
PHYSICAL REVIEW A 103, 032817 (2021)

Three-body recombination calculations with a two-body mapped grid method
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We investigate the prospects of combining a standard momentum space approach for ultracold three-body
scattering with efficient coordinate space schemes to solve the underlying two-body problem. In many of those
schemes, the two-body problem is numerically restricted up to a finite interparticle distance rb. We analyze
the effects of this two-body restriction on the two- and three-body level using pairwise square-well potentials
that allow for analytic two-body solutions and more realistic Lennard-Jones van der Waals potentials to model
atomic interactions. We find that the two-body t operator converges exponentially in rb for the square-well
interaction. Setting rb to 2000 times the range of the interaction, the three-body recombination rate can be
determined accurately up to a few percent when the magnitude of the scattering length is small compared to
rb, while the position of the lowest Efimov features is accurate up to the percent level. In addition, we find
that with the introduction of a momentum cutoff, it is possible to determine the three-body parameter in good
approximation even for deep van der Waals potentials.
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I. INTRODUCTION

Three-body collisions are commonly associated with atom
loss and heating in ultracold atomic gases. However, also in-
teresting but subtle three-body phenomena such as the Efimov
effect [1] appear in the recombination rate and modify its be-
havior. The now fifty years old prediction of the Efimov effect
was experimentally discovered only in 2006 [2] in an ultracold
gas of cesium atoms. Key to this breakthrough observation
is the tunability of the scattering length a that parametrizes
the two-body interaction strength at ultralow temperatures [3].
The Efimov regime is determined by |a|/rvdW � 1, where
rvdW characterizes the range of the van der Waals attraction
between the atoms. This regime is accessible close to a Fesh-
bach resonance where a goes through a pole.

In the Efimov regime, the three-body system shows uni-
versal behavior that does not depend on the details of
the two-body interaction [1,4–7]. Remarkably an infinite
sequence of loosely bound three-body states emerges for
resonant two-body interactions. On resonance the binding
energies En of these trimers follow the universal scaling
relations En+1/En = e−2π/s0 with s0 ≈ 1.00624 for identical
bosons [4–7]. Those scaling relations also transfer to related
quantities like the scattering lengths a(n)

− at which the nth
Efimov trimer state hits the three-body threshold and causes
an Efimov resonance in the three-body recombination rate.
In the universal regime the position of Efimov features is
determined by a single three-body parameter, which is often
determined experimentally from the position of the lowest
Efimov resonance a(0)

− in ultracold atomic systems. Following
the pioneering work in 2006 [2], the a(0)

− has been measured
over a wide range of species [2,8–14]. Surprisingly many of
the three-body parameters were found to have roughly the
value a(0)

− /rvdW ≈ −9 [2,9,10,12–14]. The discovery of the
origin of this van der Waals universal behavior was a major

theoretical success in recent years [15–17]. However, there
are still some experimental results [18,19] which pose an
exception to universality. To describe those results complex
numerical models taking also the atomic spin structure into
account are necessary [19].

Advanced numerical models are also needed outside the
universal Efimov regime, when |a|/rvdW � 1. In this regime
three-body recombination persists to constitute a major loss
mechanism in an ultracold Bose gas, but the universal expres-
sions fixed by a three-body parameter are no longer valid.
In addition to the total recombination rate experiments can
now also reveal partial recombination rates by identifying the
recombination products and are thus ranging in the realm
of ultracold chemistry [20,21]. Even in the regime where
a/rvdW ≈ 0 elastic three-body effects have recently been pro-
posed to determine the phase diagram of a Bose-Einstein
condensate [22–24].

