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Atomic calculations of the hyperfine-structure anomaly in gold
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The magnetic hyperfine-structure constants have been calculated for low-lying levels in a neutral gold atom
and a goldlike ion of mercury taking into account the Bohr-Weisskopf (BW) effect. The BW effect is represented
as a product of atomic and nuclear (dnuc) factors. We have calculated the atomic factors, which enable one
to extract BW-correction values for far from stability gold nuclei from the experimental data. The possible
uncertainty of our atomic calculations have been estimated by the comparison with the available experimental
data. It has been shown that the standard single-particle approach in dnuc calculation reasonably well describes
experimental data for 11/2− gold isomers and the 3/2+ ground state of 199Au. At the same time, it fails to
describe the hyperfine constant in 197Au. This indicates the more pronounced configuration mixing in 197Au than
in 199Au.
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I. INTRODUCTION

Laser spectroscopy has become a very efficient tool to
study the nuclear g factors (the ratio of nuclear magnetic
moment μ and nuclear spin I) of short-lived isotopes and
isomers. The g factor of the isotope in question (marked by
a star below) is usually extracted from the experimentally
measured magnetic hyperfine-structure (HFS) constant A by
the relation,

g∗
I = gref

I

A∗

Aref
, (1)

where superscript “ref” denotes a reference isotope with
known g-factor and A-constant values. Equation (1) is valid
for a pointlike nucleus only. The finite size of the nucleus
leads to the deviation of the A constant from the pointlike
value due to the distribution of magnetization and charge over
the nuclear volume. These corrections break proportionality
between the hyperfine constants and nuclear g factors and
can be taken into account by introducing a so-called relative
hyperfine anomaly (RHFA) [1]. For isotopes (1) and (2) the
RHFA 1�2 is defined as

1�2 ≡ g(2)
I A(1)

g(1)
I A(2)

− 1. (2)

The RHFA value can be found from Eq. (2) if nuclear
g factors were determined by experimental methods which
do not rely upon HFS measurements. Therefore, informa-
tion about RHFA is limited primarily to the stable and
long-lived isotopes where such methods can be applied. Ex-
perimentally measured RHFA values are as a rule within the
range of 10−2–10−4 [2]. Correspondingly, this correction is
typically neglected, and the uncertainty of the extracted g
factor is increased by ≈1%. In most cases this approach
is acceptable in view of the experimental uncertainties and

nuclear physics inferences. However, the large RHFA values
197�198 = 8.53(8)% and 197�180 = 21(14)% were reported
in Refs. [3,4]. They exceed the experimental uncertainties of
HFS constants in gold isotopes by orders of magnitude and,
therefore, demand the estimation of the RHFA for other gold
isotopes far from stability in order to obtain their g factors
reliably. At the same time, it is the RHFA that became the
source of the largest uncertainty in the hyperfine splitting
calculations which are necessary to extract the effects of the
parity and time-reversal symmetries violation of fundamental
interactions in atom (see Refs. [5,6] and references therein).

The method of RHFA determination based on the analy-
sis of the A-constants ratio for different atomic states using
atomic calculations was proposed in Refs. [7,8] and applied
for several thallium [9] and bismuth [10] isotopes.

When the RHFA value is estimated and the ratios of the
hyperfine constants were measured for different isotopes, we
can obtain g factors for the short-lived isotopes (g∗

I ) by the
relation,

g∗
I = gref

I

A∗

Aref
(1 + ref�∗). (3)

Thus, the method of the RHFA evaluation enables one to
increase the accuracy of the g-factor determination and, at the
same time, to trace the isotopic change of the magnetization
distribution inside the nucleus.

The aim of the present paper is to describe in details
the atomic calculations needed for the RHFA determination
from experimental data on the HFS for different atomic levels
in gold. In comparison with our previous theoretical results
briefly outlined in Ref. [11], we significantly extended the
basis sets and improved saturation of the correlation cor-
rections. We also calculated HFS constants for the Au-like
ion of mercury and compared them with the experiment. We
additionally performed a trial configuration-interaction (CI)
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calculation of gold as an 11-electron system to estimate the
possible influence of the 5d-electron excitations. As the result
we managed to estimate the accuracy of our atomic calcula-
tions. This accuracy proved to be sufficient to draw tentative
conclusions about the purity of the nuclear configurations in
some gold isotopes with spin I = 3/2.

