant period in the laser intensity dependence
of the asymmetry parameter. The dominant contribution to the fast oscillation comes from the mixed interference
between different pairs of returning orbits in different excitation channels. However, the oscillation disappears
after laser focus averaging is performed due to its rather small period.

DOI: 10.1103/PhysRevA.103.033111

I. INTRODUCTION

Nonsequential double ionization (NSDI) in strong laser
fields has been continuously attracting growing attention from
researchers because it is an ideal system to study multielectron
dynamics, particularly electron correlation in external fields
[1–10]. Rescattering has already been widely accepted as the
dominant mechanism [11–14] for NSDI. During the rescat-
tering process, the first electron ionized by tunneling may
then be driven back by the laser field with significant kinetic
energy and collide with the core inelastically. Depending on
the kinetic-energy transferred to the core upon collision, the
second electron can be ionized through two mechanisms:
(a) to be ionized directly (recollision-impact ionization: RII);
or (b) to be excited and subsequently freed by the field (recol-
lision excitation with subsequent ionization: RESI).

In a laser field whose intensity is below the RII thresh-
old, i.e., the maximal returning kinetic energy of the first
electron is smaller than the ionization potential, the RESI
process will play a dominant role [15–18]. Since RESI is
essentially a quantum process, quantum interference plays
an important role in it. Up to now, there are mainly three
types of interference that are widely identified theoretically
and employed to explain experimental results: (a) interference
between different excitation channels of the second elec-
tron [19]; (b) intracycle and intercycle interference for orbits
of the second electron after tunneling ionization [20]; and
(c) interference induced by the exchange symmetry for the
two ionized electrons which are indistinguishable in nature
[20,21]. These interferences have been intensively studied
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in theory and can be employed to explain many experi-
mental results. For instance, investigation in RESI of Ar
by strong-field approximation (SFA) supports pronounced
interchannel interference among three identified dominant
channels [19], and qualitatively reproduces the measured tran-
sition of electron momentum correlation distribution from
anticorrelation to correlation with increasing laser intensity
[9]. Interference between orbits of the second electron after
ionization and interference due to electron indistinguishability
also form rich distribution patterns of electron momen-
tum correlation distribution [20]. Furthermore, the interplay
between symmetry-related interference and interchannel in-
terference can be manipulated to generate dramatic variations
in the shape of momentum correlation distribution [22]. Nev-
ertheless, there are still features observed in experiments
concerning RESI that can hardly be attributed to the above
interferences. For example, it is found experimentally that the
intensity dependence of the asymmetry parameter between the
yields in the second and fourth quadrants and those in the first
and third quadrants of the electron-momentum-correlation
distributions for Xe exhibits a peculiar fast oscillatory struc-
ture [23]. The envelope of the oscillation structure can be
reproduced by SFA calculation when interchannel interfer-
ence is taken into account, while the fast oscillation itself
cannot be interpreted by either type of the above interference.

Actually, there is another interference between orbits
of rescattering electron which plays an important role in
processes of above-threshold ionization (ATI) and high-order-
harmonic generation (HHG). For example, the resonance-like
enhancement structure [24,25] in high-order ATI spectrum
can be attributed to constructive interference of a large num-
ber of rescattering electronic trajectories with small momenta
which happens near channel closings [26–29]. And interfer-
ence between short and long electronic trajectories will lead
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to an inner region with long coherence time and an outer
one with short coherence time in the HHG spectrum [30].
For NSDI, there are only a few investigations on this type of
interference. The relevant research involves theoretical obser-
vations of resonant-like enhancements of RII for Xe due to the
interference of rescattering trajectories with long travel times
[31], and the momentum distribution pattern of RESI for He
induced by interference between long and short trajectories
in one pair with the shortest travel time [20]. But there is no
experimental evidence for them up to now.

In this paper, we explore the interferences between return-
ing orbits of the first electron in the RESI process and try to
interpret the measured fast oscillation structures. Specifically,
we employ SFA theory [19] to calculate the electron momen-
tum correlation distribution and the laser intensity dependence
of asymmetry parameter under scenarios with different inter-
ferences considered.

