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Two-body neutral Coulomb system in a magnetic field at rest: From hydrogen atom to positronium
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A simple locally accurate uniform approximation for the nodeless wave function is constructed for a neutral
system of two Coulomb charges of different masses (−q, m1) and (q, m2) at rest in a constant uniform magnetic
field for the states of positive and negative parity, (1s0) and (2p0), respectively. It is shown that by keeping the
mass and charge of one of the bodies fixed, all systems with different second-body masses are related. This
allows one to consider the second body as infinitely massive and to take such a system as basic. Three physical
systems are considered in detail: the hydrogen atom with (in)finitely massive proton (deuteron, triton) and the
positronium atom (−e, e). We derive the Riccati-Bloch and generalized Bloch equations, which describe the
domains of small and large distances, respectively. Based on the interpolation of the small- and large-distance
behavior of the logarithm of the wave function, a compact ten-parametric function is proposed. Taken as a
variational trial function, it provides accuracy of not less than six significant digits (SDs) (�10−6 in relative
deviation) for the total energy in the whole domain of considered magnetic fields [0 , 104] a.u. and not less
than three SDs for the quadrupole moment Qzz. To get reference points, the Lagrange mesh method with 16 K
mesh points was used to get from ten to six SDs in energy from small to large magnetic fields. Based on the
Riccati-Bloch equation, the first 100 perturbative coefficients for the energy, in the form of rational numbers, are
calculated and, using the Padé-Borel resummation procedure, the energy is found with not less than ten SDs at
magnetic fields �1 a.u.

DOI: 10.1103/PhysRevA.103.032820

I. INTRODUCTION

A hydrogen atom in a constant uniform magnetic field was
one of the first problems studied in quantum mechanics. It is
stable at any magnetic-field strength. Its importance is related
to the fact that it arises in various domains of physics, in
particular, in semiconductor physics [1] and in astrophysics
(e.g., the physics of strong surface magnetic fields of mag-
netic white dwarfs and neutron stars). In the former case,
the excitons occur as hydrogenlike quasiatoms with a small
effective mass and a large dielectric constant. In the latter case,
the atmosphere of white dwarfs and neutron stars can contain
hydrogen atoms subject to a strong magnetic field. Magnetic
fields in nature occur from a few gauss (e.g., the Earth, Jupiter
magnetic fields) up to about 1016 gauss, corresponding to a
surface magnetic field in a few explored magnetars. Hence,
they range in 16 orders of magnitude! A hydrogen atom is the
simplest Coulomb system in the sequence of one-electron hy-
drogenic atomic-molecular ions, both traditional and exotic,
which may exist in a strong magnetic field [2]. All of that
explains the enormous amount of articles published on the
subject.
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A description of the problem with weak magnetic fields
may be found in any textbook on quantum mechanics (see,
e.g., Landau and Lifshitz [3]). Early attempts to explore the
problem are summarized in the remarkable review paper by
Garstang [4]. In the overwhelming majority of considerations,
the proton is assumed explicitly to be infinitely heavy, which
implies that the atom is at rest, although the hydrogen atom,
since it is a neutral two-body Coulomb system, can be at
rest even for the case of finite proton mass—the case of zero
pseudomomentum [5]. Many years ago it was shown that the
problems when the proton is infinitely massive and finitely
massive but both at rest are connected via nontrivial scaling
relation [6]. It is well known that in the finite mass case, the
center-of-mass motion is not separated unlike in the field-free
case: it is replaced by the pseudoseparation. This does not lead
to complexification in the case of zero pseudomomentum. In
general, the specific coupling between the relative and the c.m.
motion leads to the prediction of a giant-dipole moment [7].

By increasing the magnetic field, the electronic density
evolves from a spherical-symmetrical distribution at weak
fields to a cigarlike one (elongated in the field direction) at
atomic and larger fields, where the energy grows linearly
with field strength. It was a challenge for many years to give
a unified description of the evolution in the framework of
the same approach with a sufficiently high, uniform in field
strength accuracy. This would imply an approximate solution
of the problem. It is worth mentioning three approaches,
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which treated the challenge: (i) power series expansion—
the method of moments [8], (ii) a numerical approach—the
Lagrange mesh method (LMM) [9], and (iii) the variational
method with (a) multiconfigurational trial functions [10] and
(b) with simple, few-parametric, single-configurational, phys-
ically adequate trial functions [11–18]. As a result, in all three
approaches, the ground-state energy (and the energies of a few
excited states) were found with reasonably high (or exces-
sively high) accuracy. Surprisingly, the quadrupole moment,
which is one of the principal consequences of the presence of
the magnetic field for the hydrogen atom and which defines
the van der Waals-type constant for the repulsion at large
distances of two H-atoms in a H2 molecule, was studied
quantitatively in a reliable way only recently [19]. The situ-
ation with finite-mass effects [5,7,20], relativistic and QED
corrections is far from being complete, see, e.g., Ref. [21]. In
general, the finite nuclear mass effects do not change four to
five significant digits (SDs), and following Salpeter et al. [22]
estimates the leading relativistic and QED effects leave three
to four SDs unchanged in the ground-state energy.

It should be mentioned that the neutral system can move
across magnetic field, see, e.g., Ref. [23] and references
therein. The two-dimensional case, where the neutral atom
moves on a plane subject to a magnetic field perpendicular
to it, has been analyzed in detail (see Ref. [24] and references
therein). In particular, a simple physically adequate trial func-
tion with the property of being a uniform local approximation
of the exact eigenfunction in any point of coordinate space
was constructed for the lowest states and any constant uni-
form magnetic field. Remarkably, when the system possesses
azimuthal symmetry, the hidden sl (2) algebra occurs and there
exists an infinite number of exact analytic eigenfunctions.
These eigenfunctions occur for specific values of the mag-
netic field only. The existence of exact eigenfunctions for the
three-dimensional two-body neutral Coulomb system is still
an interesting open problem. It should be noted that, usually,
studies in a magnetic field are characterized by a high degree
of technicality. To get reliable numerical results, two (or more)
independent calculations have to be carried out.

The aim of this paper is twofold: (i) using perturbation
theory and semiclassical consideration to construct a compact
function as a uniform local approximation of the exact (un-
known) eigenfunction in the whole range of magnetic fields
and (ii) to study finite mass effects for the neutral atom at
rest. The main emphasis will be given to the ground state—
the state of lowest energy. It will be revisited and then the
high accuracy estimates of the quadrupole moment for the
hydrogen atom will be provided.

The paper consists of two large parts. The first part is
about the infinite (proton) mass case where the Riccati-Bloch
and generalized Bloch (GB) equations are derived, the per-
turbation theory in powers of the magnetic field strength is
constructed for both equations, and the approximate expres-
sion (the approximant) for the ground-state eigenfunction of
positive parity and for another one of negative parity is intro-
duced. In the second part, the case of the two-body neutral
Coulomb system of finite masses is studied. The hydrogen
atom (p, e) and positronium (e+, e−) are considered.

Atomic units will be used through out the paper; the energy
will be measured in Rydbergs.

II. INFINITE MASS CASE

The Hamiltonian

Ĥ (∞) = 1

2 me

(
p̂ + e

c
A

)2
− e2

r
, r =

√
x2 + y2 + z2 ,

(2.1)

describes a hydrogen atom in the presence of a constant uni-
form magnetic field B = γ ẑ, directed along the z axis, in the
static approximation, when the mass of the proton is infinite,
mp = ∞ and c is the speed of light. Here me and (−e) are
the mass and charge of the electron, respectively, p̂ is its
momentum, r is its distance from the origin. The infinitely
heavy proton of charge e > 0 is situated at the origin. In
symmetric gauge,

A = 1
2 B × r , (2.2)

the Hamiltonian (2.1) takes the form

Ĥ (∞) =− h̄2

2me
�+ |e|γ

2mec
L̂z+V , �=∂2

x +∂2
y + ∂2

z , (2.3)

where the potential

V = −e2

r
+ e2γ 2

8mec2
ρ2 , ρ =

√
x2 + y2 , (2.4)

depends on two variables ρ and r, and L̂z is the projection
of the angular momentum operator in the direction of the
magnetic field,

L̂z = −ih̄ (x ∂y − y ∂x ) , (2.5)

which is conserved, [Ĥ (∞), L̂z] = 0. The parity operator
�̂�(x, y, z) = �(x, y,−z) also commutes with Ĥ (∞). The
Schrödinger equation associated to (2.3) is

Ĥ (∞)ψ = E (∞)ψ , E (∞) = E (∞)(γ , e, me) , (2.6)

with boundary conditions imposed in such a way that the wave
function is normalizable,∫

|ψ |2 d r < ∞ . (2.7)

The dependence of the potential (2.4) on the variables ρ, r
hints (for discussion, see Ref. [25]) that it might be convenient
to write the Schrödinger Eq. (2.6) in the nonorthogonal system
of coordinates (ρ, r, ϕ), see Fig. 1 and make a search for
subfamily of eigenfunctions with (ρ, r) dependence alone. In
these coordinates, we get

− h̄2

2me

[
∂2
ρ + 2ρ

r
∂ρr + ∂2

r + 1

ρ
∂ρ + 2

r
∂r + 1

ρ2
∂2
ϕ

]
ψ

− i|e|h̄γ

2mec
∂ϕψ

+
[

−e2

r
+ γ 2e2

8mec2
ρ2

]
ψ = E (∞) ψ . (2.8)

Needless to say, this equation is nonsolvable for γ �= 0: the
energy E (∞) and wave function ψ cannot be written in terms
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FIG. 1. Coordinates (ρ, r, ϕ) at half-space z � 0. The infinitely
heavy proton is located at the origin.

of known elementary and transcendental functions, they can
only be found approximately.1

Due to cylindrical symmetry, any state is characterized by
two quantum numbers: the magnetic quantum number m (h̄m
the eigenvalue of the operator L̂z) and the parity ν = ± with
respect to a reflection z → −z. It suggests representing a wave
function in the form

ψ (ρ, r, ϕ) = ρ|m| zp �(ρ, r) eimϕ ,

m = 0,±1,±2, . . . , p = 0, 1 , (2.9)

for the states with magnetic quantum number m and of
positive/negative parity ν = +/−, hence, p = 0, 1 and ν =
(−1)p, respectively, here z =

√
r2 − ρ2, see Fig. 1. The prob-

lem is reduced to find the function �(ρ, r), which satisfies the
(gauge-rotated) Schrödinger equation

− h̄2

2me

[
∂2
ρ + 2ρ

r
∂ρr + ∂2

r + 2|m| + 1

ρ
∂ρ

+2(|m| + p + 1)

r
∂r

]
�

+
[

−e2

r
+ γ 2e2

8mec2
ρ2

]
�

= E (∞)
m,p (γ 2, e2, me) � , (2.10)

where

E (∞)
m,p = E (∞)

m,p − |e|h̄γ m

2mec
,

and the magnetic quantum number m plays a role of param-
eter. From Eq. (2.10), one can explicitly see that E (∞)

m,p , which
is equal to the energy with the linear Zeeman term subtracted,
should be even function with respect to the magnetic quantum

1It should be emphasized that the title Exact solution for a hydrogen
atom in a magnetic field of arbitrary strength of Ref. [8] is misleading.

number m,

E (∞)
m,p = E (∞)

−m,p , (2.11)

for both positive and negative parity states, hence, E (∞)
m,p de-

pends on m2, therefore,

E (∞)
m,p = E (∞)

−m,p + |e|h̄γ m

mec
. (2.12)

In one-dimensional quantum mechanics, this phenomenon
was called the energy reflection symmetry [26].