II. BASIC FORMULAS

A. Finite nuclear size corrections to HFS constants

The A constant for the finite nucleus can be written in the
following form [12]:

A = gIA0(1 − δ)(1 − ε), (4)

where gIA0 is the HFS constant in the case of a pointlike
nucleus, δ and ε are the nuclear charge-distribution [Breit-
Rosenthal (BR)] [13,14] and magnetization-distribution
[Bohr-Weisskopf (BW)] [1] corrections, respectively.

In our atomic calculations the nucleus is considered as a
homogeneously charged and magnetized sphere of the radius
R = √

5/3rrms, where rrms = 〈r2〉1/2 is a root-mean-square nu-
clear charge radius.

In terms of this model the BR correction can be written as
[15,16]

δ = δ(R) = bN (R/λ̄C )κ, κ = 2
√

1 − (αZ )2 − 1. (5)

Here λ̄C is the Compton wavelength of the electron λ̄C =
h̄/(mec), α is the fine-structure constant, Z is the nuclear
charge, and dimensionless parameter bN depends on the elec-
tronic wave function of the atom and has to be calculated
numerically.

The BW correction ε depends on the distribution of mag-
netization inside the nucleus and can be markedly different
for various isotopes. It was shown in Refs. [1,17] that the BW
correction may be represented in the single-particle nuclear
shell-model and one-electron approximation as the product of
two factors, one of them being dependent only on the atomic
structure, the second being dependent only on the nuclear
properties. This atomic-nuclear factorization was confirmed in
Refs. [18,19] where more-refined atomic and nuclear models
were used. Correspondingly, we introduced the nuclear factor
dnuc for parametrization of nuclear effects [20],

ε = ε(R, dnuc) = bMdnuc(R/λ̄C )κ . (6)

The nuclear factor is defined so that dnuc = 0 corresponds
to the pointlike magnetic dipole in the center of the nucleus
and dnuc = 1 corresponds to the homogeneously magnetized
sphere of radius R. The parameter bM has to be calculated
numerically.

In terms of BR and BW corrections the RHFA for isotopes
(1) and (2) defined by Eq. (2) may be represented as

1�2 ≈ δ(2) + ε(2) − δ(1) − ε(1). (7)

B. Differential hyperfine anomaly

For a number of isotopic sequences the ratios of the
HFS constants for low-lying s1/2 and p1/2 atomic states ρ =
A(p1/2)/A(s1/2) were measured with sufficient accuracy to de-
termine reliably the differential hyperfine anomaly (DHFA),

defined as

1
p1/2

�2
s1/2

= ρ (1)

ρ (2)
− 1 =

1 + 1�2
p1/2

1 + 1�2
s1/2

− 1

≈ 1
�

2
p1/2

− 1
�

2
s1/2

. (8)

In the case of gold isotopes the BR correction is much smaller
than the BW one (see below). Neglecting the BR correction,
one can calculate the ratio of the relative hyperfine anomalies
[see Eq. (6)] by using the relation,

1�2
s1/2

1�2
p1/2

≈ bMs1/2

bM p1/2

≡ η. (9)

Thus, the η factor is determined solely by the electronic wave
function.

With calculated atomic factor η one can use the experimen-
tal value of DHFA to determine a relative magnetic hyperfine
anomaly,

1
�

2
s1/2

=
1

p1/2
�2

s1/2

1/η − 1 − 1
p1/2

�2
s1/2

, (10)

and find the nuclear g factor using Eq. (3).
Equations (2) and (6) enable one to determine d (2)

nuc for
isotope (2) provided the nuclear factor d (1)

nuc for the reference
isotope and RHFA value 1�2

s1/2
are known

d (2)
nuc =

1�2
s1/2

+d (1)
nucbM s1/2 (R/λ̄C )κ(

1 + 1�2
s1/2

)
bM s1/2 (R/λ̄C )κ

. (11)

C. Parametrization of the HFS constants

In order to perform an atomic calculation of the A con-
stants, we should specify three nuclear parameters,

A = A(gI , dnuc, R) = gI A(1, dnuc, R). (12)

To find parameter bM we calculated A constants for the point-
like magnetic dipole (dnuc = 0) and for the homogeneously
magnetized sphere (dnuc = 1). Then bM is given by

bM = (R/λ̄C )−κ

(
1 − A(1, 1, R)

A(1, 0, R)

)
. (13)