The rest of this paper is organized as follows: In Sec. II we
briefly recall the expression for the RII and RESI transition
amplitude and the saddle-point equations. In Sec. III, we cal-
culate the intensity-dependent electron momentum correlation
distribution and asymmetry parameter considering different
types of interferences to analyze the effects of interferences
between rescattering electron orbits. Finally, in Sec. IV we
state the main conclusions of the paper.

II. THEORETICAL METHOD

In our work, we use the S-matrix theory to investigate the
electron momentum correlation distribution of the RII process
and the RESI process for Xe. Our calculations are based on
the velocity-gauge strong-field approximation. The transition
amplitude of the RII process is

MRII (p1, p2) =
∫ ∞

−∞
dt ′

∫ t ′

−∞
dt ′′

∫
d3kVp1p2,kgVkgeiS(p1,p2,k,t ′,t ′′ ),

(1)

with the action

S(p1, p2, k, t ′, t ′′)

= E1gt
′′ + E2gt

′

−
∫ t ′

t ′′
[k + A(τ )]2/2dτ −

∫ ∞

t ′
[p1 + A(τ )]2/2dτ

−
∫ ∞

t ′
[p2 + A(τ )]2/2dτ, (2)

and the form factors

Vkg = 〈
ψ

(V )
k |V1|ψ (1)

g

〉
, (3)

Vp1p2,kg = 〈
ψ (V )

p1
ψ (V )

p2
|V12|ψ (V )

k ψ (2)
g

〉
. (4)

Taking into account depletion of the excited states, the
transition amplitude of RESI process is

MRESI(p1, p2) =
∫ ∞

−∞
dt

∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′

∫
d3k

× e− ∫ t
t ′ γ j sin2ωτ/2Vp2eVp1e,kgVkg

× eiS(p1,p2,k,t,t ′,t ′′ ), (5)

with the action

S(p1, p2, k, t, t ′, t ′′)

= E1gt
′′ + E2gt

′ + E2e(t − t ′)

−
∫ t ′

t ′′
[k + A(τ )]2/2dτ −

∫ ∞

t ′
[p1 + A(τ )]2/2dτ

−
∫ ∞

t
[p2 + A(τ )]2/2dτ, (6)

and the form factors

Vkg = 〈
ψ

(V )
k |V1|ψ (1)

g

〉
, (7)

Vp1e,kg = 〈
ψ (V )

p1
ψ (2)

e |V12|ψ (V )
k ψ (2)

g

〉
, (8)

Vp2e = 〈
ψ (V )

p2
|V2|ψ (2)

e

〉
, (9)

where ψ (i)
g is the ground state of the ith electron, ψ (2)

e is
the excited state of the second electron, ψ (V )

p is the Volkoff
state with asymptotic momentum p, Vi denotes the binding
potential of the i th electron, and V12 is the interaction be-
tween the two electrons. The depletion rate of the excited state
is approximately described as γ j sin2 ωτ/2 [19] calculated
from a numerical solution of the time-dependent Schrödinger
equation for each excited state.

In our calculation,

Vi = −Zeff
i

ri
, V12 = 1

|r1 − r2| , (10)

where Zeff
i = n

√
2Ei is the effective charge of the ith electron,

n is the principal quantum number of the bound state, and
Ei is the respective ionization potential of the ith electron.
The trajectories are the solutions of the following saddle-point
equations for the RII process:

[k + A(t ′′)]2 = −2E1g, (11)

[p1 + A(t ′)]2 + [p2 + A(t ′)]2 = [k + A(t ′)]2 − 2E2g, (12)∫ t ′

t ′′
[k + A(τ )]dτ = 0, (13)

FIG. 1. Schematic representation of the electric field E(t ) for a
monochromatic field. The starts of the arrows indicate the approxi-
mate times around which the first electron tunnels, in case it returns
at a crossing. The complex return and start times for the indicated
pairs of orbits will have real parts in the vicinity of such times.
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FIG. 2. (a), (b) Longitudinal momentum distribution of Xe2+.
(c), (d) Electron momentum correlation distribution for Xe (E1g =
0.4457 a.u., E2g = 0.779 a.u.). Panels (a) and (c) are for RII process,
and panels (b) and (d) are for RESI process. The laser intensity is
2.5 × 1013 W/cm2 and frequency ω = 0.018 98 a.u. (corresponding
to wavelength λ = 2400 nm).

and for the RESI process

[k + A(t ′′)]2 = −2E1g, (14)

[p1 + A(t ′)]2 = [k + A(t ′)]2 − 2(E2g − E2e), (15)

∫ t ′

t ′′
[k + A(τ )]dτ = 0, (16)

[p2 + A(t )]2 = −2E2e. (17)

The orbit starts from the origin at the complex time t ′′ and
the first electron rescatters at the time t ′. The second electron
is released at complex time t . We consider a monochromatic,
linearly polarized field, for which

A(t ) = A0 cos (ωt )êz, (18)

where A0 is the amplitude of the vector potential, ω is the
frequency, and êz denotes the polarization vector.