The above mentioned examples substantiate that the fast
experimental progress creates a demand to advance state-
of-the-art theoretical models to calculate three-body effects
ranging from a/rvdW ≈ 0 to |a|/rvdW � 1. Therefore new
numerical approaches are needed, which allow to calculate the
three-body problem in an efficient way. The Alt-Grassberger-
Sandhas (AGS) equations [25] are one way to formulate the
three-body problem. To solve the AGS equations numerically
in momentum representation, many partial wave components
of the two-body t operator need to be calculated for a large
number of energy points, which puts constraints on calcula-
tion time and accuracy. Fortunately, there are many coordinate
space methods [26–32] to solve the two-body problem effi-
ciently, whose capacity has been demonstrated in two-body
scattering calculations. A for our purpose advantagous cate-
gory of methods is based on a discrete variable representation
(DVR) [29] or a mapped DVR [30,31]. These approaches lead
to an approximate finite dimensional matrix representation of
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the Hamiltonian, which can be directly used to calculate the t
operator via

t (z2b) = V +
∑

i

V
|ψi〉〈ψi|

z2b − E2b
i

V, (1)

where |ψi〉 and E2b
i are eigenvectors and eigenvalues of the

Hamiltonian matrix, respectively and V denotes the pairwise
interaction potential. It should be noted that the diagonaliza-
tion of the Hamiltonian matrix only needs to be done once,
after which the t operator can be calculated at any two-body
energy z2b using Eq. (1).

In numerical practice, we consider a finite relative dis-
tance between the particles for this two-body problem. The
(mapped) DVR brings the free-space two-body system into
a finite distance region with specific boundary conditions. A
hard wall boundary condition is frequently chosen for some
numerical benefits, especially in the mapped case [31]. Even
though the finite distance region with hard wall boundary
condition has only minor impact on traditional calculations
of bound state energies and wave functions, its influence on
the t operator, which includes off-shell scattering properties
remains to be determined and is subject of study in this paper.
A study of the effect of restricting to a finite distance region
on the two-body off-shell t matrix and its consequences on
three-body quantities is critical to clarify whether most afor-
mentioned numerical methods [26,28–31] can facilitate the
three-body calculation.

This paper is organized as follows. In Sec. II A, we review
the AGS equations related to three-body recombination of
identical bosons interacting via pairwise interaction poten-
tials. In Sec. II B, we introduce an analytic model including
the finite distance region approximation with a hard wall
boundary condition for the two-body t operator based on
a square-well interaction to analyze the validity and con-
vergence properties of the approximation. In Sec. II C, we
then review the mapped DVR method that we apply to a
Lennard-Jones van der Waals potential with realistic long
range interaction properties. In Sec. III, we present our re-
sults for the three-body recombination rate for the square-well
and Lennard-Jones potential. We compare the results for dif-
ferent sizes of the finite distance region over a wide range
of scattering lengths and analyze the influence of the finite
distance approximation on the position of Efimov features. Fi-
nally we analyze the convergence properties of our approach
with respect to a momentum cutoff in the AGS equations
for Lennard-Jones potentials that support almost four and six
s-wave bound states.

II. THEORY

A. Three-body recombination

We consider a system of three identical bosonic alkali
metal atoms. The interaction in the system is described by
pairwise interaction potentials Vα , where the index α = (i j)
indicates that the interaction takes place between particles i
and j. We calculate the three-body recombination rate K3 at
zero kinetic energy. This quantity is relevant since it is directly
related to the loss rate in a sample of ultracold atoms [33].

To calculate K3 we start from the AGS equation for three
identical particles that define the transition operator Uα0(z)

related to three-body recombination into a dimer state of par-
ticles α = (i j) and a free particle k [25,34]

Uα0(z) = G−1
0 (z)[1 + P+ + P−]/3

+ [P+ + P−]Tα (z)G0(z)Uα0(z) . (2)

The operators Uα0, G0, and Tα depend on the complex energy
z. G0 denotes the Green’s operator of the free three-body
system and is defined as

G0(z) = (z − H0)−1 , (3)

whereas Tα is related to the two-body t operator and given by

Tα (z) = (1 − VαG0(z))−1Vα . (4)

In the following, we will omit the explicit dependence on z for
notational compactness unless it is needed. The operators P+
and P− are the cyclic and anticylclic permutation operators,
respectively.