To find parameter bN we performed calculations for different
nuclear radii R,

bN = [A(1, 0, R2) − A(1, 0, R1)]λ̄κ

C

A(1, 0, R2)Rκ

1 − A(1, 0, R1)Rκ

2

. (14)

After that the atomic parameter A0 was found from the rela-
tion,

A0 = A(1, 0, R)

1 − bN (R/λ̄C )κ
. (15)

D. Analytical estimates for the ratio of relative hyperfine
anomalies

Combining Eqs. (9) and (13), one obtains

1

η
= As1/2 (1, 0, R)

Ap1/2 (1, 0, R)

Ap1/2 (1, 0, R) − Ap1/2 (1, 1, R)

As1/2 (1, 0, R) − As1/2 (1, 1, R)
. (16)
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If the principal quantum numbers for both electronic states
are the same, then neglecting a small BR correction the first
fraction in Eq. (16) is A0, s1/2/A0, p1/2 ≈ 3 [21]. The second
fraction depends on the radial integrals inside the nucleus
of radius R where the wave functions of s1/2 and p1/2 states
are proportional to each other with proportionality coefficient
α2Z2

4 (1 + α2Z2

4 )
2
. Thus, the leading-order term for 1/η is inde-

pendent of the principal quantum number [22],

1

η
= 3

4
α2Z2. (17)

For the atoms considered here it gives η(Au) = 4.0 and
η(Hg) = 3.9.

III. CALCULATION RESULTS

We consider the members of the gold isoelectronic se-
quence (Au I and Hg II) as one-electron systems with the
5d10 electron shell included in the atomic core. A correlation
between the single valence and all core electrons is treated
perturbatively. In this case only the lower part of the valence
spectrum can be represented with reasonable accuracy. For
energies higher than the core excitation energy, the effective
Hamiltonian has poles, and the results may be unreliable. In
the case of gold the 5d106p doublet lies on the borderline
of the core excitations. Interaction between this doublet and
the quadruplet 5d9

5/26s1/26p3/2
4Po is rather strong. Due to

the opposite order of levels in these multiplets, the energy
gap between levels with J = 3/2 is much smaller than the
gap between J = 1/2 levels. Therefore, the inaccuracy in the
description of the 5d106p3/2 state in gold is expected to be
markedly larger than that of the 5d106p1/2 level. Correspond-
ingly, below we restrict ourselves only to 6s1/2 and 6p1/2

states.
All calculations are performed using either Dirac-Coulomb

or Dirac-Coulomb-Breit Hamiltonians. Breit corrections in-
cluding both the magnetic term and the retardation term in
the zero-frequency limit are taken into account in accordance
with Refs. [23,24]. When the Dirac-Coulomb-Breit Hamil-
tonian is used we mark the corresponding results by adding
the notation “+ Breit” to the designation of the calculation
method. We start by solving Dirac-Hartree-Fock (DHF) equa-
tions for the core and valence orbitals up to 7p3/2. After that
we merge these orbitals with B splines of order 4 as described
in Ref. [25] to form a basis set for calculating the correlation
corrections. The basis set 22spdf ghi includes 224 orbitals for
partial waves with orbital angular momentum l from 0 to 6.

Correlation corrections to the HFS include corrections to
the many-electron wave functions and to the hyperfine op-
erator. We use either second-order many-body perturbation
theory (MBPT) [26,27] or a linearized single double couple
clusters method (LCC) [28,29] to take into account correlation
corrections to the wave function. Both MBPT and LCC cor-
rections include the self-energy contribution [30]. The energy
dependence of the effective Hamiltonian is taken into account
as discussed in Refs. [26,29]. To account for the correlation
corrections to the hyperfine operator we use the random phase
approximation (RPA) with a structural radiation correction
[31]. These corrections include, in particular, the spin polar-
ization of the core shells up to 1s.

TABLE I. Binding energies and their difference (in Au) for the
low-lying states of the Au I and Hg II within the one-electron
approach. The rows DHF, MBPT, and LCC correspond to the
Dirac-Hartree-Fock, the Dirac-Hartree-Fock plus MBPT, and the
Dirac-Hartree-Fock plus linearized coupled clusters methods, re-
spectively. We also give Breit corrections to the energy in the LCC
approximation. The final theoretical values (LCC + Breit), experi-
mental data, and the theoretical error (in percentages) are listed in
the last three rows for each system.

