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We present a state-of-the-art theory of tunneling ionization of the hydrogen molecule in a static electric
field. The theory is based on the leading-order many-electron weak-field asymptotic theory and successively
incorporates core polarization, spectator nucleus, and internuclear motion effects. The predictions of the theory
are compared with ab initio calculations of the ionization rate of H2 with frozen nuclei and experimental results
on the anisotropy of strong-field ionization of H2 and D2. The comparison reveals the relative role of the different
effects. We show that all the effects should be taken into account in order to achieve good agreement with the
ab initio and experimental results.
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I. INTRODUCTION

The ionization of atoms and molecules in a strong laser
field is the first fundamental step for all phenomena observed
and studied in strong-field physics [1]. Typical laser pulses
used in strong-field experiments satisfy two conditions. First,
they have sufficiently high intensity (I ∼ 1014 W/cm2) and
low frequency (λ � 800 nm), so that the ionization proceeds
in the adiabatic regime [2], as if the laser field were static.
Second, the laser field is rather weak compared to character-
istic atomic fields, so that the release of an electron occurs
in the tunneling (under-the-barrier) regime. The weak-field
asymptotic theory (WFAT) of tunneling ionization in a static
electric field [3] suggests a general theoretical platform for
studying the ionization step in strong-field processes under
these conditions.

The WFAT is based on the asymptotic expansion of the
ionization rate in the strength F of the ionizing field. By
construction, this theory becomes exact at F → 0 and its
error grows as F grows. The original one-electron leading-
order theory [3] was extended to the first-order correction
terms in the asymptotic expansion of the ionization rate [4]
and generalized to many-electron systems (ME-WFAT) in
the leading-order approximation [5] and including the first-
order terms [6,7]. The theory was validated by comparison
with accurate ab initio calculations. The good quantitative
performance of the one-electron WFAT was confirmed by
calculations for noble gas atoms treated in the single-active-
electron approximation [4] and the hydrogen molecular ion
H+

2 [8]. Converged fully correlated ab initio calculations of
ionization rates for systems with more than one electron are
available only for H− [9], He [10–12], Li [13], and the hydro-
gen molecule H2 [14,15]; note that great progress in extending
such calculations to larger systems is taking place [15,16].
In Ref. [6], an analytical formula for the ionization rate of
two-electron atoms obtained within the ME-WFAT including

the first-order terms was presented. This formula reproduces
the ab initio results for He [10–12] with an error less than
25% up to F = 0.2 a.u. One obvious advantage of having
such a reliable analytical theory stems from its usefulness
for applications, especially in situations where ab initio cal-
culations are not feasible. We mention that the WFAT has
been implemented for diatomic [17,18], triatomic [17,19], and
arbitrary polyatomic [20,21] molecules treated in the Hartree-
Fock approximation (WFAT-HF) and successfully applied to
the analysis of experiments [22–25]. But there also exists an-
other advantage: the theory provides physical insight into the
tunneling ionization process enabling one to investigate how
the different properties of the system affect the ionization rate.
This was demonstrated by the application of the ME-WFAT
to two-electron atoms [6,7]. In this paper, we present a similar
analysis for the hydrogen molecule.

There are several effects not accounted for by the original
formulation of the ME-WFAT [5] which are relevant to H2 and
should be included in the analysis. First, the ground 1sσ state
of the molecular ion H+

2 is nearly degenerate with the first ex-
cited 2pσ state at large internuclear distances. This results in
large polarizability of the core in the ionization of H2, which
affects the ionization rate. Second, it has been shown recently
[26] that for molecules with large internuclear distances the
WFAT rate formula must be modified to account for the effect
of spectator nuclei on the ionization rate from a parent nu-
cleus. Third, the internuclear motion should be included into
consideration. The isotope effect in tunneling ionization of
hydrogen molecules predicted theoretically [27] and observed
experimentally [28] demonstrates the importance of its effect
on the ionization rate. We incorporate all these effects on the
basis of the leading-order ME-WFAT [5], which results in a
state-of-the-art theory of tunneling ionization of H2.

To gauge the theory, we compare its results with ab initio
calculations of the ionization rate of H2 with frozen nu-
clei [14,15]. Then we apply it to the analysis of benchmark
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experiments where an anisotropy in tunneling ionization of
H2 [29] and D2 [30] was measured. The orientation depen-
dence of the ionization rate of H2 was studied by different
theoretical methods, including molecular Ammosov-Delone-
Krainov model [31,32], WFAT-HF [17,18,27], ME-WFAT
[5,33], time-dependent Schrödinger equation [30,34–37],
time-dependent density functional theory [38,39], strong-field
approximation [29,40], and semiclassical models [41], and
has recently attracted new interest experimentally [42]; see
also a review article [43]. However, as far as we know, the
results of Refs. [29,30] have not been reproduced satisfacto-
rily. In particular, the isotope effect on the anisotropy of the
ionization rate was not described. The main goal of this paper,
which has actually motivated the whole study, is to contribute
to resolving this issue.

The paper is organized as follows. In Sec. II, we formu-
late the present theory. In Sec. III, we discuss its numerical
implementation. In Sec. IV, the predictions of the theory are
compared with ab initio calculations [14,15] and experiments
[29,30]. Section V concludes the paper.

II. THEORY

In this section, we present the theory used in the calcu-
lations reported in subsequent sections. We first summarize
the leading-order ME-WFAT, which provides the basis for
all further extensions, and then successively incorporate three
effects mentioned in the title.

A. Many-electron weak-field asymptotic theory

We begin with summarizing basic equations of the ME-
WFAT [5] for the hydrogen molecule with frozen nuclei.
The ionizing electric field is directed along the z axis, F =
(0, 0, F ). The nuclei are located in the (x, z) plane symmetri-
cally with respect to the origin. Let R = (R sin β, 0, R cos β ),
where R is the internuclear distance and β is the angle be-
tween the internuclear axis and the field. We assume that the
molecule H2 is initially in the ground two-electron state 1�+

g
defined by (atomic units are used throughout the paper)[

−�1

2
− �2

2
+ V (r1) + V (r2) + 1

|r1 − r2| − E (2)
0 (R)

]

× ψ
(2)
0 (r1, r2; R) = 0, (1)

where

V (r) = − 1

|r + R/2| − 1

|r − R/2| . (2)

The final one-electron states of the molecular ion H+
2 are

defined by[
−�

2
+ V (r) − E (1)

n (R)

]
ψ (1)

n (r; R) = 0, (3)

where n = 1sσ , 2pσ , . . . denotes a set of united-atom quan-
tum numbers. The energies and wave functions of all these
states depend on R as a parameter. The wave functions ad-
ditionally depend on β included in the argument R. Being
motivated by the comparison with experiments [29,30], in
the calculations we consider only parallel and perpendicular

orientations of the molecule with respect to the field corre-
sponding to β = 0◦ and 90◦, respectively; we will use the
notation R‖ = (0, 0, R) and R⊥ = (R, 0, 0). However, in for-
mulating the theory it is convenient to treat arbitrary β. All the
wave functions introduced above are assumed to be real and
normalized to unity.