We restrict ourselves to the case of zero total angular mo-
mentum in the system, which is suitable for the low collision
energy limit in an ultracold system. For recombination from
a free incoming state �in of energy E into a α-dimer state
labeled by d with wave function ϕd and energy Ed plus a
free atom of absolute momentum qd relative to the dimer
center-of-mass, one needs to evaluate the transition operator
element

Urc({�in} → {qd , ϕd}) ≡ α〈qd , ϕd |Uα0(z)|�in〉 (5)

on the energy shell. This leads to E = 3q2
d/4m + Ed with m

the mass of an atom and z = E + i0, which means that we
take the limit in z from the upper half of the complex energy
plane. In this case, the relative angular momentum between
the atom and dimer in the final state is determined by the
angular momentum of the dimer and the requirement that the
total angular momentum needs to be zero.

We consider the limit of zero kinetic energy in the incom-
ing state as is common for systems of ultracold atoms. The
recombination rate at zero energy is then given by [35–37]

K3 = 24πm

h̄
(2π h̄)6

×
∑

d

qd |Urc({�in} → {qd , ϕd})|2 . (6)

Note that we follow the conventions of Ref. [33] in defining
K3 which deviates from Refs. [35–37] by a factor of 2.

The on-shell transition operator elements can be rewritten
as

α〈qd , ϕd |Uα0|�in〉 = α〈qd , ϕd |VαG0(P+ + P−)TαG0Uα0|�in〉 ,

(7)

since the inhomogeneous term in Eq. (2) evaluates to zero in
the on-shell limit and α〈qd , ϕd | = α〈qd , ϕd |VαG0. In our nu-
merical treatment it is advantageous to consider the operator

Aα = 3G0(P+ + P−)TαG0Uα0 . (8)

With Eq. (2) we obtain

Aα = G0(P+ + P−)Tα[1 + P+ + P− + Aα] . (9)
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We expand Tα = ∫
dqq2 ∑

i τ (q, i)|q, i〉αα〈q, i| and use the
incoming state �in, such that we arrive at the linear system

α〈q′, i|Aα|�in〉

=
∫

dqq2
∑

j

α〈q′, i|G0(P+ + P−)|q, j〉ατ (q, j)

= [α〈q, j|(1 + P+ + P−)|�in〉 + α〈q, j|Aα|�in〉] . (10)

The on-shell transition operator element in Eq. (7) is then
directly related to the single components α〈qd , i|Aα|�in〉,
since the expansion base α〈q, i| naturally includes terms
α〈qd , ϕd |Vα . More details on the linear system can be found
in Appendix A.

B. Off-shell scattering

The operator Tα in the AGS equation contains all infor-
mation about the interaction between the atoms. It is directly
related to the two-body transition operator t by

Tα (z) =
∫

dqdkdk′〈k′|t (z − 3q2/4m)|k〉

× |k′, q〉αα〈k, q| , (11)

with k or k′ the relative momentum between atoms i and
j and q the momentum of atom k relative to the center-of-
mass of the pair α = (i j). We intend to compute the t matrix
directly using a mapped DVR approach described in Sec. II C
in combination with Eq. (1). However, in DVR practice, a

finite region [0, rb] with a hard wall boundary condition is in-
troduced in the relative separation of the two atoms. Therefore
we shall analyze how well the full t operator of a two particle
system can be approximated by the t operator of a system with
a hard wall boundary condition at a finite particle separation
of rb.

This can be done in a clear and easy way by analyzing a
square-well interaction potential, since t (z2b) can be worked
out analytically and main features like locality and the finite
range of the atomic interaction are maintained. We define the
square-well interaction potential by

Vsw =
{

V0, r < rsw

0, r � rsw
, (12)

with −V0 the depth and rsw the range of the potential. In case
of a spherically symmetric potential t (z2b) can be split into its
partial wave components as

t (z2b) =
∫

dk′dk |k′〉〈k| (13)

×
[∑

�,m�

Y�,m�
(k̂′)t�(z2b, k′, k)Y∗

�,m�
(k̂)

]
,

with Y�,m�
(k̂) a spherical harmonic function in direction k̂. To

indicate the size of the finite distance region rb we switch to
the notation t rb

� (z2b, k′, k) with t∞
� (z2b, k′, k) corresponding to

the free-space case. Changing to units where h̄, the particle
mass m and the square-well radius rsw are equal to one we get

t rb
� (z2b, k′, k) = 2

π

V0

k′k

[−(k′2 + k2)
(
q2

z + q2
0

) + 2k′2k2 − 2q2
z q2

0

2(k2 − k′2)
(
k′2 − q2

0

)(
k2 − q2

0

) W[S�(kr), S�(k′r)]