The spectra of the Schrödinger Eq. (2.10) consists of the
infinite families characterized by different magnetic quantum
numbers m, each family splits into two subfamilies of different
parities. For fixed m and ν, the energy levels form an infinitely
sheeted Riemann surface in the space of magnetic field γ

with square-root branch points, hence, there are quasicross-
ings at real γ � 0 and two-level crossings at complex γ ’s
with vanishing discriminant (the Landau-Zener phenomenon,
see, e.g., Ref. [3]). Levels with different m’s and/or different
ν’s can intersect without forming square-root branch points
(true crossings). Interestingly, at large γ the zone structure oc-
curs, see, e.g., Ref. [4]. In particular, the lowest energy states
with nonpositive m = 0,−1,−2, . . . and of positive parity
(1s0, 2p−1, 3d−2, . . .) form the zeroth (lowest) Landau zone,
while in the case of negative parity (2p0, 3d−1, 4 f−2, . . .) the
first Landau zone occurs. Inside of these zones, for sufficiently
large γ the energy levels can be ordered following the de-
crease of m, these levels never have quasicrossings. Higher
Landau zones can be obtained through analytic continuation
in γ from the first two. Levels with m = 0 define the lower
edges of zones.

A. Riccati equation: Ground state

For any magnetic field γ the global ground state is nonde-
generate and is characterized by the quantum numbers m = 0
and ν = +(p = 0). It depends on two variables (ρ, r) only.
At γ = 0, it corresponds to 1s0 state of the hydrogen atom. At
large γ , this state defines the lower edge of the lowest (zero)
Landau zone. From now on, we write the ground wave func-
tion and its energy, dropping labels corresponding to quantum
numbers, presenting them as � and E (∞), respectively. Some-
times, this state is denoted as 1s0 even for γ �= 0. Following
(2.10), the equation that determines � and E reads

− h̄2

2me

[
∂2
ρ + 2ρ

r
∂ρr + ∂2

r + 1

ρ
∂ρ + 2

r
∂r

]
�

+
[

−e2

r
+ γ 2e2

8mec2
ρ2

]
� = E (∞) � . (2.13)

If �(ρ, r) is written in exponential representation,

�(ρ, r) = e−�(ρ,r) , (2.14)

the phase �(ρ, r) satisfies a nonlinear partial differential
equation of second order,

∂2
ρ� + 2ρ

r
∂ρr� + ∂2

r � + 1

ρ
∂ρ� + 2

r
∂r� − (∂ρ�)2

− 2ρ

r
(∂ρ�)(∂r�) − (∂r�)2

= 2me

h̄2

[
E (∞) + e2

r
− γ 2e2

8mec2
ρ2

]
, (2.15)
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FIG. 2. Domain (shaded in gray) for Eq. (2.15) in (ρ, r) variables.

where E (∞) = E (∞), see (2.11). This equation is defined in the
domain 0 � ρ � r and 0 � r < ∞, see Fig. 2. At γ = 0, this
equation can be solved exactly: The solution corresponds to
the lowest Coulomb orbital:

�0 = αr , E (∞)
0 = − h̄2

2me
α2 , α = me e2

h̄2 . (2.16)

Note that (2.15) can be regarded as a generalization to two
dimensions of the well-known one-dimensional Riccati equa-
tion. We will call it the (two-dimensional) Riccati equation.
Equation (2.15) is the key equation of the present paper.

In Sec. III, we will rewrite the fundamental nonlinear
Eq. (2.15) in two forms, introducing two sets of dimensionless
variables but with the same effective dimensionless magnetic
field λ instead of the original magnetic field |B| = γ . One
equation is suitable to develop perturbation theory in powers
of λ and study the domain of small distances. Another equa-
tion can be used to study the domain of large distances and
develop semiclassical expansion. This information is impor-
tant to design our ground-state trial function.

III. FROM RICCATI EQUATION TO RICCATI-BLOCH AND
TO GENERALIZED BLOCH EQUATIONS

A. Riccati-Bloch equation

Let us introduce the dimensionless variables

s = ρ

a0
, t = r

a0
, (3.1)

where

a0 = h̄2

me e2
� 5.29 × 10−9cm (3.2)

is the Bohr radius. In new variables (3.1), the Riccati
Eq. (2.15) appears without explicit dependence on parameters
c, e, h̄, and me,

∂2
s � + 2s

t
∂st� + ∂2

t � + 1

s
∂s� + 2

t
∂t�

− (∂s�)2 − 2s

t
(∂s�)(∂t�) − (∂t�)2

= ε + 2

t
− λ2s2

4
, (3.3)

where

ε = E (∞)

E (∞)
0

, E (∞)
0 = me e4

2h̄2 (3.4)

and

λ = γ

γ0
, γ0 = c|e|3m2

e

h̄3 . (3.5)

Note that E (∞)
0 is the Rydberg constant—the unit of energy,

while γ0 is the atomic unit of magnetic field (the magnetic
field generated by the electron on the Bohr orbit), respectively,

E (∞)
0 ≈ 2.18 × 10−18J = 13.6 eV , (3.6)

γ0 ≈ 2.35 × 105 T = 2.35 × 109 G . (3.7)

Expressions (3.6) and (3.7) suggest that λ is the magnetic field
measured in atomic units γ0 (a.u.),2 which occur instead of γ ,
while ε plays the role of energy measured in rydbergs (Ry).

Equation (3.3) is nothing but the dimensionless version
of the Riccati equation, we call it the Riccati-Bloch (RB)
equation as in Ref. [27] for the case of radial anharmonic
oscillators. It is evident that both equations coincide when
we set parameters h̄ = 1, me = 1, and (−e) = 1. The Riccati-
Bloch equation governs the dynamics via the phase � in the
(s, t )-space. At zero magnetic field λ = 0, the exact solution
of (3.3) reads

�0 = t , ε0 = −1 ,

see (2.16). At λ → ∞, the leading behavior of the phase is
given by

� = λ

4
s2 + . . .

and corresponds to the Landau orbital; it is consistent with
ε = λ.

B. Generalized Bloch equation

Let us introduce in (2.15) a different dimensionless vari-
able u instead of s, keeping t unchanged,

u = ρ

ρ0
, v = r

a0
= t, (3.8)

where

ρ0 = me c |e|
h̄ γ

= l2
γ

a0
, (3.9)

cf. (3.1); lγ =
√

h̄c
|e|γ is the magnetic length. Note that ρ0 has

explicit dependence on γ , unlike the Bohr radius a0, being
singular at γ = 0, in turn, the variable v coincides with t ,
see (3.1) and (3.8). Introducing (3.8) into the Riccati equation
(2.15), we obtain a two-dimensional nonlinear equation, we
will call it the Generalized Bloch (GB) equation,

λ2 ∂2
u � + 2u

v
∂uv� + ∂2

v � + λ2

u
∂u� + 2

v
∂v�

− λ2(∂u�)2 − 2u

v
(∂u�)(∂v�) − (∂v�)2

= ε + 2

v
− u2

4
, (3.10)

2Sometimes, a.u. is defined with γ0 = 2.3505 × 105 T.
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cf. Refs. [27–29], where the potential on the right-hand side
does not have any explicit dependence on the parameters
of the problem including the magnetic field. The definitions
of ε and λ are given in (3.4) and (3.5), respectively. Just
as it occurred for the Riccati-Bloch equation, all variables
and quantities involved in (3.10) are dimensionless. The GB
Eq. (3.10) governs the dynamics via the phase � in the (u, v)
space. Let us note that variables u and s are related via a
remarkably easy relation,

u = λ s , (3.11)

which allows us to connect RB and GB equations, see (3.1),
(3.5), and (3.8). This relation is h̄ independent: it holds for
any value of h̄. The variable u looks similar to the classical
coordinate introduced in Ref. [28], see also Ref. [27].

IV. PERTURBATION THEORY AND
ASYMPTOTIC ANALYSIS

In this section, we will obtain the basic building blocks
to construct the ground-state trial function. First, from the
Riccati-Bloch equation we will determine the perturbative ex-
pansion of the energy ε (3.4) in powers of λ2 (3.5). Second, we
will derive from the Riccati-Bloch and GB equations the exact
asymptotic behavior of the phase � in (2.14) at small and large
distances, respectively. An interpolation of all this information
between two limits will lead to our trial ground-state function.
The connection between the RB and GB equations will be
explained as well.

A. Weak magnetic field expansion from
the Riccati-Bloch equation

One of the ways to study the RB Eq. (3.3) in weak magnetic
field regime is to develop perturbation theory (PT) in powers
of λ2,

�(s, t ; λ2) =
∞∑

n=0

λ2n�n(s, t ), ε(λ2) =
∞∑

n=0

λ2nεn ,

(4.1)

where the zero-order approximation

�0(s, t ) = t, ε0 = −1 , (4.2)

see (2.16), corresponds to the phase and energy of the 1s0

ground state of the hydrogen atom at γ = 0, respectively. It
must be emphasized that if c = 1, me = 1, and e = −1, the
coupling constant is equal to λ = γ h̄3 and the PT for energy
ε in powers of γ coincides (!) with semiclassical expansion in
powers of h̄3. Corrections εn are numbers. This statement is
not valid for the perturbation expansion of phase �: the nth
correction depends explicitly on the Planck constant, �n =
�n(ρ h̄−2, rh̄−2).

The nth-order corrections �n and εn at n � 1 are deter-
mined by a linear partial differential equation,

∂ss�n + 2s

t
∂st�n + ∂tt�n

+
(

1

s
− 2s

t

)
∂s�n +

(
2

t
− 1

)
∂t�n

= εn − Qn , (4.3)

where, on the right-hand side,

Q1 = s2

4

plays the role of perturbation and at n > 1,

Qn = −
n−1∑
k=1

[
∂s�k∂s�n−k + ∂t�k∂t�n−k

+ s

t
(∂s�k∂t�n−k + ∂t�k∂s�n−k )

]
is defined by the previous corrections as well as the energy
correction:

εn =
∫

Qne−2�0 dV∫
e−2�0 dV

.