In the weak-field limit, F → 0, the ionization process in
which the molecular ion is left in a given state n is described
by the Dyson orbital

υn(r; R) =
√

2
∫

ψ (1)
n (r1; R)ψ (2)

0 (r1, r; R) dr1. (4)

This orbital is considered as a function of parabolic coordi-
nates

ξ = r + z, 0 � ξ < ∞, (5a)

η = r − z, 0 � η < ∞, (5b)

ϕ = arctan(y/x), 0 � ϕ < 2π. (5c)

Tunneled electrons are driven by the field towards
z → −∞, which corresponds to η → ∞. The outgoing flux
of electrons in this asymptotic region can be decomposed into
ionization channels enumerated by n and parabolic quantum
numbers nξ = 0, 1, . . . and m = 0,±1, . . . . For a given n, the
dominant contribution to the flux comes from the channel with
nξ = m = 0. The corresponding partial ionization rate is given
by [5]


(0)
n (R, F ) = G2

n(R)W (F, κn(R)). (6)

Here Gn(R) is the structure factor,

Gn(R) = lim
η→∞ Gn(η; R), (7)

where Gn(η; R) is the structure function defined by

Gn(η; R) =
√

κ

2π
η1−1/κeκη/2

×
∫ ∞

0

∫ 2π

0
e−κξ/2υn(r; R) dξ dϕ

∣∣∣∣
κ=κn(R)

, (8)

W (F, κ) is the field factor,

W (F, κ) = κ

2

(
4κ

2

F

)2Z/κ−1

exp

(
−2κ

3

3F

)
, (9)

where Z = 1 is the total charge of the molecular ion, and

κn(R) =
√

2In(R), In(R) = E (1)
n (R) − E (2)

0 (R), (10)

where In(R) is the field-free ionization potential. In Eq. (8),
we have taken into account that both the initial and final
states have zero dipole moments. Equation (6) gives the
leading-order term in the asymptotic expansion of the partial
ionization rate in F . The rates of tunneling ionization into
excited states of the molecular ion are suppressed compared to
that into the ground state n = 1sσ , because of the exponential
factor in Eq. (9). Thus, the total ionization rate of the molecule
in the leading-order approximation of the ME-WFAT is given
by 


(0)
1sσ (R, F ); we will refer to this approximation as ME-

WFAT(0). It holds under the condition [3,4]

F 	 Fc(R) ≈ κ
4
1sσ (R)

8|2Z − κ1sσ (R)| , (11)
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where Fc(R) is a critical field giving a boundary between
tunneling and over-the-barrier ionization regimes. Note that
the effects discussed below are treated as corrections on the
basis of the ME-WFAT(0), so their inclusion does not modify
the condition of applicability (11) of the theory.

B. Stark-shift and core polarization effects

The ME-WFAT was extended to the first-order correction
terms in the asymptotic expansion of the ionization rate in F
[6,7]. Physically, the corrections account for the second-order
Stark shift and first-order distortion of the initial and final
states caused by the ionizing field as well as for contributions
from next-to-the-dominant ionization channels with nξ = 0
and m = ±1 [4,6,7]. So far, the first-order theory denoted by
ME-WFAT(1) has been implemented as prescribed, without
any additional approximations, only for two-electron atoms
[6,7]. It would be very instructive to extend its implementation
to two-electron diatomic molecules; this, however, is a rather
difficult technical task. In this paper, we account for only a
part of the first-order effects. Namely, we include the Stark
shift for both the initial and final states. This is needed because
the shift modifies the ionization potential, which strongly af-
fects the ionization rate. As for distortion, we include it for the
final state but neglect for the initial state. Such an approach is
justified by the fact that the ground electronic state 1�+

g of
H2 for all internuclear distances R is well separated in energy
from the other states, while the ground electronic state 1sσ
of H+

2 at large R is nearly degenerate with the lowest excited
state 2pσ . The degeneracy results in large polarizability of the
core in tunneling ionization of H2 at large R, which affects the
ionization rate. Here, we take this core polarization effect into
account.

The second-order Stark shift of the energy of the initial
state is described by

E (2)
0 (R, F ) = E (2)

0 (R) − 1
2α(R)F 2, (12)

where α(R) is the static polarizability of H2. The Stark shift
and distortion of the final state is described using an approach
proposed in Ref. [26]. As one electron of H2 tunnels, the other
electron remaining in the molecular ion still interacts with
the field, which causes polarization of the core. Following
Ref. [26], this effect can be accounted for by replacing field-
free one-electron states in the equations of ME-WFAT(0) by
the corresponding Stark-mixed states defined by Eq. (3) with
an additional term Fz in the Hamiltonian. The Stark-mixed
states can be expanded in field-free states,

ψ (1)
α (r; R, F ) =

∑
n

cα
n (R, F )ψ (1)

n (r; R). (13)

The coefficients cα
n (R, F ) in the expansion and the energy of

the state E (1)
α (R, F ) can be found by solving the eigenvalue

problem∑
m

{[
E (1)

n (R) − E (1)
α (R, F )

]
δnm + Fznm(R)

}
cα

m(R, F ) = 0,

(14)
where

znm(R) =
∫

ψ (1)
n (r; R)zψ (1)

m (r; R) dr. (15)

We label these states by α = 1sσ , 2pσ , . . . which indicates
the field-free state from which they originate as the field is
turned on. The ionization process in which the molecular ion
is left in a given Stark-mixed state α is described by the Stark-
mixed Dyson orbital defined similarly to Eq. (4),

υα (r; R, F ) =
√

2
∫

ψ (1)
α (r1; R, F )ψ (2)

0 (r1, r; R) dr1. (16)

The corresponding partial ionization rate is given by [26]


P
α (R, F ) = G2

α (R, F )W (F, κα (R, F )), (17)

where

Gα (R, F ) =
∑

n

cα
n (R, F )Gn(R) (18)

and

κα (R, F ) =
√

2Iα (R, F ),

Iα (R, F ) = E (1)
α (R, F ) − E (2)

0 (R, F ). (19)

Here Iα (R, F ) is the Stark-shifted ionization potential. The
dominant contribution to the total ionization rate of the
molecule comes from ionization into the lowest Stark-mixed
state α = 1sσ . The rate is thus given by 
P

1sσ (R, F ); we will
refer to this approximation as ME-WFAT-P, where P stands for
polarization. Note that the leading-order term in the asymp-
totic expansion of 
P

1sσ (R, F ) in F coincides with 

(0)
1sσ (R, F ),

the difference between the two approximations arises from
higher-order terms which account for the Stark shift of the
initial and final states and polarization of the core. Let us
repeat that in contrast to ME-WFAT(1) [6,7], which is based
on the consistent asymptotic expansion in F , ME-WFAT-P
only partially accounts for the first-order correction terms, but
at the same time includes some of the higher-order terms.

C. Spectator nucleus effect

The field factor (9) describes tunneling of an electron
through the barrier separating the potential well created by the
molecular ion from the asymptotic region η → ∞ [3,5]. Tun-
neling occurs in the presence of the Coulomb field of the ion,
and the probability to tunnel depends on its charge Z defining
the power in the preexponential factor in Eq. (9). Consider
an arbitrary polyatomic molecule whose nuclei are separated
by sufficiently large distances. Suppose the tunneling elec-
tron is initially localized at one of the nuclei and the total
charge of the resulting molecular ion is distributed among
several nuclei. Then the effective charge felt by the electron
varies as it moves from its parent nucleus to the asymptotic
region, because of the charge located at the other spectator
nuclei. The effect of this variation was not accounted for in
the original development of the WFAT for compact systems
[3,5]. It was included in Ref. [26], where it was shown that
the distribution of the charge in the molecular ion affects the
ionization rate if the distance between the parent and spectator
nuclei is comparable to or larger than the width of the potential
barrier through which tunneling occurs. Here, we take the
effect of the spectator nucleus on tunneling ionization of H2

into account.
We first consider the parallel geometry. In this case, tun-

neling preferably occurs from the lower nucleus (assuming
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that the field is directed upwards); to reach the lower nucleus,
the electron which is initially located near the upper nucleus
must additionally tunnel between the nuclei. The lower and
upper nuclei partially screened by the electron remaining in
the molecular ion in the Stark-mixed state α = 1sσ are treated
as parent and spectator nuclei with effective charges Zp and
Zs, respectively. These charges must satisfy Zp + Zs = Z = 1.
They can be expressed in terms of the wave function of the
remaining electron. Let N+ and N− denote contributions to
the norm of ψ