For the first electron, the solutions of saddle-point
equations (11)–(13) and (14)–(16) are presented in pairs. In
each pair, the two orbits are dubbed the short and long orbit
corresponding to the shorter and longer travel times. Each
cycle will then contain two pairs of orbits. In our calculation
we restrict the real part of the return time in the interval 0 <

t ′
Re < T/2, where t ′

Re is the real part of t ′, and the tunneling
time t ′′ may distribute in different half-cycles, as depicted in
Fig. 1. Note that orbit 1 is the short orbit and orbit 2 is the
long orbit in pair (1,2). Orbit 3 is the short orbit and orbit
4 is the long orbit in pair (3,4), and so on. The saddle-point
approximation can only be applied when the saddle points
are well separated, which is not the case near the bound-
ary of the classically allowed region in momentum space.
Hence, each pair of saddles in the same half cycle has to be
treated in a uniform approximation [32]. In this paper, we will
employ the standard saddle-point approximation to describe
the contribution of individual orbit in one pair, and use the
uniform approximation to describe the contribution of one
pair as a whole. To demonstrate the interferences of different
returning trajectories of the first electron, we will consider the
four shortest pairs of trajectories, namely, pair (1, 2) to pair
(7, 8). Meanwhile, for the second electron, we only consider
the orbit with ionization time within half a cycle after the
rescattering moment, which means we do not consider inter-
ference between ionization of the second electron at different
optical cycles.

Then, we calculate the momentum correlation function by
integrating over the transverse momenta,

W (p1‖, p2‖) =
∫

d2 p1⊥d2 p2⊥|M(p1, p2)|2, (19)

where pi‖ and pi⊥ denote the components of pi parallel and
perpendicular to the laser polarization axis, respectively.

If the contributions from different pairs of orbits
are summed coherently or incoherently, the momentum
correlation function are

Wcoh(p1‖, p2‖) =
∫

d2 p1⊥d2 p2⊥

∣∣∣∣∣
∑

c

Mc(p1, p2)

∣∣∣∣∣
2

, (20)

FIG. 3. The asymmetry parameter α of as a function of laser intensity. Panel (a) corresponds to the RII process with and without interference
between the four shortest pairs of orbits for Xe. Panel (b) corresponds to the RESI process with both the interference between two ionic
excitation channels of the second electron and between four pairs of returning orbits of the first electron are considered. The result with neither
interference included is also presented for comparison.
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FIG. 4. Calculated electron momentum correlation distribution
for different pairs of the first electron’s returning quantum orbits
in RII process. Panels (a)–(d) correspond to pair (1, 2), pair (3, 4),
pair (5, 6), and pair (7, 8) of the first electron’s returning orbits,
respectively. The laser field has peak intensity 2.5 × 1013 W/cm2.

and

Wincoh(p1‖, p2‖) =
∫

d2 p1⊥d2 p2⊥
∑

c

|Mc(p1, p2)|2, (21)

respectively. The indices c refer to the different pairs of orbits.
Note that the electrons are indistinguishable and the

monochromatic laser field is symmetrical in the sense
of A(t + T

2 ) = −A(t ), so the below-stated arguments
hold upon the exchange(p1, p2) ↔ (p2, p1) and (p1, p2) ↔
(−p1,−p2).

III. RESULTS AND DISCUSSIONS

For the laser parameters interested here (laser intensity I >

2 × 1013 W/cm2 and wavelength λ = 2400 nm), the maximal
energy of the first electron when it returns to the parent core

exceeds the ionization potential of the second electron, so both
RII and RESI processes may contribute to double ionization
of Xe [23]. But the two-electron correlation corresponding to
these two processes are very different. For example, as shown
in Fig. 2, the longitudinal momentum distribution of Xe2+

for RII process exhibits a typical bimodal structure, and the
momentum of the two electrons mainly distributes in quad-
rants 1 and 3. In contrast, for RESI process, the longitudinal
momentum distribution of Xe2+ shows a peak at vanishing
momentum, and the momentum of the two electrons mainly
distributes in quadrants 2 and 4.