Eventually, the scheme leads to iterative procedure. The first-
order correction is

�1(s, t ) = 1
24 s2t + 1

16 s2 + 1
24 t2, ε1 = 1

2 . (4.4)

In general, the nth correction �n has the form of a polynomial
in variables (s, t ) of the following structure:

�n(s, t ) =
n−1∑
j=0

n∑
k= j

(
a(n)

j,k t + b(n)
j,k

)
(s2)(n−k) (t2)(k− j),

a(n)
0,n = 0 . (4.5)

By substituting (4.5) in Eq. (4.3), we arrive at the system of re-
currence equations. Energy corrections εn are found following
the consistency of the procedure and related to lowest order
coefficients of �n. Interestingly, for any n > 1, the relation

εn = 4 b(n)
n−1,n−1 + 6 b(n)

n−1,n (4.6)

holds. It is clear that for any integer n the coefficients a(n)
j,k

and b(n)
j,k are rational numbers. Hence, the energy correction

εn is also a rational number. Several corrections can be easily
computed in this framework as a consequence of the polyno-
mial nature of �n in (s, t ) variables. The coefficients a and
b in (4.5) are determined by solving recurrence relations by
algebraic means. The construction of perturbation theory is
ultimately an algebraic procedure. A finite number of terms in
expansions (4.1) can be calculated explicitly. In Appendix A,
the first three corrections in the expansion of the phase �

for n = 2, 3, 4 are presented. In turn, the expansion of ε in
powers of λ is easily computed up to 100th order in the form
of rational numbers using MATHEMATICA 12, see Tables VI
and VII. Following the Dyson instability argument [30], in
(s, t )-space (3.1) both series (4.1) should be divergent. Using
multidimensional semiclassical analysis, the asymptotic be-
havior of εn at large order was found [31,32] in the form of
1/n expansion

εn = 64
(−1)n+1

π
5
2 +2n

�

(
2n + 3

2

) (
1 − A

n
+ O

(
1

n2

))
,

n → ∞ , (4.7)

with A > 0. Thus, it has the index of divergence equal to 2:
εn ∼ (n!)2. The 1/n expansion demonstrates a convergence,
for example, at n = 70 100; the leading contribution in (4.7)
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agrees with exact ε70 100 in about two SDs (depending on
rounding),3 see Table VII. The next-to-leading term in (4.7)
with A = 2.61 improves the agreement to four to five SDs.
In spite of the fact that PT for ε is Borel summable, one
of the best known summation procedures for an asymptotic
series—the Padé-Borel procedure, see, e.g., Ref. [33]—does
not provide accurate results for large γ � 10 a.u. even taking
into account the first hundred terms ε1−100, although, at small
γ � 1 a.u., it leads to accurate results providing 11 decimal
digits (d.d.) correct (or more), see below Table II for γ =
1 a.u. as the example.

Following Eq. (4.6), the coefficients b(n)
n−1,n−1 and b(n)

n−1,n
grow factorially a large n. It is worth mentioning that the per-
turbative approach used to solve the Riccati-Bloch equation is
nothing but an application of the so-called nonlinearization
procedure [15] (sometimes referred to for the ground-state
case as the logarithmic perturbation theory). The general de-
scription can be found in Ref. [34].

1. Behavior of phase � at small distances

The structure of the Taylor series of the phase � at small
s and t can be obtained from the polynomial form of the
correction �n, see (4.5). Collecting the same degrees in s and t
coming from different corrections �n, their formal sums result
in expansion

�(s, t ; λ2) = t + σ1(λ2) s2 + σ2(λ2) t2 + σ3(λ2) s2t

+ . . . , (s, t ) → 0 , (4.8)

where the first functions σ1, σ2, and σ3 are given by

σ1(λ2) =
∞∑

n=1

b(n)
n−1,n−1λ

2n , σ2(λ2) =
∞∑

n=1

b(n)
n−1,nλ

2n ,

σ3(λ2) =
∞∑

n=1

a(n)
n,n−1λ

2n . (4.9)

From Eq. (4.6), it is clear that

ε(λ2) = −1 + 4 σ1(λ2) + 6 σ2(λ2). (4.10)

From Taylor series (4.8), once variables ρ and r are restored,
one can immediately conclude that the presence of a magnetic
field does not break the cusp condition for the exact ground-
state function:

C ≡ −〈ψ | δ(
r) ∂
∂r | ψ〉

〈ψ | δ(
r) | ψ〉 = 1

a0
. (4.11)

In atomic physics, the parameter C is known as the cusp
parameter. For nonexactly solvable Coulomb systems which
consist of electrons and (infinitely massive) positive charged
nuclei, this parameter is used to measure the local quality of
the approximate wave function near the Coulomb singulari-
ties. This parameter has a meaning of residue at the Coulomb
singularity. The easiest way to find the cusp parameter in an
approximate trial function is to calculate the coefficient (the
slope) standing in front of the linear in r term at small r
behavior of the phase.

3It contradicts the statement in Ref. [32] about the agreement in
nine SDs.

B. The weak magnetic field expansion from the generalized
Bloch equation

One of the ways to solve the GB equation (3.10) is to
develop PT in powers of λ2,

�(u, v; λ2) =
∞∑

n=0

λ2nφn(u, v) , ε(λ2) =
∞∑

n=0

λ2nεn ,

(4.12)
where the expansion for ε coincides with one presented in
(4.1). The zero-order approximation φ0(u, v) is determined by
the nonlinear partial differential equation of the second order,

2u

v
∂uvφ0 + ∂2

v φ0 + 2

v
∂vφ0 − 2u

v
(∂uφ0)(∂vφ0) − (∂vφ0)2

= ε0 + 2

v
− u2

4
, (4.13)

at ε0 = −1. Surprisingly, it can be solved explicitly in closed
analytic form,

φ0(u, v) = A(0)
0 (u) v + B(0)

0 (u) , (4.14)

where

A(0)
0 (u) =

√
1 + u2

12
,

B(0)
0 (u) = 1

2
ln

(
1 + u2

12

)
+ ln

(
1 +

√
1 + u2

12

)
.

It is convenient to introduce a new variable,

w =
√

1 + u2

12
� 1 , (4.15)

that allows us to represent the zero-order approximation φ0 in
compact form,

φ0(u, v) = w v + ln[w (1 + w)] . (4.16)

The φ0(u, v) plays a role of classical action, although the
classical trajectory is unknown. Evidently, the function �0 =
e−φ0(u,v) is square integrable; it can be taken as variational
trial function to study (1s0) state, see below. The correction
φn(u, v), n = 1, 2, . . . obeys a linear partial differential equa-
tion,

2u

v
∂u,vφn + ∂2

v φn + 2

v
∂vφn

− 2u

v
(∂uφ0 ∂vφn + ∂uφn ∂vφ0) − 2(∂vφn ∂vφ0)

= εn − qn, (4.17)
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where

qn = ∂2
u φn−1 +

(
1

u
− ∂uφ0

)
∂uφn−1 −

n−1∑
k=1

{
∂uφn−k−1∂uφk + 2u

v
∂uφn−k−1∂vφk + ∂vφn−k−1∂vφk

}
. (4.18)

It can be shown that the correction φn(u, v) is a polynomial in v of degree (2n + 1) with u-dependent coefficients:

φn(u, v) =
n∑

k=0

{
A(n)

k (u) v + B(n)
k (u)

}
v2(n−k) . (4.19)

Functions A(n)
k (u) and B(n)

k (u) are determined by solving (ordinary) linear differential equations of the first degree. In particular,

−φ1(u, v)=A(1)
0 (u) v3+B(1)

0 (u) v2+A(1)
1 (u) v + B(1)

1 (u), (4.20)

where the coefficients can be written conveniently in variable w (4.15) as follows:

A(1)
0 = (w − 1)(w + 1)

120 w3
,

B(1)
0 = 6w3 − w2 − 9w − 6

120 (w + 1) w4
,

A(1)
1 = (w − 1)(30w4 + 52w3 + 54w2 + 42w + 15)

120 (w + 1) w5
,

B(1)
1 = (w − 1)(9w6 + 18w5 + 38w4 + 46w3 + 42w2 + 30w + 10)

80 (w + 1) w6
.

Several next-order corrections φ2, φ3, . . . can also be cal-
culated explicitly; for all of them, the coefficients A and B
appear usually as rational functions in w.

In the next subsection, some properties of functions A(n)
k (u)

and B(n)
k (u) related with their asymptotic behavior at large u

and v are presented.

1. Asymptotic behavior of � for large distances

Using the perturbation theory corrections obtained from
the GB equation (3.10), asymptotic expansions can be cal-
culated along particular directions in the plane (s, t ). Let us
consider the line

s = α t , (4.21)

where α ∈ (0, 1] is a parameter. One can see that along this
line (by keeping the value of α fixed), the dominant asymp-
totic behavior of the nth correction to the phase, see (4.12),

φn(u, v)|v=t = φn(λs, t )|s=αt , (4.22)

where the relation (3.11) is taken into account, at large t comes
from the term A(n)

0 (λ(αt ))t2n+1 in (4.19), leading to

φn(λ s, t )s=αt ∼ An

(αλ)2n−1
t2 + O

(
t0

)
, t → ∞,

n = 0, 1, 2, . . . , (4.23)

where in the dominant term the coefficients An for the first
three corrections n = 0, 1, 2 are

A0 = 1

2
√

3
, A1 = − 1

20
√

3
, A2 = − 23

2800
√

3
.

Finally, from (4.23), one can find the behavior of
�(λ s, t )|s=αt ,

�(λ s, t )s=αt = λα

( ∞∑
n=0

Anα
−2n

)
t2

+ 2ln(t ) + . . . , t → ∞ , (4.24)

where the logarithmic term comes from the B(0)
0 (u), see (4.14).

To determine the sum in (4.24), we can define the generating
function

A(α) = α

∞∑
n=0

Anα
−2n , (4.25)

which satisfies the Riccati equation,

(1 − α2) (A′)2 + 4A2 − 1
4 α2 = 0, A(1) = 1

4 .

(4.26)

This equation can be solved in closed analytic form:

A(α) = 1
4 α2 . (4.27)

Hence, the behavior of the phase (4.22) at t → ∞ results in

�(λ s, t )|s=αt = 1
4 α2 λ t2 + 2ln(t ) + O(t0) , t → ∞ .

(4.28)

Some other limits in different directions can be also stud-
ied. For example, if s is fixed, s = s0, the asymptotic behavior
at large t is of the form

�(s0, t ) = C0(s0, λ) t + C1(s0, λ) lnt + O(t0), t → ∞ .

(4.29)
where constants C1 and C2 are unknown generally.
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C. Connection between Riccati-Bloch and
generalized Bloch equations

We have constructed two different representations for the
phase � (2.14) of the ground-state wave function. From the
RB equation, we obtain

�(s, t ; λ2) =
∞∑

n=0

λ2n�n(s, t ) , s = ρ

a0
, t = r

a0
,

(4.30)
while from the GB equation

�(u, v; λ2) =
∞∑

n=0

λ2nφn(u, v) , u = ρ

ρ0
, v = r

a0
,

(4.31)

where a0 and ρ0 are defined in (3.2) and (3.9), respectively.
It is clear that there must exist a connection between cor-

rections �n(s, t ) and φn(u, v). To establish it, we use the
polynomial representation of corrections (4.5) in (4.30)

� =
∞∑

n=0

λ2n
n∑

j=0

n∑
k= j

(
a(n)

j,k t + b(n)
j,k

)
s2(n−k)t2(k− j) , (4.32)

then change the order of summation and use the relation (3.11)
between variables s and u. As the result, we arrive at

� =
∞∑

n=0

λ2n
n∑

k=0

∞∑
j=n

(
a( j)

k,n v + b( j)
k,n

)
u2( j−n)v2(n−k) . (4.33)

Comparing (4.31) and (4.33), one can conclude that

φn(u, v) =
n∑

k=0

∞∑
j=n

(
a( j)

k,n v + b( j)
k,n

)
u2( j−n)v2(n−k) . (4.34)

Eventually, after simple manipulations, Eq. (4.34) can be writ-
ten as follows:

φn(u, v) =
n∑

k=0

v2(n−k)
∞∑
j=0

(
a(n+ j)

k,n v + b(n+ j)
k,n

)
u2 j . (4.35)

Making a comparison (4.19) and (4.35), we see explicitly that

A(n)
k (u) =

∞∑
j=0

a(n+ j)
k,n u2 j (4.36)

and

B(n)
k (u) =

∞∑
j=0

b(n+ j)
k,n u2 j . (4.37)

Therefore, the meaning of the connection between the ex-
pansion of phase in GB and Riccati-Bloch equations is the
following: the coefficient functions A(n)

k (u) and B(n)
k (u) are

nothing but the generating functions of the coefficients a(n+ j)
k,n

and b(n+ j)
k,n , respectively. A similar connection exists for anhar-

monic oscillators [15,27].