(1)
1sσ (r; R‖, F ) from the upper (z > 0) and lower

(z < 0) half-spaces, respectively, so that N+ + N− = 1. Then
a sensible choice of the charges is Zs = 1 − N+ and Zp =
1 − N−. The effect of the spectator nucleus on the ionization
rate is described by [26]


PS
1sσ (R‖, F ) =

(
RF

2κ
2

)2Zs/κ
(

1 + ζ

1 − ζ

)2ζZs/κ


P
1sσ (R‖, F ),

(20)
where

ζ = κ

(κ2 + 2RF )1/2
(21)

and κ = κ1sσ (R‖, F ). We will refer to this approximation as
ME-WFAT-P-S, where S stands for spectator. The spectator
factor multiplying 
P

1sσ (R‖, F ) in Eq. (20) turns to unity for
Zs = 0, as one would expect. At sufficiently small internuclear
distances satisfying RF 	 κ

2 this factor also turns to unity;
in this case, the distance between the parent and spectator
nuclei R is smaller than the width of the potential barrier
∼κ

2/F , and the net effect of both nuclei is represented by
the total charge of the molecular ion Z in the field factor
(9). Note that there exists some ambiguity in the definition
of Zs and Zp at small R; this, however, does not affect the rate
since the spectator factor in Eq. (20) in this case is close to
unity independently of the value of Zs. In the opposite case,
RF � κ

2, this factor modifies 
P
1sσ (R‖, F ) in such a way that


PS
1sσ (R‖, F ) coincides with the ionization rate in the presence

of only the parent nucleus, with Z replaced by Zp in Eq. (9),
as if there were no spectator nucleus; for more details see
Ref. [26]. Equation (20) holds uniformly in R and describes
the transition between these two limits.

Before we proceed, let us reiterate the physical picture of
tunneling ionization of H2 at large R underlying Eq. (20). As
one of the electrons tunnels, the other electron, remaining in
the molecular ion, is redistributed between the nuclei, because
the external field couples the nearly degenerate states 1sσ and
2pσ (the core polarization effect). Tunneling occurs in the
presence of the Coulomb field of the parent and spectator nu-
clei separated by a distance R, and the ionization rate depends
on how the total charge of the molecular ion is distributed
among them (the spectator nucleus effect).

In the perpendicular geometry the situation is quite differ-
ent, because the external field does not couple the states 1sσ
and 2pσ . For small R, the molecular ion remains in the Stark-
mixed state ψ

(1)
1sσ (r; R⊥, F ) in which the electron is equally

distributed among the nuclei. However, the spectator nucleus
effect in this case is small. At larger R, where the states 1sσ
and 2pσ become nearly degenerate, the interelectron repul-
sion begins to play an important role. The electric field of an
electron tunneling from one of the nuclei couples the states

1sσ and 2pσ , so that the remaining electron is shifted towards
the other nucleus. As a result, the charge of the spectator
nucleus turns to zero as R grows, and the effect disappears.
This scenario is confirmed by ab initio calculations [15] dis-
cussed in Sec. IV. We thus conclude that the spectator nucleus
effect for H2 in the perpendicular geometry is small and can
be neglected.

D. Internuclear motion effect

So far we assumed that the nuclei in H2 are frozen. The im-
portance of the effect of the internuclear motion on the ion-
ization rate is demonstrated by a recent observation of the
isotope effect in strong-field ionization of hydrogen molecules
[28]. We take this effect into account following Ref. [27].
The ground vibrational state describing the internuclear mo-
tion in H2 in the Born-Oppenheimer (BO) approximation is
defined by[

− 1

M

d2

dR2
+ 1

R
+ E (2)

0 (R, F ) − E0(β, F )

]
χ0(R, F ) = 0,

(22)

where M is the nuclear mass. In the presence of an external
field, the electronic energy E (2)

0 (R, F ) in Eq. (22) becomes
complex [5,14,44], and its imaginary part determines the ion-
ization rate at fixed R discussed above. The total energy of the
molecule E0(β, F ) also becomes complex, and its imaginary
part defines the ionization rate of the molecule including the
internuclear motion. In the weak-field limit, F → 0, the elec-
tronic energy can be substituted from Eq. (12) and the latter
rate can be obtained using perturbation theory as the expec-
tation value of the former rate in the state χ0(R, F ). In the
parallel geometry, we average the ME-WFAT-P-S rate given
by Eq. (20),


PSN
1sσ,‖ (F ) =

∫ ∞

0

PS

1sσ (R‖, F )χ2
0 (R‖, F ) dR. (23)

We will refer to this approximation as ME-WFAT-P-S-N,
where N stands for nuclear. In the perpendicular geometry
the spectator nucleus effect is neglected, so we average the
ME-WFAT-P rate given by Eq. (17) with α = 1sσ ,


PN
1sσ,⊥ (F ) =

∫ ∞

0

P

1sσ (R⊥, F )χ2
0 (R⊥, F ) dR. (24)

We include only the internuclear motion, assuming that the
molecule is sharply aligned. The effect of the rotational mo-
tion on the ionization rate of H2 in the ground rotational state
was discussed in Ref. [45].

III. NUMERICAL IMPLEMENTATION

In this section, we outline the implementation of the theory
in the present calculations. The fully correlated two-electron
wave function is constructed by solving Eq. (1) using the
method and program described in Ref. [46]. We use the sym-
metric James-Coolidge basis with the sum of the powers of
interparticle distances less or equal to 16 (the parameter �

in Ref. [46]). The nonlinear parameter of the basis is chosen
to minimize the two-electron energy E (2)

0 (R) at each R. The
field-free BO potential for H2 is shown by the lowest (black)
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FIG. 1. BO potentials for H2 and H+
2 at F = 0 (solid lines) and

F = 0.1 at β = 0◦ (dashed lines). The electronic energy E (R) for
H2 at F = 0 is equal to E (2)

0 (R) defined by Eq. (1); at F = 0.1 it
is equal to E (2)

0 (R‖, F ) defined by Eq. (12). Solid circles show the
corresponding potential obtained using the ab initio electronic energy
from Ref. [15]. The electronic energy E (R) for H+

2 at F = 0 is equal
to E (1)

n (R) defined by Eq. (3); at F = 0.1 it is equal to E (1)
α (R‖, F )

defined by Eq. (14). Only the three lowest states of H+
2 shown are

coupled in Eq. (14) in the present calculations. For β = 0◦, the 2pπ
state is decoupled from the other two states, so the solid and dashed
lines for this state coincide.

solid line in Fig. 1. It has a minimum at the equilibrium in-
ternuclear distance R0 = 1.4011 [47]. The one-electron wave
functions are obtained by solving Eq. (3) in prolate spheroidal
coordinates using discrete variable representations based on
Jacobi and Laguerre polynomials [48], as in Ref. [17]. The
field-free BO potentials for the three lowest states of H+

2 are
shown in Fig. 1 by solid lines labeled by the state. The wave
functions are then used to calculate Dyson orbitals (4).