The asymmetry parameter defined as α = (Y1&3 −
Y2&4)/(Y1&3 + Y2&4), where Y1&3 (Y2&4) denotes the
yields of distributions in the first and third (second and
fourth) quadrants, can be used to quantitatively depict the
two-electron correlation. In Ref. [23], it is found that the
measured laser intensity dependence of α for Xe at 2400 nm
exhibit a behavior of fast oscillation. Applying the same
laser parameters as in the measurement, we calculate the
asymmetry parameters using Eqs. (1) and (5) corresponding
to the RII process and the RESI process, respectively, as
shown in Fig. 3. The contributions of four shortest pairs of
first electron’s returning orbits are summed coherently or
incoherently to identify the effect of inference. For the RESI
process, in addition to the interference between different
returning orbits of the first electron, interference between
different excitation channels of the second electron is also
included.

For RII process [Fig. 3(a)], the resulting curve in the case
of coherent sum remarkably coincides with that in the case of
incoherent sum, which shows a smooth decreasing trend. This
indicates that the effect of interference among four shortest
pairs of first electron’s returning orbits is negligible. This can
be understood as follows: First, the contributions from pair
(3,4), pair (5,6), and pair (7,8) are too small to interfere with
par(1,2). As shown in Fig. 4, the maximum of momentum
distribution for pair (1,2) is 127 000 times of that for pair (3,4),

FIG. 5. Calculated electron momentum correlation distributions of single component in each pair of first electron’s returning quantum
orbits for Xe. Panels (a)–(d) correspond to orbit 2 in pair (1, 2), orbit 3 in pair (3, 4), orbit 6 in pair (5, 6), and orbit 7 in pair (7, 8), respectively,
with ionic state 5p45d (E2e = 0.345 a.u.) of the second electron. Panels (e)–(h) correspond to orbit 2 in pair (1, 2), orbit 3 in pair (3, 4), orbit 6
in pair (5, 6), and orbit 7 in pair (7, 8), respectively, with ionic state 5p46s (E2e = 0.19 a.u.) of the second electron. The laser field has intensity
I = 4.0 × 1013 W/cm2 and frequency ω = 0.018 98 a.u. (corresponding to wavelength λ = 2400 nm).
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FIG. 6. The asymmetry parameter α as a function of laser intensity for single component in each pair of first electron’s returning quantum
orbits for Xe. Panels (a)–(d) correspond to orbit 2 in pair (1, 2), orbit 3 in pair (3, 4), orbit 6 in pair (5, 6), and orbit 7 in pair (7, 8), respectively,
with the second electron ionic state 5p45d . Panels (e)–(h) correspond to orbit 2 in pair (1, 2), orbit 3 in pair (3, 4), orbit 6 in pair (5, 6), and
orbit 7 in pair (7, 8), respectively, with the second electron ionic state 5p46s.

180 times of that for pair (5,6) and 56900 times of that for pair
(7,8). Second, since the return energy is different for different
pairs, the final momentum of the first electron for different
pairs are also different. As shown in Fig. 4, the momentum
distributions for different pairs are localized in different areas
and there is little overlap between them, so they can hardly
interference with each other.

Whereas for RESI process in Fig. 3(b), the asymmetry
parameter shows a series of quickly oscillations with a period
about 1.0 TW/cm2. If not including the interference between
different pairs and that between different excitation channels,
the oscillation disappears. To identify the interference be-
tween which specific orbits leading to the fast oscillations, we
will systematically analyze the effects different orbits in the
following.