V. THE APPROXIMANT

A. Approximant of the ground state

The analytical information for the phase (2.14), obtained
from the Riccati-Bloch and GB equations, Taylor expansion

at small distances and asymptotic series for large distances,
will now be used to design the approximant: an approxi-
mation of the exact (unknown) ground-state wave function
(1s0), denoted by � (t ), in the form of interpolations of
different expansions. To do so, we follow the prescription
proposed in Refs. [15,34], further developed and applied in
Refs. [27,35,36], where the approximant was successfully
constructed for a 1D anharmonic oscillator and double-well
potential, for the D-dimensional radial polynomial anhar-
monic oscillator, and some other potentials.

We assume the exponential representation (2.14) for the
approximant in coordinates (ρ, r),

� (t )(ρ, r) = e−�t (ρ,r) , (5.1)

and focus on the construction of �t (ρ, r). According to the
prescription, the approximate phase has to interpolate the ex-
pansions at small and large distances, see (4.8), (4.28), and
(4.29). In addition, the zero-order approximation φ0 in the
GB equation, see (4.14), should be reproduced for particu-
lar values of parameters as well as the first terms in weak
magnetic field expansions. Following the reflection symmetry
(ρ → −ρ), which holds in RB and GB equations, �t has to
be a function of ρ2. One of the simplest interpolations, which
accomplishes the prescription given above, is of the form

�t (ρ, r) = α0 + α1 r + α2 r2 + α3 γ ρ2 + α4 γ ρ2 r√
1 + β0w + β1 r + β2 r2 + β3 ρ2

+ q ln(1 + β0w + β1 r + β2 r2 + β3 ρ2) ,

(5.2)

where {α0, α1, α2, α3, α4, β0, β1, β2, β3; q} are ten free pa-
rameters that later will be fixed in variational calculation,

w =
√

1 + γ 2ρ2

12 , see (4.15). We call it the phase approximant.
Making straightforward preliminary minimizations, we found
that for all studied magnetic fields up to 10 000 a.u. the param-
eter β0 is extremely small and parameter q is invariably close
to 1.4 Thus, without losing much in accuracy in variational en-
ergy, we put β0 = 0 and q = 1 from the very beginning in trial
function (5.3), see below, which becomes eight-parametric in
the minimization procedure. Interestingly, the deviation of q
from 1 and β0 from 0 influences far distant d.d. in energy,
although it significantly improves the cusp parameter C(t )

(4.11) making it closer to the exact value C(exact) = 1. Re-
leasing those parameters makes the minimization procedure
much more complicated and slow. It will be checked for two
magnetic fields, 1 a.u. and 10 000 a.u. only.

The logarithmic term (5.2) is included to mimic the appear-
ance of logarithmic terms in the exact wave function treated
in the GB equation at λ → 0, see (4.14). It will generate a
prefactor in the approximate wave function, which ultimately

4In detailed minimization, it was found that at large magnetic fields
γ > 100 a.u., the parameter q jumps sharply down to zero, while the
variational energies at q = 1 and q = 0 are very close. The present
authors have no explanation for this phenomenon.
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is given by

�
(t )
1s0

(ρ, r) = 1

(1 + β0w + β1 r + β2 r2 + β3 ρ2)q
exp

(
−α0 + α1 r + α2 r2 + α3 γ ρ2 + α4 γ ρ2 r√

1 + β0w + β1 r + β2 r2 + β3 ρ2

)
. (5.3)

This is the key expression for the trial function which is
going to be used throughout this paper. We have labeled the
approximant (5.3) with (1s0), using the standard notation for
the ground state of hydrogen atoms in the absence of magnetic
field. Calculations are made mainly with an eight-parametric
trial function (5.3) with β0 = 0 and q = 1. The ten-parametric
trial function (5.3) with both β0, q as variational parameters
is used for two magnetic fields γ = 1 and 104 a.u. only to
estimate the maximal accuracy which can be reached with it,
see discussion above.

Note that the reduced and modified versions of the trial
function (5.3) [and the trial phase (5.2)] appeared in previous
investigations:

(i) If β0 = β1 = β2 = β3 = 0, thus, the prefactor is re-
duced to one, if α0 = α2 = α4 = 0, this function becomes the
product of the ground-state Coulomb orbital and the ground-
state Landau orbital, see Ref. [15]; if α0 = α1 = α4 = 0, the
function becomes one which was originally proposed by Yafet
et al. [11].

(ii) If β1 = β2 = β3 = 0 and α0 = 0 [14], in spite of giving
wrong asymptotic behavior at large distances, this function
provided sufficiently high accuracy at small magnetic fields
which then deteriorated with magnetic field increase: At γ =
100 a.u. it reproduces in the ground-state energy three SDs
only.

(iii) For β1 = β2 = β3 = 0, there were other attempts to
modify the numerator in the first term in (5.2), see, e.g.,
Refs. [16,17], to keep functionally correct asymptotic behav-
ior at large distances and adding as many as possible free
parameters; none of these attempts allowed us to get accurate
results for energy beyond two to three SDs for magnetic fields
larger than 10 a.u.

(iv) In 2007, one of the present authors (A.V.T., see
Ref. [18]) demonstrated that even keeping the prefactor in
(5.3) equal to one, q = 0 [thus, no logarithmic term in (5.2)]
and taking α0 = β1 = 0 in the exponent (thus, having in total
six free parameters) allows for γ = 10 000 a.u. to obtain the
variational energy 9972.05 a.u., which differs from the exact
value in the fifth SD; recently, another of the present authors
(J.C.dV., see Ref. [37]) carrying out more accurate minimiza-
tion procedures was able to improve the above result up to
9971.95 a.u. and then performed variational studies in the
whole domain γ ∈ [0, 10 000] a.u., reaching the accuracy of
three to four SDs (which was even higher for weak magnetic
fields).

(v) It is worth noting that if β1 = β2 = 0 , α0 = α2 =
α3 = 0, and q = 1, then for α1 = 1 and γ α4 = β3 = 1

12 ρ2
0

the nonlogarithmic term in (5.2) coincides to the nonlogarith-
mic term of zero-order approximation A(0)

0 (u) v (4.14) to GB
equation while the logarithmic terms in B(0)

0 (u) coincide with
logarithmic term in (5.2) at β0 = 1. Hence, the trial function

(5.3) is reduced to

�0 = 1(
1 +

√
1 + γ 2ρ2

12 + γ 2ρ2

12

) e−r
√

1+ γ 2ρ2

12 , (5.4)

which contains no free parameters. This function leads to very
accurate energies at γ � 1 a.u., see below, Table II, but fails
for larger γ . Surprisingly, if the prefactor in (5.4) is dropped
by putting q = 0 in (5.2) and (5.3), then the amazingly simple,
parameter-free function

�1 = e−r
√

1+ γ 2ρ2

12 (5.5)

leads to reasonably accurate energies for γ � 10 a.u. [16]. For
both formulas (5.4) and (5.5), the value of the cusp parameter
is exact, being equal to 1 for all γ .

As was indicated before, the variational method allows us
to fix the values of the free parameters of the approximant
(5.3) by minimizing variational energy Evar: The parameter-
dependent, expectation value of the Hamiltonian (2.3) over
trial function (5.3) is calculated, which is then minimized.
The variational principle guarantees that the variational en-
ergy gives an upper bound of the exact energy, Evar � Eexact.
However, it is still an open question how close the variational
energy is to the exact one. Hence, the quality of the variational
results should be checked by making a comparison with reli-
able established data obtained independently. Such data are
supplied by the LMM [9], which is proved to be among the
most reliable numerical methods, where convergence can be
easily established.

1. Lagrange mesh method: Results

In this section, we will consider the hydrogen atom in a
constant magnetic field in the LMM, for a review see Ref. [9],
which is an alternative to the variational method to establish
benchmark results.

It has been known for quite some time that LMM is a
highly accurate method leading to benchmark results and also
simple to implement in order to solve the Schrödinger equa-
tion, see Ref. [19]. Using the formulation of the method in
spherical coordinates (r, θ, φ) presented in Ref. [19], Sec. 2.5,
we calculated the ground state energy and its quadrupole mo-
ment for magnetic fields in the range γ ∈ [0.01, 10 000] a.u.
Since the Schrödinger equation for the ground state is essen-
tially two-dimensional: φ dependence is absent, the mesh is
realized on the plane parametrized by r and u = cos θ . We im-
plemented the LMM in MATHEMATICA 12. For the whole
range of studied magnetic fields the mesh was kept unchanged
and consisted of Nr = 80 radial functions and Nu = 200 an-
gular ones. Hence, the approximate ground state function is
represented by the expansion in terms of 80 × 200 = 16 000
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TABLE I. Energies E (∞) (2.6) and E (mp) (6.18) in Ry and quadrupole moment Q(∞)
zz in (a.u.)2 for the ground state 1s0 of the static hydrogen

atom in magnetic field γ ∈ [0.01, 10000] in a.u. found in variational method with eight-parametric trial function (5.3) (q = 1, β0 = 0) and
comparison with results of other calculations (rounded), confirmed and established in LMM.

γ (a.u.) E (∞) E (mp ) −Q(∞)
zz

0 −1.000 000 000 000 −0.999 455 679 426 0.000 000
0.01 −0.999 950 005 51 −0.999 405 603 19 0.000 248

−0.999 950 005 52 a,c 0.000 249 c

0.1 −0.995 052 960 5 −0.994 500 663 9 0.023 270
−0.995 052 960 8 a,c 0.023 2712 c

0.5 −0.894 421 065 −0.893 731 173 0.256 143
−0.894 421 075 a,c 0.256 156 21 c

1.0 −0.662 337 66 −0.661 393 27 0.417 618
−0.662 337 70 −0.661 393 31 0.417 635 (*)
−0.662 337 79 a,b 0.417 654 b

2.0 −0.044 426 7 −0.042 924 9 0.511 354
−0.044 427 8 a,c 0.511 432 c

γc 0.000 001 0.001 540 0.513 561
0.000 000 c 0.513 537 c

5.0 2.239 209 2.242 422 0.506 493
2.239 202 a,c 0.506 331 c

10.0 6.504 427 6.510 476 0.445 22
6.504 405 a,b 0.445 09 b

100.0 92.420 7 92.476 6 0.217 5
92.420 4 a,b 0.216 8 b

500.0 487.487 31 487.762 0.125 1
487.485 95 0.123 87 (†)
487.485 82 a,c 0.123 87 c

1 000.0 984.678 985.226 0.099 4
984.675 153 504 a

984.675 153 511 c 0.098 160 c

984.675 153 507 d 0.098 160 d

10 000.0 9 971.74 9 977.22 0.049 3 (q = 1, β0 = 0)
9 971.72 9 977.18 0.049 1 (q = 0, β0 = 0)
9 971.718 490 9 977.173 0.048 5 (**)
9 971.72 c 0.047 9 c

9 971.718 316 e

*Equation (5.3), ten parameters, q = 0.994509, β0 = 0.0000000036, see Table II.
†Equation (5.3), ten parameters, q = −0.130 064 , β0 = 0.003 583.
**Equation (5.3), ten parameters, q = −0.089408, β0 = 0.000029.
γc = 2.065 211 858.
aPower series: method of moments [8].
bLagrange mesh [19].
cLagrange mesh (present paper, 16 K mesh points).
dLagrange mesh (present paper, 80×240 mesh points),
eBasis of Splines [38].

functions. With this enormous mesh we are able to reproduce
and confirm the results obtained for all magnetic fields studied
in previous LMM calculation [19]: 1, 10, 100 and 1 000 a.u.
and furthermore improve them, see Table I. It is shown in
Table I the maximal number of figures obtained by other
methods which are in agreement with the LMM results. It
ranges from 11 figures for γ = 0.01 a.u. up to six figures for
10 000 a.u. From the point of physics, such accuracies are
excessive since finite mass contribution changes usually the
fourth figure, see a discussion in Sec. VI.