− V0

2
(
k′2 − q2

0

)(
k2 − q2

0

)(
W

[
S�(kr), φrb

� (qz, r)
]
W[S�(q0r), S�(k′r)]

W
[
S�(q0r), φrb

� (qz, r))
] + k ↔ k′

)]
r=rsw=1

, (14)

where the symbol k ↔ k′ represents the expression it is in
brackets with, but with k and k′ interchanged. We also used
qz ≡ √

z2b and q0 ≡
√

z2b − V0, while W[·, ·] denotes the
Wronskian and S�(ξ ) ≡ ξ j�(ξ ) is a Riccati-Bessel function
that we define via the spherical Bessel function of the first
kind j�. φ

rb
� (qz, r) is the outer solution to the Hamiltonian dif-

ferential equation (q2
z − H�)φrb

� = 0 with boundary condition
φ∞

� (qz, r) exponentially decaying as r → ∞ or φ
rb
� (qz, rb) =

0 in case of finite rb. H� is the partial-wave two-body Hamil-
tonian in the relative separation r between the particles. A
derivation can be found in Appendix B.

We analyze the quality of the finite rb approximation by
considering the difference

t∞
� (z2b, k′, k) − t rb

� (z2b, k′, k)

= h�(z2b, k′)h�(z2b, k) f�(z2b, rb) , (15)

which separates in the momenta k, k′ and the size of the finite
distance region rb (see Appendix B for more details). We also

define the functions

h�(z2b, k) =
√

2

π

V0W[S�(q0r), S�(kr)]

k
(
k2 − q2

0

)
∣∣∣∣∣
r=1

, (16)

which are well behaved in k for fixed z2b and

f�(z2b, rb) (17)

= −W
[
φ

rb
� (qz, r), φ∞

� (qz, r)
]

W
[
S�(q0r), φ∞

� (qz, r)
]
W

[
S�(q0r), φrb

� (qz, r)
] ∣∣∣∣

r=1

.

For Im(z2b) � 0, we find that the Wronskian in the numerator

W
[
φ

rb
� (qz, r), φ∞

� (qz, r)
]∣∣

r=1 ∝ k�(rb

√
−z2b) (18)

is proportional to a modified spherical Bessel function k� that
behaves like ∼e−rb

√−z2b
/(rb

√−z2b) in the limit rb

√−z2b →
∞ and thus guaranties

t rb
� (z2b) −−−→

rb→∞ t∞
� (z2b) (19)

for all z2b /∈ R+
0 with Im(z2b) � 0. We can conclude that the

convergence in rb will be slowest for z2b close to R+
0 . We focus
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FIG. 1. We compare t rb
� (z, 0, 0) for rb/rsw equal to ∞ (solid line), 5000 (dashed line), 2000 (dash-dotted line) and 1000 (dotted line) for

negative (left) and positive (right) scattering lengths.

on the regime close to z2b = 0 since for zero energy three-
body scattering z2b � 0. In Fig. 1, we compare t rb

0 (z2b, 0, 0)
for different sizes of the finite distance region and scattering
lengths between the first and second potential resonance. We
find similar good convergence properties for positive and neg-
ative scattering lengths, while the deviation between the finite
distance approximation and the free-space case increases al-
most quadratically with |a|.

In Fig. 2, we show the relative deviation between the free-
space and the finite distance region t operator between the
first and second potential resonance to quantify the quality
of the approximation also for higher values of the angular
momentum quantum number �. We find that the relative devi-
ation decreases with increasing �. Also the expected behavior
∼e−rb

√−z2b
/(rb

√−z2b) in qz = √−z2b can be observed.

C. Mapped DVR

To compute the t operator, we use a mapped grid method
in combination with a sine function basis as discussed in [31].
We consider central interaction potentials with a C6/r6 van der
Waals long range behavior. We focus on the Lennard-Jones
van der Waals potential

VLJ = −C6

r6

(
1 − λ6

r6

)
. (20)

FIG. 2. Relative deviation of t∞
� and t rb

� for rb/rsw = 1000 at
a/rsw = −1 (full line), −10 (dashed line), and −100 (dotted line)
and � = 0, 1, 2, 3, and 4 (black to light gray).