The structure factors (7) are calculated using an approach
introduced in Ref. [19]. The structure function (8) at η → ∞
can be expanded in powers of 1/η,

Gn(η; R)|η→∞ = Gn(R) +
Nfit∑
k=1

C(n)
k (R)

ηk
. (25)

The numerical results obtained from Eq. (8) are fitted by this
equation, which yields Gn(R). The interval of η used in the
fitting procedure is found as follows. Although both two- and
one-electron wave functions used in the present calculations
are highly accurate in the region of their localization, they
become less accurate in the asymptotic region, and therefore
so do Dyson orbitals (4). This is a common problem of wave
functions obtained by the variational method, when nonlinear
parameters defining exponential factors in the basis functions
are chosen to minimize the energy of the state, disregarding
its asymptotic behavior. For any finite basis, such wave func-
tions have correct asymptotic behavior only in a finite region
of space. By varying different parameters of the numerical
scheme it is possible to determine the upper boundary ηmax

of the interval of η where Eq. (8) yields stable results. On
the other hand, the lower boundary ηmin of the interval where
Eq. (25) holds for a given Nfit can be determined by requiring

 2.3
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FIG. 2. Illustration of the fitting procedure used to calculate
structure factors. Open circles show structure functions for three
states of H+

2 at R = 1.4 calculated using Eq. (8). Solid lines show
fits to the numerical results by Eq. (25). The fitting intervals are
discussed in the paper.

that the fit should satisfy a certain accuracy criterion. This
defines the fitting interval ηmin < η < ηmax. The procedure
is rather accurate, provided that ηmax is sufficiently large.
The same procedure was used in systematic calculations of
structure factors for diatomic molecules in the Hartree-Fock
approximation [18] and in the configuration-interaction cal-
culations for H2 and LiH [33].

To illustrate the procedure, we discuss the calculation of
Gn(R) for the three states of H+

2 shown in Fig. 1 at R = 1.4.
The 2pπ state is represented by a real function which be-
haves as ψ

(1)
2pπ (r; R‖) ∝ cos ϕ. The phases of the functions

ψ (1)
n (r; R) are chosen such that all Gn(R) are positive. The

factor G1sσ (R) is calculated for both parallel and perpen-
dicular geometries. The 2pσ state is considered only in the
parallel geometry and the 2pπ state is considered only in the
perpendicular geometry; the corresponding Dyson orbitals for
β = 90◦ and 0◦, respectively, turn to zero along the z axis, so
G2pσ (R⊥) = G2pπ (R‖) = 0. The open circles in Fig. 2 show
structure functions calculated using Eq. (8). The solid lines
show fits to the results by Eq. (25). For the 1sσ state at both
orientations, the structure function can be reliably calculated
in a rather wide interval of η. In the fitting procedure we
use the interval 0.125 < 1/η < 0.25, and the fit is seen to
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TABLE I. Structure factors (7) calculated using Dyson orbitals
(4) for the three lowest field-free states of H+

2 in the parallel and per-
pendicular geometries for a set of internuclear distances R, including
the equilibrium distance R0 = 1.4011 for H2. Note that G2pσ (R⊥) =
G2pπ (R‖) = 0, because of the symmetry of the states.

R G1sσ (R‖) G1sσ (R⊥) G2pσ (R‖) G2pπ (R⊥)

0.75 2.82 2.67 8.8 7.9
1.00 2.81 2.56 8.0 7.5
1.25 2.82 2.46 7.2 7.1
1.4011 2.83 2.40 6.6 6.8
1.50 2.86 2.37 6.3 6.6
1.75 2.93 2.29 5.6 6.2
2.00 3.02 2.22 5.0 5.8
2.25 3.13 2.15 4.6 5.4
2.50 3.28 2.10 4.3 5.0
2.75 3.45 2.05 4.1 4.6
3.00 3.63 2.01 4.1 4.2
3.25 3.82 1.98 4.1 3.8
3.50 4.02 1.94 4.2 3.5

well reproduce the numerical results up to 1/η = 0.05. In
this case, fitting is performed with Nfit = 3; the inclusion of
higher-order terms in Eq. (25) does not change the results for
G1sσ (R) within 1%. For the 2pσ state the results from Eq. (8)
become unstable at a smaller ηmax. In this case, we use the
same fitting interval 0.125 < 1/η < 0.25, but with Nfit = 2.
The numerical results begin to depart from the fit already
at 1/η = 0.1. The departure is caused by inaccuracy of the
structure function, which is a consequence of the inaccuracy
of two- and one-electron wave functions in the asymptotic
region. The increase of Nfit in this case does not improve the
results, because the fit tends to reproduce the rising part of
the structure function at smaller 1/η, where it is inaccurate.
For the 2pπ state the situation becomes worse. In this case
ηmax is even smaller, and we use a narrower fitting interval
0.17 < 1/η < 0.25 with Nfit = 2. The limited accuracy of
the present wave functions restricts our calculations to the
three states considered. To extend the calculations by the
present method to higher states wave functions with more
accurate asymptotic tails are needed. We mention that this
difficulty can be resolved by using the integral representation
for structure factors [49], which, however, has so far been
implemented only within the Hartree-Fock approximation
[20,21].

The calculations yield four structure factors discussed
above as functions of R. For reference purposes, we present
the results for a set of internuclear distances in Table I. The
results for the 1sσ state are rather accurate, we estimate that
the error is of the order of unity in the last digit quoted.
These results can be compared with previous calculations. The
factor G1sσ (R‖) at R = R0 was for the first time evaluated
using a variational two-electron wave function in Ref. [5].
The result obtained therein 2.73 is slightly smaller than the
present result. In the present calculations we used a more
accurate two-electron wave function, so we are sure that the
present result is more accurate. The factor G1sσ (R) as a func-
tion of β at R = R0 was calculated by the time-dependent
generalized-active-space configuration-interaction method in

Ref. [33] [the factor G000(β ) for H2 in this paper in the
present notation coincides with G1sσ (R)/

√
2 at R = R0]. The

results obtained in the most accurate set of calculations therein
denoted by CAS*(2,160)-1 are 2.82 and 2.41 for β = 0◦ and
90◦, respectively, which is very close to the present results.
This level of agreement confirms high accuracy of both cal-
culations. It is worthwhile to mention that the same structure
factors calculated in the Hartree-Fock approximation are 1.91
and 1.66, respectively [17,18]; the difference characterizes the
role of the interelectron correlation effects. The present results
for the other two states are less accurate, so we give them with
only two significant digits in Table I. We are not aware of any
other calculations of these structure factors.

The polarizabilities α(R‖) and α(R⊥) of H2 needed to
evaluate the Stark shift of the initial state are taken from
Ref. [50]. The BO potential for H2 including the Stark shift
calculated using Eq. (12) at F = 0.1 and β = 0◦ is shown
by the lowest (black) dashed line in Fig. 1. The solid circles
show the results obtained using the ab initio electronic energy
from Ref. [15]. The relative error of Eq. (12) as compared to
the ab initio results [15] depends on F and R. For F = 0.1
in the interval R < 3.5, which is sufficient to describe the
experiments [29,30], the error grows with R but remains less
than 3.4% and 0.77% for β = 0◦ and 90◦, respectively.

The Stark-mixed states of H+
2 are constructed by solving

Eq. (14). We include all three field-free states discussed above
in the expansion (13). In the parallel geometry, the field cou-
ples the 1sσ and 2pσ states, while the 2pπ state is decoupled.
The Stark-shifted BO potentials for H+

2 in this case at F = 0.1
are shown by dashed lines in Fig. 1. On the other hand, in the
perpendicular geometry, the 1sσ and 2pπ states are coupled,
while the 2pσ state is decoupled. Thus, we include the two
lowest coupled states in Eq. (13) for both geometries.