In general, for γ � 1 000 a.u. the LMM allows to reach
the accuracy in energy of 10 figures (or more) giving bench-
mark results except for the outstanding results by Stubbins
et al. [10] which are checked and confirmed with high

accuracy, see, e.g., Table II. The maximum accuracy in
energy—19 figures—is reached for magnetic fields γ � 1
a.u., see, e.g., Table II as for γ = 1 a.u. However, for large
magnetic fields γ � 1 000 a.u., the accuracy begins to re-
duce dramatically. For example, at γ = 10 000 a.u. it reaches
only six figures. The results for energy and quadrupole mo-
ments are shown in Table I. It must be emphasized that
for quadrupole moments, the LMM—the present calcula-
tion and one performed in Ref. [19]—leads to benchmark
results.

To check the local accuracy of the solution for the eigen-
function of the Schrödinger equation obtained in the LMM,
one can calculate the cusp parameter C (4.11). As a result, the
calculated cusp parameter C deviates from the exact value,
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TABLE II. The ground-state energy E (∞) in Ry for the static hydrogen atom at magnetic field γ = 1 a.u. obtained by different methods.
The results are ranked by accuracy. Rounding up to digits relevant for comparison performed, excessive digits not confirmed by the most
accurate calculations not shown. Digits beyond the 12th decimal having no chance to be verified experimentally at present times (see text)
shown by italics. Mass effects change fourth d.d., see Table I. Result by present paper marked by bold.

Reference E (∞) Method

[11] Yafet et al., 1956 −0.523 Variational
[15] Turbiner, 1984 −0.61 Variational
[12] Larsen, 1968 −0.661 Variational
[40] Praddaude, 1972 −0.662 33 Power series
[17] Potekhin and Turbiner, 2001 −0.662 332 Variational
Present paper, see (5.3) −0.662 337 66 Variational (eight parameters) a

Present paper, see (5.3) −0.662 337 70 Variational (ten parameters)
[38] Wang and Hsue, 1995 −0.662 337 785 B splines
Present paper −0.662 337 793 46 Padé-Borel (100 coeffs)
[8] Kravchenko et al., 1996 −0.662 337 793 466 Method of moments
[19] Baye et al., 2008 −0.662 337 793 466 315 9 Lagrange mesh
Present paper −0.662 337 793 466 316 071 2 Lagrange mesh, 16 K mesh points
[10] Stubbins et al., 2004 −0.662 337 793 466 316 6 Variational (multiconfiguration)

aq = 1, β0 = 0.

C(exact) = 1, in the sixth d.d. in the whole range of magnetic
fields considered.

2. Variational results

For simplicity, we set c = h̄ = e = me = 1 in numerical
computations, see (3.4). To calculate the expectation value of
the Hamiltonian over the trial function (5.3) and minimize it
with respect to free parameters to get the optimal variational
energy, we need to perform the numerical integration and then
minimization. The computer code was written in FORTRAN
77 with use of the integration routine D01FCF from NAG-LIB
employing the minimization routine MINUIT from CERN-
LIB. Resulting variational parameters versus magnetic field
are presented in Appendix B, Fig. 4. Variational energies are
shown in Table I for different magnetic fields in the range
γ ∈ [0.01, 10 000] a.u.

Our variational calculations with trial function (5.3) are
compared with accurate results known in the past, in partic-
ular, with those obtained in the LMM [9] in Ref. [19], which
are extended and improved in the present paper, see Sec. G.1.
Special attention was paid to the critical magnetic field γc, for
which the ground-state energy (2.6) vanishes:

E (∞)(γc) = 0 .

The value of γc, obtained in the LMM results in

γ (LMM)
c = 2.065 211 858 a.u. , (5.6)

with E (∞)
LMM(γc) ∼ 10−10 Ry while with variational trial func-

tion (5.3) with eight parameters it gives E (∞)
var (γc) ∼ 10−6 Ry,

see Table I. Note that for the magnetic field γc, the Hamil-
tonian (2.3) has the normalizable zero mode. Surprisingly,
for this magnetic field the value of the quadrupole moment
(−Qzz ) appears to be close to its maximal value.5

5In LMM, the maximum of the quadrupole moment is reached at
γ = 2.96869 a.u.: max (−Qzz ) = 0.52452 (a.u.)2.

For γ = 10, 000 a.u., see Table I, the LMM allows us to
reach six figures in energy only, even taking a 16 K mesh
points basis, while in the calculation by Wang-Hsue [38],
based on the use of splines, ten figures were reached. Taking
the eight-parametric function (5.3) with (q = 1, β0 = 0), the
energy differs from the established value in the sixth figure
in two units while, taking (q = 0, β0 = 0), the six figures in
energy are reproduced exactly. The ten-parametric function
(5.3), where the parameters (q, c) are released, allows us to
reproduce seven figures with difference in two units in the
eighth figure in comparison with results obtained in Ref. [38].

In general, the relative deviation of the variational energy
from the exact one is small in the whole domain of considered
magnetic fields:∣∣∣∣E (∞)

var − E (∞)
exact

E (∞)
exact

∣∣∣∣ � 10−6 , γ ∈ [0.01, 10 000] . (5.7)

Due to Hasegawa and Howard [39], see also Ref. [32], the
ground state energy at large γ behaves like

E (∞) = γ − ln2γ + O(lnγ ) . (5.8)

Here the second term defines the asymptotic behavior at large
γ of the binding energy, E (∞)

binding = γ − E (∞). It can imme-
diately be seen that the asymptotic expansion (5.8) is slow
convergent: Even at γ = 104 a.u., the binding energy is equal
to ∼28.25 Ry, see Table I, it differs from ln2γ = 16 Ry in
∼50% . This magnetic field is close to the Schwinger limit
γSchwing ∼ 2 × 104 a.u., which limits the domain of applica-
bility of nonrelativistic quantum mechanics. It implies that the
expansion (5.8) does not seem relevant to study the nonrela-
tivistic domain γ � γSchwing.

In Table II, different estimates of the ground-state energy
are presented following the order of reached accuracy for γ =
1 a.u. So far, the most accurate energy is found in Ref. [10] via
multiconfigurational trial function; in the LMM we are able
to confirm 19 d.d., while our eight-parametric compact trial
function (5.3) at (q = 1, β0 = 0) gives six d.d. correctly with
a difference in the seventh d.d. in one unit. The ten-parametric
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TABLE III. Nuclear cusp parameter C (t ) (5.10) for the ground
state (1s0) for different magnetic fields calculated with eight-
parametric approximant (5.3) with (q = 1, β0 = 0).

γ (a.u.) C (t ) γ (a.u.) C (t )

0.01 1.000 002 5.0 0.997
0.1 0.999 97 10.0 1.002
0.5 0.999 7 100.0 1.065
1.0 0.999 30 500.0 1.159
1.0 0.999 34 a 500.0 0.977 767 a

2.0 0.996 5 1 000.0 1.23
γc 0.996 7 10 000.0 1.7 (5.3), (q = 1, β0 = 0)

10 000.0 1.104 (5.3), (q = 0, β0 = 0)
10 000.0 0.939 a

aVariational method: (5.3) with ten parameters.

compact trial function (5.3) with released parameters (q, β0)
gives seven d.d. correctly with a difference in the eighth d.d.
in nine units.

As for the binding energy E (∞)
binding = γ − E (∞), it follows

from Table I that the variational calculations with the eight-
parametric trial function provide not less than six SDs in the
domain γ � 100 a.u.. This accuracy drops to five and four
SDs at γ ≈ 100 a.u. and γ ≈ 10 000 a.u., respectively. Similar
accuracies are inherited by the energy gap.

It is well-known that the hydrogen atom acquires a
quadrupole moment in magnetic field γ > 0, see, e.g.,
Ref. [17]. Due to the azimuthal symmetry of the system, the
quadrupole moment tensor is diagonal and is characterized by
a single independent element only, i.e.,

Qzz = 〈r2〉 − 3 〈z2〉 . (5.9)

Confident results for Qzz were established for the first time by
Baye et al. in Ref. [19]; see also Ref. [17], they are improved
in the present recalculation in the LMM in three to eight SDs,
depending on the magnetic field strength, see Table I. Expec-
tation value Qzz (5.9), found with compact variational trial
function (5.3) with parameters from Appendix B, agrees with
the LMM result with high accuracy for all studied magnetic
fields.

Local deviation of the approximant from the exact wave
function can be estimated by studying the vicinity near the
Coulomb singularity—located at the origin, r = 0—it can be
measured via the cusp parameter (4.11). A straightforward
calculation shows that the cusp parameter C(t ) derived from
the approximant (5.3) is given,

C(t ) = α1 κ + κ2
(

q − α0 κ

2

)
β1 , κ = (1 + β0)−1/2 ,

(5.10)

which is the coefficient in front of the linear in r term in the
expansion of (5.3) at small distances.6 Results are presented
in Table III where it can be seen that C(t ), calculated with
eight optimal parameters and (q = 1, β0 = 0) as the entry,
satisfies the cusp condition accurately with error � 1% for
γ � 10 a.u., then it begins to grow, reaching ∼16% at 500 a.u.

6Since β0 is always small being �10−3, one can place κ = 1.

Note that in spite of such a large deviation of C(t ) from
C(exact) = 1, the variational energy obtained is highly accu-
rate. It implies that the vicinity around Coulomb singularity
gives a very small contribution to the energy integrals. As for
larger magnetic fields γ � 500 a.u., the deviation continues
to grow and at γ = 10 000 a.u. the deviation reaches 70%.
The situation changes dramatically when the trial function
(5.3) becomes ten-parametric, upon releasing the parameters
(q, β0). Although the energy improves in one to two far distant
digits, see Table I, the cusp parameter gets smaller than 1,
it deviates from the exact value C = 1 in 3-4-5 d.d. for γ �
1000 a.u., then it starts to grow and reaches its maximal devia-
tion at γ = 10 000 a.u. being ∼6%. It reflects the sensitivity of
the cusp parameter to values of parameters (q, β0), see (5.10).
Note that the cusp parameter calculated in the LMM provides
the value of C with not less than six d.d. in the whole range of
studied magnetic fields γ � 10 000 a.u.