The range of the van der Waals attraction is then defined as
rvdW = (m C6/h̄2)1/4/2 [3]. For energies close to threshold
the wave function will oscillate with a very big wavelength
at large separation, where the potential almost vanishes and
with short wavelength close to the potential minimum. This
wide range of wavelengths can increase the numerical cost
when using standard grid representation methods. Therefore
we want to transform to a new relative coordinate x in which
the wave function oscillates with a more regular frequency. In
the following we drop the index in the interaction potential
VLJ, since the procedure applies generally also to potentials of
similar shape. A coordinate transformation with the desired
properties is given by [31]

x(r) =
√

m

pmax

∫ r

rin=0
dr′√Emax − V env(r′) , (21)

where pmax and Emax are specifying the transformation and
with the enveloping potential V env whose value is at all separa-
tion lower or equal than the one of the potential V and defined
as

V env(r) = minr′�r (V (r′)) . (22)

To see that the transformation has the desired properties,
we look at the semi-classical approximation of the s-wave
Schrödinger equation for the phase function ϕ after transform-
ing coordinates

∂xϕ = ±
√

m[E − V (r(x))]

h̄(∂rx(r))

= ± pmax
√

E − V (r(x))√
Emax − V env(r(x))

, (23)

which is indeed approximately constant for E ∼ Emax and
V env(r(x)) ∼ V (r(x)). We absorb the change in volume ele-
ment ∂xr(x) = J (x) into the wave function 〈x|ψ〉 = ψ̄ (x) =√

J (x)ψ (r(x)) and choose an equally spaced grid xi =
ix(rb)/N in x with N + 1 grid points in the region [0, x(rb)]
together with a sine or particle in a box base

sk (x) =
√

2

N
sin(kπx/x(rb)) (k = 1, . . . , N − 1) (24)

on the grid. This choice for the bases introduces a hard wall
boundary condition in the system. We define the transforma-
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FIG. 3. Three-body recombination rates for the square-well (top) and Lennard-Jones potential (bottom). We compare K3 for sizes of the
finite distane region rb/rsw or rb/rvdW of 1000 (green circles), 2000 (blue squares), 5000 (red diamonds), and ∞ (black line). The data for
rb = ∞ are calculated using the Weinberg expansion method (see Ref. [34] for more details) and have partly been published earlier [23,24].

tion to the base of x-grid points

S jk = sk (x j ) = 〈x j |sk〉 , (25)

which leads us to the representation of the x-grid points x j in
terms of the sine base

s̃ j (x) =
∑

k

(S†) jksk (x) . (26)

The radial part of the kinetic energy operator T = −h̄2∂2
r /m

can then be obtained in the s̃ j base

〈s̃i|T |s̃ j〉 = − h̄2

m

π2

x(rb)2

N∑
k=0

J (xi )
−1/2(D†)ik

× J (xk )−1Dk jJ (x j )
−1/2 (27)

with

Di j = x(rb)

π
(∂xs̃ j )(xi ) . (28)

As a consequence we can obtain the radial Hamiltonian H�

of the two-atom system as a finite dimensional matrix on the
x grid using the s̃ j-base functions

〈s̃i|H�|s̃ j〉 = 〈s̃i|T |s̃ j〉 + δi jV�(xi ) . (29)

Here we use the potential including the angular momentum
barrier V�(r) = V (r) + h̄2�(� + 1)/mr2 and note that we in-
troduce a cutoff in V� at large positive energy to prevent the
potential to diverge at zero distance in numerical practice.
We can find the eigenvalues Ei

� and eigenstates |Ei
�〉 of the

resulting matrix and the two-body t operator can be obtained

in momentum representation by

t�(z2b, k′, k) =
∑

i

〈�, k′|xi〉V (xi )〈xi|�, k〉

+
∑
i jn

〈�, k′|xi〉 〈xi|V |En
� 〉〈En

� |V |x j〉
z − En

�

× 〈x j |�, k〉 , (30)

with 〈xi|�, k〉 = [2J (xi )x(rb)/πN]1/2r(xi )j�[kr(xi )].
Diagonalizing t�(z − 3q2

α/4m, k′, k) for a discrete set
of momenta k, k′ we can find the expansion Tα =∫

dqq2 ∑
i τ (q, i)|q, i〉αα〈q, i| that we need in the three-body

calculation similar to [34]. In the following section we present
three-body results for VLJ that we obtained using the mapped
DVR approach presented here.