Figure 3 illustrates the structure of the Stark-mixed state
1sσ of H+

2 in the parallel geometry for F = 0.1 at two in-
ternuclear distances. This state is distorted compared to the
corresponding field-free state which is symmetric with respect
to the (x, y) plane. The electron in this state is shifted by the
field towards the lower nucleus, and the polarization grows
with R. Figure 4 shows the corresponding Stark-mixed Dyson
orbital calculated for the same field strength and internuclear
distances. This orbital is also distorted compared to the field-
free case, when it is symmetric with respect to the (x, y) plane,
but its center of gravity is shifted in the opposite direction,
towards the upper nucleus. Such a behavior of the Stark-mixed
Dyson orbital is crucial for understanding the role of the core
polarization effect in the results discussed below.

The ground-state solution to Eq. (22) for H2 with M = mp,
where mp = 1836 is the proton mass, is illustrated in Fig. 5.
The field-free wave function is localized near the equilibrium
internuclear distance R0. The maximum of the field-distorted
wave function calculated for the same F = 0.1 and β = 0◦ as
in Fig. 1 is shifted towards larger R, following the minimum
of the Stark-shifted BO potential. We also show the integrand
in Eq. (23). The energy difference in Eq. (19), which has the
meaning of the ionization potential, decreases as R grows,
so the rate 
PS

1sσ (R‖, F ) increases. As a result, the maximum
of the integrand in Eq. (23) is shifted towards larger R with
respect to the maximum of the nuclear wave function. The
shift depends on the nuclear mass defining the width of the
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FIG. 3. The Stark-mixed state α = 1sσ of H+
2 [see Eqs. (13)

and (14)] for β = 0◦ and F = 0.1 at two internuclear distances R
indicated in the figure. The state is axially symmetric about the z
axis, its cuts by the (x, z) plane are shown.

FIG. 4. The Stark-mixed Dyson orbital α = 1sσ [see Eq. (16)]
for the same β = 0◦, F = 0.1, and two internuclear distances R as in
Fig. 3.
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FIG. 5. The nuclear wave function χ0(R‖, F ) squared in the
ground state of H2 obtained by solving Eq. (22) for F = 0 (solid
line) and F = 0.1 at β = 0◦ (dashed line). The corresponding BO
potentials are shown in Fig. 1. The dotted line (right axis) shows the
integrand in Eq. (23).

wave function, which explains the isotope effect in tunneling
ionization of molecules predicted in Ref. [27] and observed in
Ref. [28].

IV. RESULTS AND DISCUSSION

In this section, we compare the theory with benchmark the-
oretical and experimental results. The goal of the comparison
is to explore how the inclusion of the effects discussed above
affects the ionization rate.

A. Comparison with ab initio calculations

Early ab initio calculations of the ionization rate of H2

with frozen nuclei in the parallel geometry were performed in
Refs. [14,51,52]. Recently, more extensive calculations for a
set of internuclear distances and field strengths in both parallel
and perpendicular geometries have been reported [15]. We
use these results to gauge the different approximations of the
theory for fixed R discussed in Sec. II.

Figures 6 and 7 show ionization rates for the parallel
and perpendicular geometries, respectively, as functions of
the field strength at three internuclear distances. Lines in the
figures show the present results and circles show the ab initio
results from Ref. [15]. In addition, crosses in Fig. 6 show the
ab initio results from Ref. [14]. The ME-WFAT-P-S results are
not shown in Fig. 7, because we do not include the spectator
nucleus effect in the perpendicular geometry. To facilitate
comparison of the different results on a linear scale, all the
rates shown in the figures are divided by the same field factor
W (F, κ1sσ (R)) defined by Eqs. (9) and (10). Let us discuss the
different approximations separately.

Within the leading-order approximation ME-WFAT(0), the
ratio shown in Figs. 6 and 7 does not depend on F and is given
by the structure factor squared G2

1sσ (R) for the corresponding
R. According to the ME-WFAT [5], this is the limiting value
of the ratio for F → 0. We note that ab initio calculations
become problematic at sufficiently weak fields, where the
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FIG. 6. Ionization rates of H2 with frozen nuclei at three internu-
clear distances R in the parallel geometry (β = 0◦) as functions of the
field strength F . Solid (red), dashed (green), and short-dashed (blue)
lines show the rates 


(0)
1sσ (R‖, F ), 
P

1sσ (R‖, F ), and 
PS
1sσ (R‖, F ) de-

fined by Eqs. (6), (17), and (20), respectively. Circles and crosses
show ab initio results from Refs. [15] and [14], respectively. In the
top panel, the rate at F = 0.06 from Ref. [15] is multiplied by 0.3, to
bring its value to the scale of the figure. All the rates are divided by
the same field factor W (F, κ1sσ (R)) defined by Eqs. (9) and (10).

rate is too small. In particular, this is the reason why the
calculations in Refs. [14,15] were not extended to weaker
fields. Furthermore, at the weakest field where the results are
reported they may be not so accurate. Thus, in the top panel
of Fig. 6, the rate at F = 0.06 from Ref. [15] is multiplied by
0.3, to bring its value to the scale of the figure; this, in our
opinion, indicates that the result is inaccurate. In the middle
panel of Fig. 6, there is a visible difference between the rates
at F = 0.06 from Refs. [14] and [15], although at stronger
fields the results of the two calculations closely agree with
each other. In the same panel, the rate at the weakest field
from Ref. [14] is smaller than what is expected by extrap-
olating the results from stronger fields, which also indicates
its inaccuracy. Anyway, visual extrapolation of the ab initio
results to F = 0 is consistent with the value G2

1sσ (R) predicted
by ME-WFAT(0). This is probably not so evident in Fig. 7,
where only few ab initio points in F are available, but this is
rather clearly seen in the middle panel in Fig. 6, where the
dependence on F is presented in more detail. This is a typical
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FIG. 7. Same as in Fig. 6, but for the perpendicular geome-
try (β = 90◦). Solid (red) and dashed (green) lines show the rates



(0)
1sσ (R⊥, F ) and 
P

1sσ (R⊥, F ), respectively. Circles show ab initio
results from Ref. [15].

pattern of convergence of ab initio results to WFAT results
at F → 0 similar to that seen previously for other systems
[4,6,8]. We note, however, that more accurate ab initio calcu-
lations at weaker fields are needed to unambiguously confirm
the convergence for H2. The critical field Fc(R) estimated
from Eq. (11) is equal to 0.34, 0.21, and 0.12 at R = 0.76,
1.40 and 2.65, respectively. Thus, for a given F , the condition
F 	 Fc(R) is better fulfilled for smaller R. Indeed, the ab
initio results in Figs. 6 and 7 lie closer to the ME-WFAT(0)
results for R = 0.76 than for R = 2.65.

The Stark-shift and core polarization effects included in
ME-WFAT-P make the ratio shown in Figs. 6 and 7 dependent
on F . This essentially improves the present results, bringing
them in good agreement with the ab initio results. The differ-
ence between the ME-WFAT(0) and ME-WFAT-P rates can be
understood by comparing Eq. (6) for n = 1sσ with Eq. (17)
for α = 1sσ . Both factors in Eq. (17) are changed compared
to Eq. (6). The field factor is changed because the ionization
potential is changed. Note that Stark shifts of the initial and
final states are both negative (see Fig. 1), so they partially
compensate each other in Eq. (19). For all values of R and
F shown in the figures we have I1sσ (R, F ) > I1sσ (R), i.e., the
Stark shift increases the ionization potential. As a result, the
field factor in Eq. (17) is smaller than that in Eq. (6), because
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FIG. 8. Similar to Fig. 6, but the rates are shown as functions of
the internuclear distance R in the parallel geometry (β = 0◦) at two
field strengths F . Solid (red), dashed (green), and short-dashed (blue)
lines show the rates 


(0)
1sσ (R‖, F ), 
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1sσ (R‖, F ), and 
PS
1sσ (R‖, F ), re-

spectively. Circles show ab initio results from Ref. [15]. All the rates
are divided by the same field factor W (F, κ1sσ (R)).

of the exponential factor in Eq. (9). The structure factor in
Eq. (17) is also smaller than that in Eq. (6), because of the
distortion of the Stark-mixed Dyson orbital (see Fig. 4) caused
by the core polarization effect. Thus, both factors in Eq. (17)
are decreased, which explains the decrease of the rate. It is
instructive to quantify the effects. Consider, for example, the
situation for β = 0◦ and R = 1.4 at F = 0.1; see the middle
panel in Fig. 6. In this case, the structure and field factors in
Eq. (17) are smaller than the corresponding factors in Eq. (6)
by factors of 0.50 and 0.57, respectively. This shows that both
the Stark-shift and core polarization effects play an important
role in achieving good agreement with the ab initio results,
which is one of the physical insights resulting from the present
theory.