Method 6s1/2 6p1/2 Difference

Au I
DHF 0.2746 0.1338 0.1408
MBPT 0.3513 0.1703 0.1811
LCC 0.3402 0.1694 0.1708
LCC + Breit 0.3397 0.1689 0.1708
Experiment [32] 0.3390 0.1688 0.1702
Differences with experiment −0.19% −0.05% −0.32%

Hg II
DHF 0.6218 0.4087 0.2131
MBPT 0.7041 0.4610 0.2431
LCC 0.6912 0.4561 0.2351
LCC + Breit 0.6905 0.4553 0.2352
Experiment [32] 0.6893 0.4547 0.2346
Differences with experiment −0.17% −0.12% −0.26%

In Table I the calculated binding energies for the low-lying
states of Au I and Hg II within the one-electron approach
are compared with the experimental data [32]. In Table II our
results for the A constants of gold and the Au-like mercury ion
are summarized. As is clearly seen from Tables I and II, the
LCC method in all cases gives results which are closer to the
experimental binding energies than for the MBPT method.

The factor η(Au) equals 3.74 in the DHF approximation.
In the next step we take into account effective mixing of
different partial waves via RPA corrections. The factor η(Au)
increases due to these corrections up to 4.23. Electron cor-
relation corrections taken into account within the MBPT or
LCC methods significantly change A0 values. The parameters
bN and bM are also changed due to the structural radiation
correction since this correction, such as RPA, mixes different
partial waves. Contributions of the RPA and the structural
radiation corrections to the bN and bM parameters tend to
nearly cancel each other. Both these contributions to the bN

and bM parameters appear to be rather large, which leads to
the instability of the results. At the same time, the results for
these parameters are almost the same for the MBPT and the
LCC approximations.

Calculation of the parameters bN requires a small change
in the nuclear radius, which leads to a change in the inte-
gration grid. Therefore, the parameters bN are more sensitive
to the size of the basis set. In comparison with our previous
theoretical results presented in Ref. [11] we, in particular, sig-
nificantly extended the basis set in order to check the stability
of the results. Because of that our present values for the bN

parameters differ from those in Ref. [11] by 20%, whereas the
bM values remained practically unchanged.

As a final value for the η factor in gold we adopt the mean
value of the results obtained in the frameworks of the different
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TABLE II. The atomic parameters A0 (MHz), bN , bM , and HFS constants for the lower levels of gold and the Au-like mercury ion. We

compare HFS constants for 193Aum (with dnuc = 0.73) and 199Hg (with ε6s1/2 = 2.0% and ε6p1/2 = ε6s1/2

η
) with available experimental data

[11,33,34].

Method 6s1/2 6p1/2

A0 (MHz) bN bM A (MHz) A0 (MHz) bN bM A (MHz) η

Au I
DHF 24435 1.260 0.244 24944 2166 0.337 0.065 2414 3.74
DHF + Breit 24362 1.259 0.244 24872 2140 0.336 0.065 2385 3.74
RPA 26851 1.260 0.242 27401 1848 0.257 0.058 2074 4.21
RPA + Breit 26797 1.263 0.242 27351 1833 0.257 0.057 2057 4.23
RPA + MBPT 34349 1.260 0.240 35073 3424 0.292 0.060 3831 3.99
RPA + MBPT + Breit 34285 1.258 0.239 35014 3395 0.291 0.060 3799 3.99
RPA + LCC 32472 1.259 0.240 33158 3207 0.296 0.060 3587 3.99
RPA + LCC + Breit 32411 1.257 0.239 33101 3180 0.296 0.060 3558 4.00
Experiment (193Aum ) 32391(30) 3696(4)
Relative error 2.2% −3.7%

Hg II
DHF 38286 1.298 0.253 34063 5661 0.357 0.070 5535 3.62
DHF + Breit 38197 1.297 0.253 33987 5605 0.356 0.070 5481 3.63
RPA 41474 1.297 0.251 36910 5725 0.330 0.066 5612 3.79
RPA + Breit 41414 1.295 0.251 36864 5681 0.329 0.066 5569 3.80
RPA + MBPT 47012 1.267 0.248 41960 7402 0.340 0.067 7249 3.71
RPA + MBPT + Breit 46942 1.265 0.247 41907 7347 0.339 0.067 7196 3.72
RPA + LCC 45410 1.270 0.248 40518 7050 0.341 0.067 6903 3.71
RPA + LCC + Breit 45342 1.268 0.248 40474 6998 0.340 0.067 6853 3.72
Experiment (199Hg) 40507.3479968416(4) 6970(90)
Relative error −0.08% −1.7%

approximations (see the last column in Table II) with the
uncertainty covering the dispersion of these results: η(Au) =
4.0(3). The new value coincides with the value calculated in
Ref. [11]. Note that the new η(Au) value differs noticeably
from the corresponding values obtained and used previously:
3.2 [1], 3.5 [35], 4.5 [12], and 3.3 [36].