The above-presented formalism developed for the ground
state of positive parity (1s0) can be easily generalized for the
family of excited states with m = 0 and ν = +. At γ = 0, the
excited states with � = m = 0 and ν = + are the S states of
the hydrogen atom, (n s0) states with principal quantum num-
ber n = 2, 3, 4, . . ., and radial quantum number nr = n − 1.
Its spectra is of the form

�(n s0 ) = Pn−1(r)e− r
n , E(n s0 ) = − 1

2n2
,

where Pn−1(r) is the Laguerre polynomial of degree (n − 1).
Taking the exponential representation of the wave function,

�(m=0,+) = P(ρ, r) e−�(ρ,r) , (5.11)

cf. (2.9) and (2.14), and making substitution to (2.13), we
arrive at a generalized Riccati equation, see, e.g., Ref. [15],
which later can be transformed into the generalized RB
equation and/or the GB equation. Similar analysis of these
equations to the one made for the ground state (1 s0) can
be performed. It leads for γ �= 0 to the conclusion that an
excited state at m = 0 and ν = + can be studied using the
trial function (5.11) in the form of a polynomial in (r, ρ)
variables multiplied by the approximant (5.3), see discussion
in the Conclusion. It can be done elsewhere.

B. Lowest energy state of negative parity

The lowest energy state of negative parity is described by
quantum numbers m = 0 and ν = −. For a hydrogen atom (at
γ = 0), it is a (2p0) excited state. Sometimes it is called the
ground state of negative parity. Its eigenfunction can be writ-
ten as the product of factor z and nodeless function � (−)(ρ, r),
see (2.9). The Schrödinger equation that determines � (−) and
E (∞) reads, see (2.10) at m = 0, p = 1,

− h̄2

2me

[
∂2
ρ + 2ρ

r
∂ρr + ∂2

r + 1

ρ
∂ρ + 4

r
∂r

]
�

+
[

−e2

r
+ γ 2e2

8mec2
ρ2

]
� (−) = E (∞) � (−) , (5.12)

cf. (2.13). Taking � (−)(ρ, r) in exponential form,

� (−)(ρ, r) = e−�(−) (ρ,r) ,
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one can see that phase �(−)(ρ, r) satisfies a nonlinear partial
differential equation of second order,

∂2
ρ� + 2ρ

r
∂ρr� + ∂2

r � + 1

ρ
∂ρ� + 4

r
∂r�

− (∂ρ�)2 − 2ρ

r
(∂ρ�)(∂r�) − (∂r�)2

= 2me

h̄2

[
E (∞) + e2

r
− γ 2e2

8mec2
ρ2

]
, (5.13)

cf. (2.15), where for simplicity we dropped the superindex (−).
We continue to call it the Riccati equation. By introducing
new variables (s, t ), see (3.1) and (3.2), the equation (5.13)
is transformed into the Riccati-Bloch Eq. (3.3) (with term
2
t ∂t� replaced by 4

t ∂t�) for the energy ε = E (∞)

E (∞)
0

, cf. (3.4)

and magnetic field λ, see (3.5). It is easy to see that the
perturbation theory in powers of λ2 (4.1) remains algebraic,
its zero order correction

�0(s, t ) = t
2 , ε0 = − 1

4 , (5.14)

cf. (4.2), corresponds to the (2p0) state of the hydrogen atom,
the structure of the nth correction remains the same as for
the ground state, see (4.5), and the expansion of ε in powers
of λ coincides with the semiclassical expansion in powers
of h̄3. Any finite number of corrections to energy and phase
can easily be calculated as was done for the ground state of
positive parity, see Appendix A.

By introducing new variables (u, v), see (3.8) and (3.9),
Eq. (5.13) is transformed into the GB equation (3.10) (with
term 2

v
∂v� replaced by 4

v
∂v�) for the same energy ε and

magnetic field λ. Surprisingly, at λ = 0 this equation can be
solved exactly in the same form

φ
(−)
0 (u, v) = A(0,−)

0 (u) v + B(0,−)
0 (u) , (5.15)

as in (4.14), but with ε0 = − 1
4 , see (5.14), where

A(0,−)
0 (u) =

√
1

4
+ u2

12
,

B(0,−)
0 (u) = 1

2
ln

(
1

4
+ u2

12

)
+ 2ln

(
1

4
+ 1

2

√
1

4
+ u2

12

)
.

In a new variable,

w− =
√

1

4
+ u2

12
, (5.16)

cf. (4.15), the zero-order approximation is in the form

φ
(−)
0 (u, v) = w−v + lnw− + 2ln

(
1

4
+ w−

2

)
. (5.17)

Similar to the ground state, the φ
(−)
0 (u, v) plays a role of clas-

sical action, although the classical trajectory seems unknown.
Evidently, the function �0 = ze−φ

(−)
0 (u,v) is square integrable;

it can be taken as a variational trial function to study the (2p0)
state in a way similar to what was done for the ground state,
cf. (5.4).

TABLE IV. Excited (2p0) state (ground state of negative parity):
energies E (∞) and E (mp ) in Ry and quadrupole moment Q(∞)

zz in
(a.u.)2 for hydrogen atom in magnetic field for γ ∈ [0.01, 10000]
in variational method with eight-parametric trial function (5.19)
with (q = 1, β0 = 0), comparison with calculations [8,38] (rounded)
made.

γ (a.u) E (∞) E (mp ) −Q(∞)
zz

0 −0.250 000 000 00 −0.249 863 919 86 24.000
0.01 −0.249 700 831 66 −0.249 564 266 90 23.990

−0.249 700 83 a

−0.249 700 831 67 b

0.1 −0.224 820 1 −0.224 649 6 23.064
−0.224 820 15 a,b

γc 0.000 001 0.000 374 18.781
0.5 0.050 480 0 0.050 892 4 18.260

0.050 479 3 b

1.0 0.479 989 0.480 701 15.585
0.479 987 a,b

2.0 1.404 583 1.405 877 13.177
1.404 578 b

5.0 4.304 78 4.307 77 10.663
4.304 76 b

10.0 9.234 73 9.240 49 9.267 7
9.234 70 a,b

100.0 99.072 95 99.127 89 6.865 7
99.072 801 6.830 912 (†)
99.072 774 6.824 619 (‡)
99.072 76 a,b

500.0 499.025 2 499.298 1 6.301 2
499.025 0 a

1 000.0 999.015 2 999.560 4 6.194 9
999.015 0 a,b

10 000.0 9 999.003 10004.450 6.093 2

aBasis of splines [38].
bPower series: method of moments [8]. γc = 0.436 663 244 found in
LMM with 16 K points (see text), E (∞) ∼ 10−10.
†Eq. (5.19), eight parameters, q = 0 , β0 = 0.
‡Eq. (5.19), ten parameters, q = −0.078 589 , β0 = 0.000 46.

Similar consideration, which led to the approximant (5.2),
can be repeated and we eventually arrive at

�
(−)
t (ρ, r) = α0 + α1 r + α2 r2 + α3 γ ρ2 + α4 γ ρ2 r√

1 + β0w− + β1 r + β2 r2 + β3 ρ2

+ q ln(1 + β0w− + β1 r + β2 r2 + β3 ρ2) ,

(5.18)

where {α0, α1, α2, α3, α4, β0, β1, β2, β3; q} are ten free pa-
rameters that later will be fixed in variational calculation,

w− =
√

1
4 + γ 2ρ2

12 , see (5.16). We call it the phase approxi-
mant for the ground state of negative parity. Based on (5.18),
one can build the ten-parametric trial function:

�2p0 = z e−�
(−)
t . (5.19)
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FIG. 3. The three-dimensional two-body neutral system.

The results of variational calculations are presented in
Table IV and compared with results by Refs. [38]7 and [8].
For all studied magnetic fields, the variational results based
on the eight-parametric variational function (5.19) with (q =
1, β0 = 0) reproduce five to six SDs (or more) in the en-
ergy E (∞) of a static hydrogen atom.8 Resulting variational
parameters are presented in Appendix C, Fig. 5. Needless to
say, by taking ten-parametric variational function (5.19) with
released parameters (q, β0) allows us to increase accuracy
similar to what happened for the ground state (1s0).

Binding energy (γ − E (∞) ) grows at a very slow pace with
a magnetic field increase from 0.25 Ry at γ = 0 reaching
∼1 Ry at 104 a.u. Note that the critical magnetic field found
in LMM, when E (∞)(γc = 0) = 0, hence the Schrödinger
operator in (5.12) has the zero mode, drops dramatically to
γc = 0.436 663 244 in comparison with the ground state (1s0),
see (5.6).

VI. FINITE MASS CASE

We now investigate the effects which occur when finite
mass (mp) of the proton is taken into account. In this case,
the Hamiltonian which describes the system is of the form

Ĥ = 1

2 mp

(
p̂p − e

c
Ap

)2
+ 1

2 me

(
p̂e + e

c
Ae

)2
− e2

r
,

(6.1)
where

p̂p,e = (
p̂xp,e , p̂yp,e , p̂zp,e

)
, rp,e = (xp,e, yp,e, zp,e) (6.2)

are the momentum operator and vector position of the proton
and electron, respectively. Here r = |rp − re| is the relative

7In Ref. [38], the binding energies contrary to what was named the
energies were presented.

8It is worth noting that the results for energies by Wang-Hsue [38]
and Kravchenko et al. [8] presented in Table IV were recalculated
and confirmed in LMM with 16 K mesh points (it is not printed in
the table).

distance between the charges. Now, the configuration space is
six-dimensional. For the geometrical setting of the system, see
Fig. 3.

Just like in the infinite mass case, the symmetric gauge,

Ap,e = 1
2 B × rp,e , (6.3)

is assumed for both vector potentials.

A. Integrals of motion

The total pseudomomentum [5],

K̂ = p̂p + p̂e + e

c
(Ap − Ae) , (6.4)

is an integral of motion:

[K̂, Ĥ ] = 0 . (6.5)

Explicitly, the Cartesian components of K̂ are given by

K̂x = p̂xp + p̂xe + e γ

2c
(ye − yp) ,

K̂y = p̂yp + p̂ye + e γ

2c
(xp − xe) ,

K̂z = p̂zp + p̂ze , (6.6)

and obey the following commutation relations:

[K̂x, K̂y] = ˆ[Kx, K̂z] = [K̂y, K̂z] = 0. (6.7)

Thus, they span three-dimensional Abelian Lie algebra. The z
component of the total angular momentum

L̂z = (rp × p̂p)z + (re × p̂e)z

is also conserved, [L̂z, Ĥ ] = 0. Hence, the total number of
integrals is five {Ĥ, K̂x, K̂y, K̂z, L̂z}; the system is not (com-
pletely) integrable: the sixth integral is missing and five
known integrals do not form commutative algebra. It can be
checked that the components of K̂ and L̂z do not commute:

[K̂x, L̂z] = −ih̄ K̂y , [K̂y, L̂z] = ih̄ K̂x , [K̂z, L̂z] = 0 .

(6.8)

The second-order Casimir operator of the subalgebra {K̂, L̂z}
is given by

Ĉ = K̂2
x + K̂2

y . (6.9)

Indeed, for the case of a single particle in a constant magnetic
field, the Casimir operator of the algebra of the corresponding
integrals of motions is nothing but the Hamiltonian.