Figure 5 shows the electron momentum correlation dis-
tributions corresponding to each single one of the returning
orbits at different ionic excitation channels of the second
electron. Note that only orbits 2, 3, 6, and 7 are presented,
since the other orbits 1, 4, 5, and 8 will generate an ex-
ponentially increasing contribution outside of the classically
allowed region which are not physical. The shape of the
momentum distribution depends both on the returning orbits
of the first electron and the ionic excitation channel of the
second electron. If the second electron is excited to the 5p45d
state and then ionized, we observe four spots in the vicinity
of p1‖ = ±p2‖ for orbits 2, 3, and 7, while the maximum of
the distribution merge along the pn‖ axis and the cross-shaped
distributions are observed for orbit 6. If one assumes that the
second electron is ionized through excited state 5p46s, there

FIG. 7. Calculated electron momentum correlation distributions in terms of the interference between the two components in each pair of
the first electron’s returning orbits for Xe. Panels (a)–(d) correspond to pair (1, 2), pair (3, 4), pair (5, 6), and pair (7, 8), respectively, with the
second electron ionic state 5p45d . Panels (e)–(h) correspond to pair (1, 2), pair (3, 4), pair (5, 6), and pair (7, 8), respectively, with the second
electron ionic state 5p46s. The parameters of laser field are the same as that of Fig. 5.
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FIG. 8. The asymmetry parameter α as a function of laser intensity in terms of the pairs of the first electron’s returning quantum trajectories.
Panels (a)–(d) correspond to pair (1, 2), pair (3, 4), pair (5, 6), and pair (7, 8), respectively, with the second electron ionic state 5p45d . Panels
(e)–(h) correspond to pair (1, 2), pair (3, 4), pair (5, 6), and pair (7, 8), respectively, with the second electron ionic state 5p46s.

are also four spots in the vicinity of p1‖ = ±p2‖ for orbit 2,
while a splitting is found in their distribution peak value for
orbits 3, 6, and 7, respectively. It should be noted that the
excited state 5p45d is a pure 5d state, while the state 5p46s
contains about 10% 6d admixture in addition to the dominant
6s component.

The magnitude of the distribution probability varies with
different orbits. When the second electron is ionized through
excited state 5p45d , the maximum of momentum distribution
for orbit 2 is four times of that for orbit 6, and five times of that
for orbit 3. When ionized through excited state 5p46s, it turns
out to be 14 times and 19 times, respectively. Therefore, orbit
2 plays a dominant role among orbits 2, 3, 6, 7. The second-
most important contribution is from orbit 6, which is larger
than that from orbit 3. Orbit 7 has the smallest contribution.
This is due to that the kinetic energy upon collision of the first

FIG. 9. Electron momentum correlation distribution with (first
column) and without (second column) interference between the four
shortest pairs of orbits with different ionic excitation channels of
the second electron. (a), (b) The second electron ionic state 5p45d;
(c), (d) the second electron ionic state 5p46s. The parameters of laser
field are the same as that of Fig. 5.

electron for orbits 2 or 6 is much higher than that for orbits
3 or 7, and therefore is more likely to promote the second
electron to an excited state.

Figure 6 shows the intensity dependence of α for each sin-
gle orbit. In general, all the curves are very smooth. When the
second electron is excited to 5p45d ionic state, the asymmetry
parameter of orbits 2, 3, 6, and 7 are all around zero. This
means that electron pairs are inclined to evenly distribute in
all four quadrants. When the second electron is excited to the
5p46s ionic state, the asymmetry parameter of orbit 2 shows
a decreasing trend and turns to be negative, indicating that
back to back emission mechanism dominates for orbits whose
returning time are within one laser cycle. The asymmetry pa-
rameter of both orbits 3 and 7 show an increasing trend and are
positive. The asymmetry parameter of orbit 6 first increases
and then decreases, holding positive for the most part with
increase of laser intensity. Therefore, the two electrons are apt
to perform a side by side emission with returning orbits 3, 6,
7, whose returning time are beyond one laser cycle.

In Figs. 7 and 8, we present the electron momentum
correlation distributions and intensity dependence of α after
considering the interference between two quantum orbits in
each pair (intrapair interference). The results are calculated

FIG. 10. The asymmetry parameter α as a function of laser inten-
sity for RESI process with and without interference between the four
shortest pairs of orbits for the second electron ionic states. (a) 5p45d;
(b) 5p46s.
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FIG. 11. The intensity dependence of asymmetry parameter α (a) considering interferences between pair (1,2) and pair (5,6) in both 5p45d
and 5p46s, (b) considering interferences between pair (1,2) and pair (3,4) in both 5p45d and 5p46s, and (c) considering interferences between
pair (3,4) and pair (5,6) in both 5p45d and 5p46s.