Within the method discussed above the interaction of the
valence electron with ten 5d electrons was treated perturba-
tively. We check the reliability of this approach by the CI
calculation for the 11 outermost electrons. Within this ap-
proach all interactions with the 5d electrons are taken into
account nonperturbatively. Because of the computational lim-
itations we have to use a much shorter basis set 10sp9d8 f gh
for the 11-electron CI. The bM parameters for the 6s1/2 state
of gold obtained within CI (11e) + Breit and RPA + LCC +
Breit approaches differ from each other by 2%, whereas for
the 6p1/2 state the similar difference is 5%. One important
effect which is missing in the CI calculation is the mixing
between s and p partial waves since all inner s and p shells
are kept frozen. This mixing primarily affects smaller HFS
constants, which explains better agreement for the constant
A(6s1/2). As the result, η (CI [11e] + Breit) = 4.28 differs
from our final value by 6% and is covered by the ascribed
uncertainty. This means that in our RPA + LCC + Breit
calculation we did not miss any significant higher-order con-
tributions from the correlations with the 5d shell, at least, for
the η-factor calculation.

We also calculated the η factors for Hg II within the one-
electron approach. Contributions of the RPA and structural
radiation corrections are smaller for this ion. At the same

time, excitation energies from the 5d electron shell are larger.
Correspondingly, dispersion of the different-approximation
results for the η value is significantly less for Hg II than that
for Au I and uncertainty for η(Hg II) is smaller. The final
value for η(Hg II) is equal to 3.71(9).

IV. THE NUCLEAR FACTOR

In the framework of the single-particle nuclear model for
odd-A nuclei [1,37] the BW correction ε is the linear combi-
nation of the spin εS and orbital εL contributions,

ε = αS[εS + ζ (εS − εL )] + (1 − αS )εL. (18)

The coefficient αS is the fraction of the spin contribution to
the nuclear magnetic moment [1],

αS = gS

gI

gI − gL

gS − gL
, (19)

where gS and gL are spin and orbital g factors, respectively.
The nuclear g factor is given by the famous Landé formula,

gI = 1

2

[
(gL + gS ) + (gL − gS )

L(L + 1) − 3/4

I (I + 1)

]
, (20)

where L is the orbital momentum of the valence shell-model
state. In case of a valence proton gL = 1, whereas for neu-
tron gL = 0; gS is chosen from the condition that Eq. (20)
reproduces the experimental g-factor value. The parameter ζ

in Eq. (18) takes into account the angular asymmetry of the
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TABLE III. Comparison of the factors dnuc obtained by
Eqs. (19)–(23) and Eq. (11) with 193Aum as the reference isotope,
respectively. Spins and magnetic moments of the corresponding iso-
topes or isomers are also shown.

Nuclear g factor dnuc

Isotope spin Reference Eqs. (19)–(23) Eq. (11)

199 3/2 0.1799(5) [41] −3.7 −3.2(5)
197 3/2 0.097164(6) [42] −8.0 −5.1(5)
195 3/2 0.0991(4) [43] −7.8
193 3/2 0.0932(10) [11] −8.4 −5.4(8)
191 3/2 0.0908(12) [11] −8.6 −5.8(9)
195m 11/2 1.148(7) [11] 0.73
193m 11/2 1.149(7) [11] 0.73
191m 11/2 1.150(7) [11] 0.73
189m 11/2 1.157(7) [11] 0.73
177m 11/2 1.185(7) [11] 0.74

spin distribution and is given by [37],

ζ =
{ 2I−1

4(I+1) , if I = L + 1
2 ,

2I+3
4I , if I = L − 1

2 .
(21)

Within the model of the homogeneously magnetized sphere of
radius R the spin contribution εS is given by the relation [20],

εS = bM (R/λ̄C )κ . (22)

Comparing Eqs. (6), (18), and (22) one obtains the expression
for dnuc in the single-particle model for the odd-A nuclei,

dnuc = (1 + ζ )αS + εL

εS
[1 − αS (1 + ζ )]. (23)

According to Ref. [1] the value of εL/εS is equal to 0.62.
Note the variety of models that are currently used to

describe the nuclear magnetization distribution, e.g., the
surface-current nuclear model proposed in Ref. [38] and de-
veloped in detail in Ref. [39].