B. Pseudo-separation of the center of mass variables

In the presence of a magnetic field, the center-of-mass
motion cannot be separated out, in this case the so-called
pseudoseparation occurs. Pseudoseparation of variables as
introduced in Ref. [5] is achieved via three steps:

(i) We introduce the center-of-mass vectorial variables

R = μp rp + μe re , r = rp − re ,

P̂ = p̂p + p̂e , p̂ = μe p̂p − μp p̂e ,

M = mp + me , μ = mp me

M
, μp,e = mp,e

M
,

(6.10)
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where P̂ and p̂ are the canonical conjugate momenta of R and r, respectively, μ is the reduced mass of the system. In the variables
(6.10), the Hamiltonian (6.1) takes the form

Ĥ = P̂2

2 M
+ p̂2

2μ
− e

2 M c
(B × r) · P̂ − e

2 μ c
· (B × R) · p̂ − e(μe − μp)

2 μ c
(B × r) · p̂

+ e2

8 μ c2
(B × R)2 + e2(μe − μp)

4μc2
(B × R) · (B × r) + e2

8 c2

(
μ2

e

mp
+ μ2

p

me

)
(B × r)2 − e2

r
. (6.11)

(ii) Also, in the coordinates (6.10), the conserved pseudomomentum (6.4) takes the form

K̂ = P̂ + e

2 c
B × r , (6.12)

see (6.10). Substituting (6.12) into the Hamiltonian (6.11), we obtain

Ĥ =
(
K̂ − e

2 c B × r
)2

2 M
+ p̂2

2μ
− e

2 M c
(B × r) ·

(
K̂ − e

2 c
B × r

)
− e

2 μ c
· (B × R) · p̂

− e(μe − μp)

2μc
(B × r) · p̂ + e2

8 μ c2
(B × R)2 + e2(μe − μp)

4 μ c2
(B × R) · (B × r)

+ e2

8c2

(
μ2

e

mp
+ μ2

p

me

)
(B × r)2 − e2

r
. (6.13)

(iii) Since (6.13) describes a neutral system, which can
move across a magnetic field, it is natural to look for a unitary-
equivalent Hamiltonian Ĥ such that [Ĥ, P̂] = 0, for which
center-of-mass momentum P̂ is conserved, being the integral
of motion. To this end, the operator (6.13) is transformed via
the gauge rotation

Ĥ ≡ U −1Ĥ U , (6.14)

with the gauge factor

U = exp
( i

h̄

[
P − e

2c
(B × r)

]
· R

)
. (6.15)

Here P denotes the eigenvalue of the total (cms) momentum
operator P̂. The action of the gauge rotation9 to K̂ and p̂ reads

U −1K̂ U = P , U −1p̂U = p̂ + e

2c
(B × R) , (6.16)

whereas R and r remain unaffected. Eventually, the gauge
rotated Hamiltonian (6.14) takes the form

Ĥ = 1

2 M

(
P − e

c
B × r

)2
+ 1

2μ

(
p̂ − eeff

2 c
B × r

)2
− e2

r
.

(6.17)

Here

eeff = e (μe − μp)

is an effective charge; it vanishes for the case of equal masses
(like for positronium) and becomes −e for mp = ∞. It can
be checked that the first and third terms in (6.17) are gauge
invariant.

9It is worth mentioning that the operator L̂z is gauge invariant with
respect to U , i.e. U −1L̂z U = L̂z.

C. Case P = 0: Atom at rest

At zero momentum P = 0 (atom at rest), the Schrödinger
equation for the Hamiltonian (6.17) takes the form

Ĥ0 ψ (r) ≡
[

1

2μ
p̂2 − eeff

2 μ c
(B × r) · p̂

− e2

r
+ e2

8 μ c2
(B × r)2

]
ψ (r)

= E (mp) ψ (r), (6.18)

with energy denoted E (mp) = E (mp)(γ , e, μ). In the coordi-
nates {ρ, r, ϕ}, see Fig. 1, the eigenvalue problem (6.18) reads

−
[

h̄2

2 μ

(
∂2
ρ + 2 ρ

r
∂2
ρ,r + ∂2

r + 1

ρ
∂ρ + 2

r
∂r

)

− �̂2
z

2 μρ2
+ eeff γ

2 μ c
�̂z

+ e2

r
− γ 2 e2

8 μ c2
ρ2

]
ψ

= E (mp) ψ , (6.19)

cf. (2.8), with �̂z ≡ (r × p̂)z = −i h̄ ∂ϕ being the z component
of the relative angular momentum. It is evident that the op-
erator �̂z is an integral, [�̂z, Ĥ0] = 0. The Hamiltonian Ĥ0

is z-reflection invariant, Ĥ0(−z) = Ĥ0(z), hence, the eigen-
functions are characterized by parity, ψ (−z) = ±ψ (z). In the
variables (ρ, r, ϕ), the eigenfunctions have a factorized form

ψ (ρ, r, ϕ) = ρ|m| zp χ (ρ, r) eimϕ , m = 0,±1,±2, . . . ,

p = 0, 1 , z =
√

r2 − ρ2 , (6.20)

similar to (2.9), where m is the magnetic quantum number
corresponding to the relative motion and p is parity. Substi-
tuting (6.20) into (6.19), we arrive at the two-dimensional
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Schrödinger equation

−
[

h̄2

2 μ

(
∂2
ρ + 2 ρ

r
∂2
ρ,r + ∂2

r + 2|m| + 1

ρ
∂ρ

+ 2(|m| + p + 1)

r
∂r

)

+ e2

r
− γ 2 e2

8 μ c2
ρ2

]
χ (m)(ρ, r)

= E (mp)
m,p χ (m)(ρ, r) , (6.21)

with eigenvalue

E (mp)
m,p = E

(mp)
m,p + eeff h̄ γ

2 μ c
m ,

cf. (2.10); they coincide if the replacement

me → μ , e → (−eeff ) , E (∞)
m,p → E (mp)

m,p

is made in (2.10); the wave functions are related:

� (∞)

(
μ

me
r ;

m2
e

μ2
γ , e, me

)
= � (mp)(r ; γ , e, μ) . (6.22)

It should be mentioned that the definition of the Rydberg
constant and the atomic unit for the magnetic field is changed
as well:

ε = E (mp)

E0(μ)
, E0(μ) = μ e4

2h̄2 , (6.23)

cf. (3.4), and

λ = γ

γ0(μ)
, γ0(μ) = c|e|3μ2

h̄3 , (6.24)

cf. (3.5).
As for the ground-state energy, m = 0,

E (mp)
0,p = E

(mp)
0,p , (6.25)

while in general,

E (mp)
m,p = E (mp)

−m,p , (6.26)

cf. (2.11).
We consider two special cases. One of them is when in

(6.18) the proton mass mp → ∞ while the electron mass me

is kept finite and another one when both masses are equal. In
the former case μ → me, eeff → −e. The Hamiltonian (6.17)
takes the form

Ĥ ≡ 1

2 me

(
p̂ + e

2 c
B × r

)2
− e2

r
, (6.27)

where dependence on P disappears, it coincides with (2.1). In
general, the limit mp → ∞ corresponds to the atomic system
where one mass is much heavier than the other (for instance,
as in the hydrogen atom). We call this case atomic. The lat-
ter case corresponds to positronium Ps, when mp = me and
eeff = 0. The linear Zeeman effect is absent in this case, the
Schrödinger equation is of the form (6.21) with μ replaced by
me/2 and

E (me )
m,p = E (me )

m,p .

D. Scaling relations

In general, for nonmoving neutral systems, one can relate
the atomic case mp → ∞ with the finite-mass case of the
system at rest P = 0. To do that, we have to make a scale
transformation r → μ

me
r and γ → me

μ
γ . Then the follow-

ing remarkable scaling relation between the corresponding
ground state energies (2.6) and (6.25), respectively, emerges
[6]:

μ

me
E (∞)

0,0

(
m2

e

μ2
γ , e, me

)
= E

(mp)
0,0 (γ , e, μ) , (6.28)

where for the case of the hydrogen atom, taking mp/me =
1836.152673 (from NIST data), the mass ratio takes the value

me

μ
≈ 1.000 545 . (6.29)

Note that the critical magnetic field (5.6) effectively de-
creases,

γ
(mp)

0 = μ2

m2
e

γ0 , (6.30)

while for the case of positronium it becomes

γ
(me )

0 = γ0

4
.

It is evident that the relation (6.28) holds for excited states

μ

me
E (∞)

m,p

(
m2

e

μ2
γ , e, me

)
= E (mp)

m,p (γ , e, μ) (6.31)

and also for quadrupole momenta

m2
e

μ2
Q(∞)

zz

(
m2

e

μ2
γ , e, me

)
= Q

(mp)
zz (γ , e, μ) . (6.32)

E. Energy

Since Eq. (6.21) coincides with (2.10) once μ is iden-
tified with me, both the LMM and the variational method
with the eight-parametric approximant (5.3) at (q = 1, β0 =
0) with parameters presented in Appendix B and with the
eight-parametric approximant (5.19) at (q = 1, β0 = 0) with
parameters presented in Appendix C can be applied. In Ta-
ble I, the ground-state energies for the hydrogen atom with
finite proton mass are presented for different magnetic fields;
all printed digits correspond to the situation when the results
obtained in both methods coincide. In a similar way, in Ta-
ble IV the variational energies for the (2p0) excited state for
the hydrogen atom with finite proton mass are presented for
magnetic fields ranging from 0 to 104 a.u.

Making comparison of the energies for infinite and fi-
nite mass cases in both tables, one can see that, in general,
for a fixed magnetic field the finite mass effects increase
the ground-state energy and the energy of the (2p0) excited
state by changing the fourth SD (and subsequent ones) in-
dependently on the magnetic field, they are of the order of
(me/mp) γ . This result is checked separately via the scaling
relation (6.28).

Positronium atom Ps is a much less studied Coulomb
system than the hydrogen atom, see, e.g., Refs. [41,42].
In Table V, the results of independent calculations of the
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TABLE V. Energy E (Ps) in Ry and quadrupole moment Q(Ps)
zz in (a.u.)2 of the ground state of positronium Ps in magnetic field calculated in

variational method with eight-parametric trial function (5.3) with (q = 1, β0 = 0) for γ ∈ [0.01, 10 000] (first lines) and in LMM with 16 000
basic functions marked by a. Comparison with available results presented.

γ E (me ) −Q(me )
zz γ E (me ) −Q(me )

zz

0.01 −0.499 600 701 76 0.015 805 4 5.0 7.784 63 1.478
−0.499 600 701 77 a 0.015 806 8 a 7.784 60 a 1.477 a

−0.499 6 b

0.1 −0.464 605 37 0.812 36 10.0 17.199 03 1.188
−0.464 605 38 a 0.812 32 a 17.198 97 a 1.186 a

−0.464 6 b 17.2 b

0.5 −0.022 213 4 2.045 6 100.0 194.148 9 0.539
−0.022 213 9 a 2.045 7 a 194.148 3a 0.535 a

194.14 b

194.177 4 c

γc 0.000 001 2.054 24 500.0 990.698 0.319
0.000 000 a 2.054 15 a 990.695 a 0.314 a

1.0 0.719 204 2.073 0 1 000 1 988.801 0.258
0.719 202 a 2.072 7 a 1 988.796 a 0.253a

0.7192 b

2.0 2.380 622 1.870 7 10 000.0 19 980.5 0.13
2.380 615 a 1.870 4 a 19 980.6 a 0.11 a

γc = 0.516 302 965.
aLMM (present calculation).
bReference [41].
cReference [42].

ground-state energy performed in the variational method with
the eight-parametric approximant (5.3) at (q = 1, β0 = 0)
with parameters taken from Appendix B— and in LMM
with 16 000 basic functions for different magnetic fields are
presented. The obtained energies in both methods coincide
systematically in ten SDs for weak magnetic fields and up
to six SDs for strong magnetic fields, being far superior than
previous results. Quadrupole moment versus magnetic field is
calculated in two independent methods, see Table V. There
is a good coincidence for all studied magnetic fields. The
validity of the scaling relations for energy and quadrupole
moments was checked in a separate calculation for different
masses mp and magnetic fields.