based on the uniform approximation. By comparing Figs. 7
and 8 with Figs. 5 and 6, we can extract the effect of interfer-
ence between two orbits in each pair. After coherently adding
the other orbit in each pair, the shapes of the momentum
distributions only change in details, but the magnitudes of
the momentum distribution vary obviously. Specifically, the
results for pair (1,2) are almost the same as that for orbit 2
alone, which means that the contribution from orbit 1 is too
small to interfere with orbit 2. But this is not the case for other
pairs (3, 4), (5, 6) and (7, 8), in which the two orbits make sim-
ilar contributions. As for intensity dependence of asymmetry
parameter, the effect of intrapair interference effect appears
to be negligible, which can be inferred by comparing Fig. 8
with Fig. 6. This is because the intrapair interference does
not break the symmetry of momentum correlation distribution
with respect to p2‖ = 0.

Next, we coherently sum the contributions from different
pairs of returning orbits, as shown in Fig. 9. For comparison,
we also present results of incoherent sum of different pairs
of orbits. Since pair (1, 2) has dominant contribution among
all pairs of orbits, the resulting distribution pattern made up
by the coherent sum has remarkably similarity with that of
incoherent sum. So the interference effect manifests itself
only in detail of the distribution, for example, it enhances the
maxima of the distribution probability along the pn‖ axis in
Fig. 9(a) compared with Fig. 9(b). Moreover, the interference
also affects the intensity dependence of asymmetry parameter,

as shown in Fig. 10, which presents oscillation in both cases
of the two excitation channels, but the amplitude is too small
compared with the oscillation in Fig. 3(b). This indicates that
the region and magnitude of momentum distributions do not
match so well. Therefore, the fast oscillation of the laser
dependence of asymmetry parameter in Fig. 3(b) is not the
result of interferences between different rescattering orbits in
each excitation channel.

Then the fast oscillation in Fig. 3(b) can only be attributed
to mixed interpair interference among the two excitation chan-
nels, i.e., the interference between one pair in 5p45d and
another pair in 5p46s. In the following we seek to identify the
two specific pairs whose interference contributes dominantly
to the fast oscillation in Fig. 3(b). Since pair (7,8) makes
almost negligible contribution, we mainly focus on interfer-
ences between pairs (1,2), (3,4), and (5,6) among the two
excitation channels. First, we present the calculated asymme-
try parameter including only two pairs of orbits in the two
excitation channels in Fig. 11. We find that the mixed interfer-
ence in different combinations can all induce fast oscillation,
but the period is different. The mixed interference among pairs
(1,2) and (5,6) in the two excitation channels [Fig. 11(a)]
shows a similar fast oscillation with a period of 1.0 TW/cm2

as that in Fig. 3(b). The period of oscillations corresponding
to pairs (1,2) and (3,4) in Fig. 11(b) is about 2.4 TW/cm2,
and that corresponding to pairs (3,4) and (5,6) in Fig. 11(c) is
1.6 TW/cm2. Therefore, we can conclude that the oscillations

FIG. 12. Laser intensity dependence of the asymmetry parameter α (a) considering interference between pair (5,6) in 5p45d and pair (1,2)
in 5p46s, (b) pair (1,2) in 5p45d and pair (5,6) in 5p46s, (c) and pair (5,6) in 5p45d and pair (5,6) in 5p46s.
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FIG. 13. Laser intensity dependence of the asymmetry parameter
α considering interferences between all the four pairs of returning
orbits in excitation channels of 5p45d and 5p46s after performing
laser focus averaging.

of asymmetry parameter with respect to laser intensity in
Fig. 3(b) mainly result from mixed interference between pair
(1,2) and pair (5,6) in the two excitation channels.

Next we further determine which pair between the two
in each excitation channel causes the interference by check-
ing all the possible combinations. Note that the interference
between the two pairs of (1,2) in each excitation channel
has been reported in Ref. [23], which shows that this inter-
ference only shapes the general envelope of laser intensity
dependence of asymmetry parameter but does not generate the
fast oscillation. Therefore, we only present the results of the
other three cases in Fig. 12. It is found that both the mixed
interference between pair (5,6) in 5p45d and pair (1,2) in
5p46s [Fig. 13(a)], and that between pair (1,2) in 5p45d and
pair (5,6) in 5p46s can produce obvious fast oscillations with a
period of 1.0 TW/cm2. However, for the interference between
two pairs of (5,6) from each excitation channel, only smooth
variation similar to the case of two pairs of (1,2) can be found.
Therefore, the fast oscillations in Fig. 3(b) can be attributed to
the mixed interference between pair (1,2) and pair (5,6) but in
different excitation channels.