We consider 11/2− and 3/2+ long-lived states in odd-A
gold isotopes as single-hole states (πh11/2)−1 and (πd3/2)−1,
respectively, (π denotes the valence proton). Nuclear factors
calculated by Eqs. (19)–(23) with these assumptions are pre-
sented in Table III. This approximation is evidently simplistic
since the corresponding nuclei are known as weakly deformed
[40]. However, it will be shown that even such a rough ap-
proximation enables one to explain the trends in the observed
RHFA.

V. ACCURACY OF THE ATOMIC CALCULATIONS

In order to estimate the reliability of the nuclear factor
evaluation for gold isotopes by Eq. (23), one needs to as-
sess the accuracy of the calculation of all other parameters.
To this end, let us consider mercury ions (Hg II) with the
atomic structure which is very similar to that of the gold atom
and where BW corrections were studied previously in more
detail. Experimental values of the HFS constants were deter-
mined in Refs. [33,44]: A(6s1/2,

199Hg II) = 405 07.348 and
A(6s1/2,

201Hg II) = −1497 7.183 MHz. One can compare
with experiment only the A values, whereas our main goal is
to estimate the accuracy of the A0 calculations. Uncertainty

of the theoretical HFS constants consists of three parts: uncer-
tainties of A0, δ, and ε [see Eq. (4)]. Thus, one should estimate
independently the accuracy of δ and ε determinations in order
to draw conclusions about the accuracy of the A0 calculations
from the comparison with experiment. The accuracy of the
BR correction (δ) calculation can be estimated as 3% from
the dispersion of the results of different approximations in the
bN calculation (see Table II). This leads to the uncertainty of
0.3% in the final A(6s1/2) values.

To estimate the accuracy of the BW correction (ε)
a semiempirical approach was used. It was shown by
Moskowitz and Lombardi [45] that the relative hyper-
fine anomalies for a series of mercury isotopes, including
201, 199Hg, are well reproduced assuming the following simple
relation:

ε = ±α

μ
, I = L ± 1

2
, α = 1 × 10−2. (24)

where μ is the magnetic moment of the isotope in question.
Using the known μ values [46], one obtains:

ε(199Hg) = 2.0%, ε(201Hg) = 1.8%. Correspondingly,
theoretical A(6s1/2) constants for 201, 199Hg calculated with
these BW corrections and A0, bN from Table II are −149 78
and 404 74 MHz, respectively, which means relative error (in
comparison with the experimental data) 0.06% and 0.08%.
However, it does not mean with certainty that the accuracy
of the A0 calculation is on the same order. We estimated the
possible variations of the ε correction which might lead to the
uncertainty in the A0 value using the theoretical justification
of Eq. (24) by Fujita and Arima [18]. They gave the following
expression for the BW correction in mercury:

ε = c1 ± α

μ
, (25)

where constant c1 is less than 0.02 for mercury nuclei (see also
Ref. [3]). The RHFA description is the same for both ε rep-
resentations [Eqs. (24) and (25)], however, absolute ε values
may be different. This possible difference was accepted as the
measure of the BW corrections uncertainty. This uncertainty
results in the 2% error in the final A(6s1/2) values. Conse-
quently, taking into account the excellent agreement of the
theoretical and experimental A(6s1/2) values for 201, 199Hg+,
one can conservatively estimate the possible uncertainty of the
A0(6s1/2) calculation for Hg II as 2.5%. Keeping in mind the
similarity of the atomic structure in Au I and Hg II, one can
expect that the same estimation is valid for the gold atom.