VII. CONCLUSIONS

A simple uniform locally accurate approximation for the
ground-state nodeless function is constructed for a neutral
system of two Coulomb charges of different masses at rest
in a constant uniform magnetic field of positive and negative
parities, (1s0) and (2p0) states, respectively. It is shown that
by keeping the mass and charge of one body fixed, all systems
with different second-body masses are related. This allows us
to consider the second body as infinitely massive and to take
such a system as basic, which simplifies consideration. Three
physical systems are considered: the hydrogen atom with (in)-
finitely massive proton (deuteron, triton) and positronium.

Concretely, a ten-parameter approximation for the ground-
state functions of different parities for the hydrogen atom with
an infinitely massive proton (the so-called one-center case) in

a constant uniform magnetic field in the interval γ ∈ [0 , 104]
a.u. is proposed. If taken as a variational trial function, it
allows us to calculate with accuracy of not less than six SDs
(� 10−6 in relative deviation) in the whole domain of the
considered magnetic fields the total energy and not less than
three SDs for the quadrupole moment Qzz. Such accuracies
are reached for the quadrupole moment. As for the energy at
small magnetic fields γ � 1 a.u., the relative deviation ranges
from ∼10−11 at γ = 0.01 a.u. to ∼10−8 for γ = 1 a.u. with
the increase of a magnetic field. Benchmark results used for
comparison are established using the LMM with 16 K mesh
points. For both ground states of positive/negative parities,
the critical magnetic fields γ (1s0 )

c = 2.065211858 a.u. and
γ

(2p0 )
c = 0.436 663 244, where the Schrödinger operator has

the zero mode, are calculated. The presented approximation
remains the same functionally for an arbitrary two-body neu-
tral system, it depends effectively on the reduced mass of
the system only. This allows us to study the effects of finite
proton (deuteron, triton) mass in hydrogen atoms as well as
in the positronium—the system of an electron and positron.
It manifests an approximate solution of the problem of two
Coulomb charges of opposite signs in a constant uniform
magnetic field for the two lowest energy states of different
parities.

Remarkably, for c = e = me = 1, the perturbation series
for energy appears in powers of γ h̄3 with constant coeffi-
cients. This implies that the PT in powers of a magnetic field
coincides with semiclassical expansion in powers of h̄3. A
fundamental result of the present study, based on the explo-
ration of the RB/GB equations in PT in powers of γ , is the
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TABLE VI. Ground state 1s0: First ten perturbative coefficients εn written in the form of ratios for the perturbation series for ε calculated in
the nonlinearization procedure, see (4.1). These dimensionless coefficients are universal; they do not depend on the concrete two-body system
at hand.

n (−1)n+1εn

0 1
1 1/2
2 53/96
3 5581/2304
4 21577397/1105920
5 31283298283/132710400
6 13867513160861/3538944000
7 5337333446078164463/62426972160000
8 995860667291594211123017/419509252915200000
9 86629463423865975592742047423/1057163317346304000000
10 6127873544613551793091647103033033/1776034373141790720000000

semiclassical expansion of the ground-state energy in powers
of h̄3 for a true two-dimensional problem.

Due tothe algebraic nature of the PT for the RB equation,
the first 100 corrections to the ground-state energy all are
rational numbers in atomic units, c = e = me = h̄ = 1, and
the exponential phase (in the form of polynomials in variables
ρ, r with rational coefficients) are calculated. The use of a
Padé-Borel resummation technique for energy leads to highly
accurate results (not less than 11 SDs) at small values of
γ � 1 a.u. but fails for larger magnetic fields. Similar results
can be obtained for the ground state of negative parity.

The key element of the procedure is a construction for ex-
ponential phase �(ρ, r) (the logarithm of the wave function)
as a simultaneous interpolation between (i) the asymptotic
series in the weak γ � 1 and strong γ � 1 magnetic field
regimes and (ii) the semiclassical and perturbation expansions
at large and small distances, respectively. The dimensionless
RB (II.16) and GB (II.26) equations for �(ρ, r) help us con-
struct the analytic interpolation in the form of a ten-parametric
trial wave function, the approximant � (t ), (II.66) and (II.82)
for the states of positive and negative parity, respectively.

For both the (1s0) and (2p0) states, the phase approximant
�t has a similar functional form

�t (ρ, r) = α0 + α1 r + α3 r2 + a3 γ ρ2 + α4 γ ρ2 r√
1 + β0 w± + β1 r + β2 r2 + β3 ρ2

+ q ln(1 + β0 w± + β1 r + β2 r2 + β3 ρ2) ,

(6.33)

with the only difference in w: w+ =
√

1 + γ 2 ρ2

12 for the (1s0)

state and w− =
√

1
4 + γ 2 ρ2

12 for the (2p0) state. It can be shown
that for an arbitrary state with quantum number m and parity
p, the phase approximant �t (6.33) remains of the same func-
tional form but with different w,

wm,p =
√

1

(|m| + p + 1)2
+ γ 2 ρ2

12
,

while the prefactors, which define nodal surfaces, can be quite
complicated and nontrivial. Note that the leading term in the
semiclassical expansion (which is an analog of the classical
action in the one-dimensional case) has a surprisingly simple,
closed analytic form:

φ0(u, v) = wm,p v + lnwm,p + (|m| + p + 1)

× ln

(
1

(|m| + p + 1)
+ wm,p

)
. (6.34)

Excluding β0 and q, all other variational parameters in �t

(6.33) are positive (except α0, which grows as γ → 0) and
exhibit a monotonous growth as a function of the magnetic
field γ . The parameter β0 is extremely small for all studied
magnetic fields; it influences far distant digits in the energy
and can be set equal to zero without losing much accuracy.
The parameter q has a pretty surprising behavior: it is close
to 1 for γ � 10 a.u., then it sharply changes to almost zero
for larger magnetic fields. In spite of this fact, the optimal
eight-parametric function at q = 1, β0 = 0 provides a relative
deviation from the exact numerical solution of order �10−5 in
the whole domain γ ∈ [0.01, 104] a.u.

In general, variational results with the ten-parametric trial
function agree with the ones based on the LMM with 16 K
mesh points with high accuracy for all studied magnetic fields.
The comparison with other calculations was made in Tables I
and II for the 1s0 state. As for the ground state 2p0 of negative
parity, the results are presented in Table IV.

As for the less studied problem of the positronium atom
Ps, the trial function �t (ρ, r) with only eight variational pa-
rameters (q = 1, β0 = 0) provides a ground-state energy that
agrees systematically with the accurate numerical result in
ten SDs for small γ and up to six SDs at large γ in the
whole domain γ ∈ [0.01, 104] a.u. In this case, the critical
magnetic field γc = 0.436663 a.u. turned out to be almost
five times smaller than the one for the hydrogen atom. And,
not surprisingly, an excellent agreement between the results
obtained variationally with use of the approximant and the
LMM occurs. This reflects the high quality of the trial function
used.
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TABLE VII. Ground state (1s0): Exact PT coefficients εn=10k ,
k = 1, 2, ..., 10 of the series expansion for ε calculated in non-
linearization procedure, see (4.1). The results marked by ε

(asymp)
10k

obtained in the 1/n-expansion (4.7) at leading order. Coefficients
rounded to four SDs. These dimensionless coefficients are universal;
they do not depend on the concrete two-body system considered.

k −ε10k −ε
(asymp)
10k n −ε10k −ε

(asymp)
10k

1 3.450 × 109 4.623 × 109 6 5.655 × 10140 5.911 × 10140

2 2.160 × 1029 2.478 × 1029 7 1.410 × 10173 1.464 × 10173

3 3.215 × 1053 3.518 × 1053 8 6.046 × 10206 6.250 × 10206

4 3.720 × 1080 3.978 × 1080 9 3.127 × 10241 3.220 × 10241

5 6.263 × 10109 6.606 × 10109 10 1.479 × 10277 1.519 × 10277

All two-body neutral systems we studied are at rest, they
are not moving, P = 0. Dynamics is defined by relative coor-
dinates, see (6.18). The effects of cms motion will be studied
elsewhere.
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APPENDIX A: GROUND STATE 1s0: PT CORRECTIONS

We present here the explicit forms the first perturbative
corrections �n, n = 2, 3, 4 in the expansion (4.1) in addition
to �1, see (4.4),

−�2(s, t ) = 1
1152 s4t + 1

1440 s2t3 + 11
4608 s4

+ 13
1440 s2t2 + 1

2880 t4 + 193
5760 s2t + 1

120 t3

+ 193
3840 s2 + 337

5760 t2, (A1)

�3(s, t ) = 1
27648 s6t + 1

11520 s4t3 + 1
60480 s2t5

+ 7
55296 s6 + 163

138240 s4t2 + 131
241920 s2t4

+ 1
181440 t6 + 61

11520 s4t + 8063
1209600 s2t3

+ 53
201600 t5 + 803

92160 s4 + 33311
806400 s2t2

+ 2927
604800 t4 + 90877

691200 s2t + 2027
43200 t3

+ 90877
460800 s2 + 188173

691200 t2 , (A2)

−�4(s, t ) = 5
2654208 s8t + 110592 s6t3 + 163

29030400 s4t5

+ 1
2419200 s2t7 + 163

21233664 s8 + 293
2211840 s6t2

+ 9833
58060800 s4t4 + 727

29030400 s2t6 + 1
9676800 t8

+ 8819
13271040 s6t + 1663979

812851200 s4t3

+ 24733
40642560 s2t5 + 167

20321280 t7

+ 10577
8847360 s6 + 13945163

1083801600 s4t2

+ 22721
2822400 s2t4 + 5989

22579200 t6

+ 27927329
650280960 s4t + 29335139

451584000 s2t3

+ 4828099
1016064000 t5 + 816005783

13005619200 s4

+ 1349713153
4064256000 s2t2 + 146213807

2709504000 t4

+ 16222576613
16257024000 s2t + 141801871

338688000 t3

+ 16222576613
10838016000 s2 + 36642046037

16257024000 t2. (A3)

In addition, in Tables VI and VII the higher order energy
corrections εn are shown.

APPENDIX B: OPTIMAL VARIATIONAL PARAMETERS
OF (5.3) FOR (1s0) STATE

Plots of the optimal variational parameters for the eight-
parametric approximant (5.3) at (q = 1, β0 = 0) are shown
below in Fig. 4 for the 1s0 state.

APPENDIX C: OPTIMAL VARIATIONAL PARAMETERS
OF (5.19) FOR (2p0) STATE

In Fig. 5 we display for the 1p0 state plots of the optimal
variational parameters for the eight-parametric approximant
(5.19) at (q = 1, β0 = 0) as a function of ln(1 + γ 2).
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FIG. 4. Optimal variational parameters {α0, α1, α2, α3, α4, β1, β2, β3} of the eight-parametric approximant (5.3) at q = 1, β0 = 0 as
functions of ln(1 + γ 2 ).
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functions of ln(1 + γ 2 ), cf. Fig. 4.
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