From Figs. 12(a) and 12(b), the obtained oscillation of
asymmetry parameter shows the equal-spacing interference
fringes, which indicates that the phase of electrons linearly
scales with the laser intensity. In the following, we discuss
the relation between the electron phase and the laser intensity
from an analytical view via the saddle-point approximation.
The electron phase is represented by the corresponding ac-
tions S(p1, p2, k, t, t ′, t ′′). The phase difference between the
action of pair (5,6) and pair (1,2) of the first electron’s rescat-
tering orbit in different excitation channels is

�S = S(5,6)(p1, p2, k2, t2, t ′
2, t ′′

2 ) − S(1,2)(p1, p2, k1, t1, t ′
1, t ′′

1 ),

(22)

where t ′′
1 (t ′′

2 ) represents the tunneling time of the first electron
for pair (1,2) [pair (5,6)], t ′

1 (t ′
2) is the rescattering time of the

first electron for pair (1,2) [pair (5,6)], t1 (t2) represents the
tunneling time of the second electron for pair (1,2) [pair (5,6)].

For pair (1,2), the tunneling time t ′′
1 is approximately at

the field crest and rescattering time t ′
1 is approximately at the

subsequent field crossing, as shown in Fig. 1, so we have
t ′
1 − t ′′

1 ≈ 3π
2ω

, sin(ωt ′′
1 ) ≈ −1, and sin(ωt ′

1) ≈ 0. For pair
(5,6), if its rescattering time is fixed near that of pair (1,2), i.e.,
t ′
2 ≈ t ′

1, the tunneling time has the relation t ′′
2 ≈ t ′′

1 − 2π
ω

. The
tunneling times of the second electron for the two pairs can be
set as equal, i.e., t2 = t1. As a result,

�S = S(5,6) − S(1,2)

= E1g(t ′′
2 − t ′′

1 ) + E2e2(t2 − t ′
2) − E2e1(t1 − t ′

1)

+Up

(
4

7πω
− 4

3πω
− 2π

ω

)
, (23)

where E2ei (i = 1, 2) denotes the ionization potential of the
second electron’s excited state. We can infer from the above
results that α linearly scales with Up, which is proportional
to the laser intensity. By setting �S2 − �S1 = −2π , we can
receive �Up = Up2 − Up1 = 0.018 a.u., corresponding to the
period as �I = I2 − I1 = 0.9 TW/cm2, which agrees well
with the results in Fig. 12.

Finally, we perform laser focus averaging on electron
momentum correlation distribution considering both the inter-
ference between two ionic excitation channels of the second
electron and between four pairs of returning orbits of the first
electron. Unfortunately, fast oscillation on the laser intensity
dependence of asymmetry parameter disappears, as shown in
Fig. 13. This may be because the period of the oscillation in
Fig. 3(b) is too small. However, the above results is based
on SFA, so the effect of Coulomb field between the ionized
electron and the residual ion is not included. According to
Ref. [33], the rescattering orbits will be significantly affected
by the Coulomb field, including the relative contribution be-
tween different pairs, the spatial trajectory, as well as the
phase. Therefore, if taking the Coulomb field into account,
the amplitude and period of the oscillation will change, and
the oscillation may survive after focus averaging.

IV. CONCLUSIONS

In this paper, we utilize SFA to systematically investi-
gate the interference effect between rescattering electrons’
returning orbits in the RESI process. We find that the in-
trapair interference is negligible, but the mixed interference
between different pairs of returning orbits in different exci-
tation channels is prominent, which induces fast oscillations
with constant period in the laser-intensity dependence of the
asymmetry parameter. However, it is found that the oscillation
disappears when laser focus averaging is performed due to its
rather small period. More sophisticated models accounting for
effects, e.g., ion-electron Coulomb interaction and dressing of
the excited states, still need to be developed to explain the
experimental observation.
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