VI. CALCULATION OF NUCLEAR FACTORS

For the 6s1/2 state in 193Aum, we deduced dnuc = 0.73
by Eq. (23). This factor corresponds to the BW correc-
tion of ε = 1.4% [see Eq. (6)]. Experimentally measured
A(6s1/2,

193Aum) agrees with our final result within 2.2%.
At the same time, A(6s1/2,

197Au) = 3265 MHz calculated
with the single-particle value [Eq. (23)] dnuc = −8.0, dif-
fers from the experimental value of 3049.66 MHz [42] by
7.1%. This difference cannot be attributed to the inaccuracy
of the atomic calculations since we estimated this inaccuracy
to be less than 2.5%. This means that the single-particle
model does not work for the dnuc calculation in 197Au. At
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the same time, the agreement between theoretical and ex-
perimental values for A(6s1/2,

193Aum) indicates that the
single-particle dnuc value for 193Aum does not contradict the
available experimental data and uncertainty estimation for
the atomic calculations. Therefore, we tried to extract in-
formation about the nuclear factor in 197Au with the aid of
Eq. (11) and dnuc(193Aum). It should be noted that the nu-
clear factor dnuc has singularity when gI → 0 [see Eq. (19)].
We used dnuc(193Aum) = 0.73 obtained within the single-
particle nuclear model to restore d197

nuc from 197�193m
(6s1/2) =

11.2(11)% [11] by Eq. (11): d197
nuc = −5.1(5). The uncertain-

ties in dnuc, calculated by Eq. (11), are determined by the
uncertainty of the η factor and experimental uncertainties
of the corresponding RHFS values and do not include the
possible error of the reference dnuc(193Aum) value. Equation
(6) gives the BW correction ε197 = −9.6(9)% for the 6s1/2

state. We obtained d193
nuc = −5.4(8) and d191

nuc = −5.8(9) from
RHFA values | 197�193(s1/2)| � 1.5% and | 197�191(s1/2)| �
1.4% given in Ref. [11]. The same procedure applied to
199Au d199

nuc = −3.2(5). The BW correction for the 6s1/2 state
of the 199Au isotope is ε199 = 6.0(9)%. This nuclear factor
extracted from experimental data is in reasonable agree-
ment with the prediction of the single-particle nuclear model
[Eq. (23)]: d199

nuc = −3.7. At the same time, the factors for
other gold 3/2 isotopes obtained within single-particle nuclear
model are markedly overestimated (see Table III). Thus, one
can assume that the 3/2+ ground state of 199Au belongs to the
relatively pure d3/2 configuration, whereas the 3/2+ ground
states of 191, 193, 195, 197Au have the significant admixture of
other configurations, which leads to the discrepancy between
single-particle and semiempirical [Eq. (23)] values of the dnuc

factor.
We calculate the HFS constants for 197Au with known

parameters A0, bN , bM , and gI = 0.097 164(6)μN [42] and
dnuc = −5.1. Our final theoretical results A(6s1/2,

197Au) =
3110 and A(6p1/2,

197Au) = 309 MHz agree with experimen-
tal values [42,47] within 2.0% and −3.9%, respectively.

VII. CONCLUSIONS

The nuclear magnetic moments of the short-lived isotopes
are extracted usually from the HFS constants. In this case the

accuracy is limited by the relative hyperfine anomaly, and it
can be improved if we independently find the value of this
anomaly. The latter can be performed using the A-constant ra-
tio for different atomic states and sufficiently accurate atomic
calculations. To this end we here present more thorough cal-
culations of the magnetic hyperfine structure constants of the
two lowest levels in the neutral gold atom compared to the
ones reported in Ref. [11]. We significantly extended the basis
sets and improved saturation of the correlation corrections.
We additionally performed a trial CI calculation of gold as
an 11-electron system to estimate the possible influence of
the 5d-electron excitations. We also considered the HFS of
the Au-like mercury ion. Using the Fujita and Arima [18]
representation of the BW correction which was shown to
explain the anomaly in a number of mercury isotopes, one can
estimate the possible uncertainty of the A0(6s1/2) calculation
for both Au I and Hg II as 2.5%.

Experimentally measured A(6s1/2,
191Aum) agrees with

calculation results for the single-particle nuclear model value
dnuc(191Aum) = 0.73 within 2.2%. This indicates the appli-
cability of this model for 193Aum as well as for the other
11/2− gold isomers. We used this dnuc value as a reference
to restore the nuclear factors for other isotopes. The nuclear
factor for the 199Au obtained from the experimental data
using our method d199

nuc = −3.2(5) is in reasonable agree-
ment with the prediction of the single-particle nuclear model
d199

nuc = −3.7. The nuclear factors for 197, 193, 191Au (I = 3/2)
isotopes are close to each other. From experimental data we
found dnuc = −5.5(6) for these three isotopes, whereas the
single-particle nuclear model gives dnuc = −8.2(4). One can
assume that these isotopes have significant admixture of other
configurations, whereas 199Au belongs to the relatively pure
d3/2 configuration.
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