The inclusion of the spectator nucleus effect in ME-WFAT-
P-S only slightly modifies the rates in Fig. 6. The difference
between the ME-WFAT-P and ME-WFAT-P-S rates is de-
scribed by the spectator factor in Eq. (20). For any fixed R,
this factor turns to unity at F → 0. It remains close to unity
for all values of R and F shown in the figure. We will see,
however, that even the small (∼10%) difference between the
rates produces an appreciable effect on the anisotropy ratio.

Figures 8 and 9 show similar comparison, but now the
rates are plotted as functions of the internuclear distance at
two field strengths. The rates are again divided by the same
field factor W (F, κ1sσ (R)). Some irregularity in the behav-
ior of the ab initio results for F = 0.06 in the interval 1 <

R < 2 reflects the computational problem mentioned above.
For R → 0, the system becomes isotropic and the rates in
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FIG. 9. Same as in Fig. 8, but for the perpendicular geome-
try (β = 90◦). Solid (red) and dashed (green) lines show the rates



(0)
1sσ (R⊥, F ) and 
P

1sσ (R⊥, F ), respectively. Circles show ab initio
results from Ref. [15].

the parallel and perpendicular geometries coincide. All the
calculations predict that at nonzero R the molecule is more
easily ionized in the parallel geometry; this anisotropy of the
ionization rate is discussed in the next section. Similar to the
situation seen in Figs. 6 and 7, the ME-WFAT-P rates are
essentially closer to the ab initio results than the ME-WFAT(0)
rates. The ME-WFAT-P-S rates in Fig. 8 only slightly differ
from the ME-WFAT-P rates, as in Fig. 6. Notice that the ab
initio results in the top panel of Fig. 8 begin to grow with R at
R > 2.5, and this growth is reflected in the present results. The
critical field Fc(R) monotonically decreases from 0.44 to 0.11
as R grows from 0.5 to 3.5. Thus, in the top panels of Figs. 8
and 9 F remains smaller than Fc(R) for all R. The condition
(11) is better fulfilled at smaller R, where the ME-WFAT(0)
results indeed lie closer to the ab initio results. In the bottom
panels, F becomes larger than Fc(R) at R > 2.2. The WFAT
does not apply in this case, of course. We nevertheless show
these results for completeness of the presentation.

Summarizing, our calculations demonstrate that the inclu-
sion of the Stark shift and core polarization effects on the
basis of the leading-order theory ME-WFAT(0) essentially
improves the results and yields the ionization rate of H2 with
frozen nuclei in good agreement with the ab initio results. This
confirms the physical picture underlying the present treatment
of the effects. The spectator nucleus effect, on the other hand,
only weakly affects the rates. The remaining difference be-
tween the present results and the ab initio results is caused
by the distortion of the initial state of H2, contribution to
the core polarization effect from higher excited states of H+

2 ,
as well as higher-order terms in the asymptotic expansion in
F not included in the present theory. We emphasize that all
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the reasons causing the difference disappear at F → 0 and
ME-WFAT(0) becomes exact in this limit.

Let us return to the discussion in the end of Sec. II C. The
ionization rate of H2 at β = 90◦, R = 4 Å (≈7.6 a.u.), and
F = 0.06 is 
⊥(H2) = 1.026×10−3 [15]. Meanwhile, the ion-
ization rate of the hydrogen atom at the same field is 
(H) =
0.5151×10−3 [4]. Thus, 2
(H) = 1.030×10−3, which is very
close to 
⊥(H2). This means that the ionization of H2 at
sufficiently large R in the perpendicular geometry proceeds
as ionization of two independent neutral hydrogen atoms. The
applicability of such an independent atom model in this case
supports our neglect of the spectator nucleus effect in the per-
pendicular geometry, because the spectator has zero charge.
Note that at β = 0◦ and the same R and F the ionization rate
of H2 is 
‖(H2) = 98.86×10−3 [15], which is 96 times larger
than 
⊥(H2). Thus, the independent atom model completely
fails in the parallel geometry, and the reason of the failure
roots in the large Stark shift and polarization of the final
state.

B. Comparison with experiments

Experimental studies of strong-field ionization of
molecules by circularly polarized laser pulses in the
adiabatic regime provide unbiased access to the ionization
rate in a static electric field [2]. Usually, absolute values
of the rate are not measured, but there are many accurate
relative measurements characterizing its dependence on the
orientation of the molecule and field strength [28–30,53–55].
In particular, in Ref. [29] the ratio of the ionization yields
for H2 in the parallel and perpendicular geometries was
measured. Soon after that, in Ref. [30], the same anisotropy
ratio was measured for D2. We use these experimental results
to illustrate the predictive power of the present theory. In
addition, we analyze the relative importance of the different
effects discussed above.

The results of our calculations and the experimental results
from Refs. [29,30] are presented in Fig. 10. The anisotropy
ratio is shown as a function of the field strength F . One
should distinguish between the ionization rate at a given F
and the ionization yield—the total probability of ionization
by a particular laser pulse with amplitude F . We begin with
discussing the anisotropy ratio of rates. However, to com-
pare with experiments, we will eventually have to turn to the
anisotropy ratio of yields. The difference between the two
ratios is caused by the variation of the laser field with time
and depletion.

Most of the present results in Fig. 10 (except the thick solid
lines indicated by Y‖/Y⊥) show the anisotropy ratio of ion-
ization rates, 
‖/
⊥. The different lines are calculated using
different rates. The WFAT-HF, ME-WFAT(0), ME-WFAT-P,
and ME-WFAT-P-S results are obtained for a fixed R equal to
the equilibrium internuclear distance R0. The ME-WFAT-P-
S-N results include the internuclear motion effect and hence
are different for H2 and D2. Below we discuss the results
separately, starting from the basic leading-order theory and
successively including the different effects.

The ME-WFAT(0) result for the ratio is 

(0)
1sσ (R‖, F )/



(0)
1sσ (R⊥, F ) = G2

1sσ (R‖)/G2
1sσ (R⊥) calculated at R = R0.

The field factor in Eq. (6) is canceled, so the ratio is deter-
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FIG. 10. Ratio of the ionization rates in the parallel (β = 0◦) and
perpendicular (β = 90◦) geometries as a function of the field strength
F . The WFAT-HF, ME-WFAT(0), ME-WFAT-P, and ME-WFAT-P-S
results are obtained for the equilibrium internuclear distance R0 =
1.4011. The ME-WFAT-P-S-N results shown by the upper and lower
thick dashed-dotted lines include the internuclear motion effect for
H2 and D2, respectively. The corresponding upper and lower solid
lines indicated by Y‖/Y⊥ show the ratios of ionization yields for H2

and D2 obtained from Eq. (31) for pulses used in Refs. [29] and [30],
respectively. Symbols with error bars show experimental results for
H2 [29] and D2 [30]. The top axis shows the intensity I = cF 2/4π

of a circularly polarized laser field with amplitude F .

mined by the structure factors for the field-free Dyson orbital
n = 1sσ . This gives a constant 1.39; see Table I. Using the
structure factors from Ref. [33], the ratio is 1.37; the small
difference between the results is consistent with the 1% accu-
racy of the present structure factors. This is the exact value
of the anisotropy ratio of rates at R = R0 for F → 0. This
approximation overestimates the ratio and does not reproduce
its dependence on F . Note that ME-WFAT(0) used in Sec. II
as the starting point of the present theory already includes
interelectron correlation effects represented by the exact two-
electron energy of the initial state in Eq. (10) and the exact
structure factor in Eq. (6). The role of correlation effects can
be evaluated by comparing the ME-WFAT(0) results with the
WFAT-HF results obtained in the Hartree-Fock approximation
[17,18]. We have not discussed this comparison in the pre-
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vious sections, because the absolute value of the ionization
rate is very sensitive to the ionization potential, which causes
a large difference between the ME-WFAT(0) and WFAT-HF
rates. However, in the ratio shown in Fig. 10 the field factor,
which is most sensitive to the ionization potential, is canceled,
so we can compare the results on a linear scale. The WFAT-HF
result for the ratio is 1.33 [17,18]; it is also shown in Fig. 10.
Interestingly, the step from WFAT-HF to ME-WFAT(0), that
is, the inclusion of correlation effects shifts the results farther
from the experiment.

The ME-WFAT-P results are given by 
P
1sσ (R‖, F )/


P
1sσ (R⊥, F ) calculated at R = R0. In this approximation, the

ratio is considerably decreased and slightly underestimates
the experimental results. Furthermore, it becomes dependent
on F , because the structure factor for the Stark-mixed Dyson
orbital α = 1sσ in Eq. (17) depends on F and the field factor
is not fully canceled anymore. The ME-WFAT-P results re-
produce the fact that the ratio decreases as F grows, and the
rate of the decrease is close to that in the experimental results.
Thus, the inclusion of the Stark-shift and core-polarization
effects makes both the absolute value of the ratio and its
dependence on F closer to the experimental results.

The ME-WFAT-P-S results are given by 
PS
1sσ (R‖, F )/


P
1sσ (R⊥, F ) calculated at R = R0. The difference from the

ME-WFAT-P results stems from the spectator factor in
Eq. (20). Remarkably, the step from ME-WFAT-P to ME-
WFAT-P-S, that is, the inclusion of the spectator nucleus
effect, which resulted in only a small change of the rates in
Figs. 6 and 8, produces a rather strong effect on the anisotropy
ratio of rates. In this approximation, the ratio is decreased
by about 10%, which is consistent with the decrease of the
rates in Figs. 6 and 8. This shifts the ratio farther from the
experimental results. At the same time, the slope of its depen-
dence on F remains almost unchanged and close to that in the
experiment.

So far, we discussed rates calculated at R = R0. We now
include the internuclear motion effect. The ME-WFAT-P-S-
N results are given by 
PSN

1sσ,‖ (F )/
PN
1sσ,⊥ (F ) calculated using

Eqs. (23) and (24). They depend on the nuclear mass M ap-
pearing in Eq. (22) and are shown for both H2 (M = mp) and
D2 (M = 2mp). The step from ME-WFAT-P-S to ME-WFAT-
P-S-N leads to a considerable increase of the ratio and a slight
decrease of the slope of its dependence on F . As a result,
the ME-WFAT-P-S-N results lie close to the experimental
results and reproduce their dependence on F . This approx-
imation presents our final results for the anisotropy ratio of
rates. We emphasize that all the effects mentioned in the title
should be taken into account in order to achieve this level of
agreement.

As yet another example of physical insight resulting from
the present theory, let us discuss the isotope effect on the
anisotropy ratio of rates. Our calculations show that the in-
clusion of the internuclear motion increases the ratio. In
particular, its value for H2 is larger than that for D2 by 2.2% at
F = 0.05 and 1.5% at F = 0.09. This difference is consistent
with the experimental results, as far as this can be judged
from a single experimental point available for D2. Why does
the internuclear motion increase the ratio? To answer this
question, let us estimate the difference between the anisotropy
ratios for H2 and D2. We do this within ME-WFAT(0) in

the limit M → ∞, similar to how the isotope effect on the
total ionization rate was treated in Ref. [27]. We approximate
the solution to Eq. (22) by the ground state of a harmonic
oscillator centered at R = R0 and expand the exponent in the
field factor (9) and the structure factor in Eq. (6) near R = R0

up to the first-order terms. The result is

A(H2)

A(D2)
= 1 − (c‖ − c⊥)

4κ1sσ (R0)I ′
1sσ√

2mpV ′′
molF

(
1 − 1√

2

)
, (26)

where A = 
‖/
⊥ is the anisotropy ratio of rates shown in
Fig. 10. Here c‖ = c(β = 0◦) and c⊥ = c(β = 90◦), where

c(β ) = 1

G1sσ (R)

dG1sσ (R)

dR

∣∣∣∣
R=R0

, (27)

I ′
1sσ is the first derivative of the ionization potential [see

Eq. (10)],

I ′
1sσ = dI1sσ (R)

dR

∣∣∣∣
R=R0

, (28)

and V ′′
mol is the second derivative of the molecular BO poten-

tial,

V ′′
mol = d2

dR2

[
1

R
+ E (2)

0 (R)

]
R=R0

. (29)

The second term on the right-hand side of Eq. (26) gives the
leading-order correction to the unity for M → ∞. Equation
(26) predicts that the anisotropy ratio for H2 is larger than that
for D2 by 2.1% at F = 0.05 and 1.2% at F = 0.09, which is
rather close to the difference between the ME-WFAT-P-S-N
results. Thus, we can use Eq. (26) to understand the difference.
We have I ′

1sσ < 0, that is, the ionization potential decreases
as R grows, which is expectable. We also have c‖ > c⊥, be-
cause G1sσ (R‖) grows while G1sσ (R⊥) decreases with R (see
Table I), and this is a less intuitive property. It is the latter
property of the structure factor G1sσ (R) which makes the
correction term on the right-hand side of Eq. (26) positive.
This explains why the ratio on the left-hand side is larger than
unity.

We close the discussion of the anisotropy ratio of ionization
rates by a brief survey of previous theoretical calculations.
The different calculations can be characterized by how they
reproduce the three main features of the ratio: its absolute
values, dependence on F , and the isotope effect. In a num-
ber of studies, the ratio was obtained as a field-independent
constant calculated at R = R0. This yielded a wide spectrum
of values: 1.17 [31], 1.45 [32], 1.33 [17,18], and 1.37 [33],
in calculations for a static field, and 1.4 [40] and 1.68 [41],
in time-dependent calculations. This level of approximation
corresponds to the present ME-WFAT(0); our result at this
level 1.39 is consistent with Ref. [33]. Some studies predicted
that the ratio, still calculated at R = R0, depends on F . Thus,
the ratio obtained in Ref. [29] decreases from 1.53 to 1.43
in the interval of F shown in Fig. 10, which correctly re-
produces the slope of the dependence on F , but gives too
large values. The ratio obtained in Ref. [36] decrease from
1.25 to 1.22 in the same interval, which lies slightly below
the experimental results. In Ref. [38], the ratio calculated by
two different time-dependent methods varies in the intervals
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from 1.7 to 1.1 and from 2.2 to 1.8. At this level of ap-
proximation, the results should be compared with the present
ME-WFAT-P-S. Our ME-WFAT-P-S results lie below the re-
sults of Ref. [36], and hence farther from the experimental
results, but the slope of their dependence on F is closer to that
in the experiment. We are not aware of previous calculations
of the anisotropy ratio of rates with the internuclear motion
included. Our best results including this effect, ME-WFAT-P-
S-N, lie close to the experimental results. The level of their
agreement with the experiment for H2 is similar to that for the
ratio of rates from Ref. [36]. In addition, the present theory
describes the isotope effect not accounted for in Ref. [36].

We next discuss the anisotropy ratio of ionization yields. It
generally differs from the ratio of rates because of depletion.
The way how the effect of depletion should be taken into
account depends on the experimental setup. Let us consider
the case of circularly polarized pulses used in Refs. [29,30].
In these experiments, photoelectrons ejected from molecules
aligned nearly parallel to the polarization plane were detected
in coincidence with protons, which enabled one to determine
the dependence of the ionization yield on the angle β between
the molecular axis and the rotating electric field. For a given
ionization rate 
(F, β ) as a function of the ionizing field
strength and the angle, the probability for the molecule to
survive until time t is

P(t ) = exp

[
−

∫ t

−∞

(F (t ′), β(t ′)) dt ′

]
, (30)

where β(t ) = ωt (mod π ), with ω being the laser angular
frequency, and F (t ) is the field strength in the pulse. The total
ionization yield at a fixed β in the circular polarization (CP)
case is given by the sum of the probabilities of ionization
during small intervals of time �t determined by the angular
resolution of the photoelectron detector around moments
tn = (β + nπ )/ω, n = 0,±1, . . . , at which β(tn) = β,
namely,

Y CP(F, β ) = �t
∑

n


(F (tn), β )P(tn), (31)

where F = max[F (t )] is the pulse amplitude. Here we have
neglected all field-induced processes but tunneling ionization.
The experiments for H2 [29] and D2 [30] were performed
with pulses of wavelengths 800 nm and 1850 nm, respectively.
We model the field strength in these experiments by F (t ) =
F exp[−2 ln 2 (t/τ )2], with the full width at half maximum
of the pulse τ equal to 40 fs for H2 [29] and 50 fs for D2

[30] and the pulse amplitude F determined by the experi-
mental intensity I from I = cF 2/4π . The survival probability
(30) is evaluated using the ME-WFAT(0) ionization rate. The
yields Y CP

‖ (F ) = Y CP(F, β = 0◦) and Y CP
⊥ (F ) = Y CP(F, β =

90◦) are calculated from Eq. (31) using the ME-WFAT-P-S-N
rates given by Eqs. (23) and (24), respectively. Note that the
interval �t is common for both orientations, so it is canceled
in the ratio. The ratios of the yields, Y CP

‖ (F )/Y CP
⊥ (F ), for H2

and D2 are shown by thick solid lines in Fig. 10. They turn
out to be very close to the corresponding ratios of rates in
the whole interval of F considered. This is explained as fol-
lows. For purely monochromatic pulses with the field strength
F (t ) = F independent of t , the rate factor in (31) does not
depend on n, and therefore the ratio of yields coincides with

the ratio of rates. In this case, depletion does not reveal itself
in the ratio, which is a remarkable property of experiments
with circularly polarized pulses. For sufficiently long but finite
pulses used in Refs. [29,30], the ratios of yields and rates do
not coincide with each other, but the difference remains small
even at stronger fields, where depletion becomes significant.
Thus our conclusion concerning the importance of the dif-
ferent effects for the ratio of rates holds also for the ratio of
yields.

It is worthwhile to mention that the dependence of the
ionization yield on β can be also measured using linearly
polarized pulses. Such an approach was demonstrated in a
pump-probe experiment [56], where the pump and probe
pulses were used to align and ionize molecules, respectively.
Although the distribution of molecular alignment achieved
in this particular experiment is rather broad, it can be made
narrower. To demonstrate the difference from the circular
polarization case we assume for simplicity that molecules are
sharply aligned. Then, using the same notation as in Eq. (31),
the total ionization yield at a fixed β in the linear polarization
(LP) case is

Y LP(F, β ) = 1 − exp

[
−

∫

(F (t ), β ) dt

]
. (32)

This formula differs from Eq. (31). In particular, for
monochromatic pulses with F (t ) = F cos(ωt ) the ratio of
yields (32) does not coincide with the ratio of rates, even if
depletion is weak, because of the oscillating factor cos(ωt ),
which makes the effective field strength smaller. We have cal-
culated the yields Y LP

‖ (F ) = Y LP(F, β = 0◦) and Y LP
⊥ (F ) =

Y LP(F, β = 90◦) and their ratio for H2 and D2 using Eq. (32).
The results show that the effect of depletion on the anisotropy
ratio in the linear polarization case is stronger than that in
the circular polarization case. As F grows, the exponent in
Eq. (32) vanishes for both orientations and the ratio of yields
tends to unity. As a result, the ratio of yields at stronger fields
behaves differently from the ratio of rates. We do not discuss
these results in more detail here because they are not relevant
to the comparison with the experiments [29,30].

The anisotropy ratios of ionization yields observed in
Refs. [29,30] were modeled by time-dependent calculations
in several studies. The calculations in Refs. [30,36] were per-
formed for a fixed internuclear distance R = R0, and hence do
not account for the isotope effect. Besides, linearly polarized
fields were considered in these calculations, meaning that the
large depletion effect discussed above is embedded at stronger
fields. In Ref. [30], the ratio calculated in the interval 0.05 <

F < 0.085 varies nonmonotonically in the interval 1.28-1.12
at 800 nm and decays from 1.2 to 1.12 at 1850 nm. These
values are smaller than our results for circularly polarized
pulses. In Ref. [36], Eq. (32) with time-independent rates was
used and the resulting ratio monotonically decays from 1.27 to
1.14 at 800 nm and from 1.25 to 1.13 at 1850 nm. The rapid
decrease of the ratios at stronger fields in these calculations
was explained by depletion. In Refs. [34,37], time-dependent
calculations with linearly polarized pulses including the inter-
nuclear motion were reported. In Ref. [34], the ratio of yields
obtained at 400 nm varies nonmonotonically in the interval
0.5–1.8. These results do not belong to the adiabatic regime
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and are rather far from the experiments [29,30]. However,
they for the first time reproduced the isotope effect, that is,
the fact that the ratio of yields for H2 is larger than that for
D2. We conclude that, considering all three main features of
the anisotropy ratio mentioned above (absolute values, de-
pendence on F , and the isotope effect), the present theory
including the correct treatment of depletion for circularly
polarized pulses described by Eq. (31) demonstrates the best
performance compared to the previous calculations.

V. CONCLUSION

We have presented a study of tunneling ionization of the
hydrogen molecule. Our theory is based on the leading-order
ME-WFAT [5] and successively incorporates the Stark-shift,
core polarization, spectator nucleus, and internuclear mo-
tion effects. All the effects are shown to strongly affect the
ionization rate. The predictions of the theory are in good
agreement with the ab initio calculations for H2 with frozen

nuclei [14,15] and experiments on the anisotropy of ionization
yields for H2 [29] and D2 [30]. The remaining difference
between the present results and the ab initio calculations is
attributed mainly to the field distortion of the initial state
of H2 and contribution to the core polarization effect from
higher excited states of H+

2 not included here. The difference
between the theory and experimental results is in addition
affected by nonadiabatic effects which violate the adiabatic
approximation [2]. Our theory also predicts an isotope effect
on the anisotropy ratio for H2 and D2, which is consistent with
the experiments [29,30] and was not described by previous
calculations. The effect is explained qualitatively in terms of
properties of the structure factor for the dominant ionization
channel.
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