III. THREE-BODY RESULTS

We performed three-body recombination calculations us-
ing the analytic expressions for t we obtained for the
square-well interaction and the values for t that we obtained
numerically for the Lennard-Jones potential with the mapped
DVR method. In Fig. 3, we compare the three-body recom-
bination rate for different values of rb over a wide range of
scattering lengths a between the first and second potential res-
onance. The results for the free-space case rb = ∞ have been
performed using the Weinberg expansion for the t operator
[34] and have been partly published earlier [23,24]. We find
that the hard wall boundary condition has a minor influence
on the three-body recombination rate when |a|/rb � 1. For
the square-well interaction with rb = 2000 rsw in the regime
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TABLE I. Width and position of the ground and first excited
Efimov resonances along with first and second excited recombination
minima for a square-well interaction between the first and second
potential resonance with different sizes of the finite distance region.
Our results for a(n)

± are converged in at least three significant figures.
The results for rb/rsw = ∞ have been obtained using the Weinberg
expansion for the t operator and have been partly published earlier
[23].

rb
rsw

η(0) a(0)
−

rsw
η(1) a(1)

−
rsw

a(1)
+

rsw

a(2)
+

rsw

1000 0.059 −17.12 0.062 −279.4 − 323
2000 0.060 −17.27 0.049 −314.6 9.58 284
4000 0.061 −17.34 − − − −
5000 0.061 −17.36 0.058 −346.6 9.55 263
∞ 0.061 −17.42 0.067 −371.9 9.530 249.7

|a|/rsw < 1.5 we find a small relative deviation in K3 of ∼1%.
For the Lennard-Jones potential with rb = 2000 rvdW in the
regime |a|/rvdW < 1.5, we find a still small but larger relative
deviation of ∼4% (see Appendix C). We attribute this increase
in relative deviation to the numerical error in the mapped DVR
approach. However, when |a| ∼ rb, the deviation becomes
more significant. We note that the relative deviation of the
analytic t0 is also increasing significantly in this regime (see
Fig. 2).

To quantify the accuracy of the finite distance approxima-
tion in the Efimov regime we investigate the ground and first
excited Efimov resonance peaks and the first and second ex-
cited Efimov recombination minima for various values of rb.
We obtain the resonance peak positions a(n)

− and widths η(n) as
well as the recombination minima a(n)

+ by fitting the universal
expressions in Refs. [4,7,38–43] for the recombination rate
to our calculation close to the peak or minimum position. To
determine a(n)

− and η(n) we fit with the universal expression for
a < 0

K3

a4
≈ 6h̄

m

4590 sinh(2η(n) )

sin2[s0 ln(a/a(n)
− )] + sinh2(η(n) )

. (31)

TABLE II. Width and position of the ground and first excited
Efimov resonances along with first and second excited recombination
minima for a Lennard-Jones interaction between the first and second
potential resonance with different sizes of the finite distance region.
Our results for a(n)

± are converged in at least two significant figures.
The results for rb/rvdW = ∞ have been obtained using the Weinberg
expansion for the t operator and have been partly published earlier
[24].

rb
rvdW

η(0) a(0)
−

rvdW
η(1) a(1)

−
rvdW

a(1)
+

rvdW

a(2)
+

rvdW

500 0.022 −9.46 − − − −
1000 0.022 −9.55 0.030 −139 27.9 954
2000 0.021 −9.59 0.032 −150 27.5 968
∞ 0.020 −9.67 0.038 −163 27.2 722
∞ [44] − −9.74 − −164 27.2 −

For a(n)
+ , we use the recombination rate expression

K3

a4
≈ 6h̄

m
A sin2[s0 ln(a/a(n)

+ )] , (32)

which applies for a > 0 in the absence of deeply bound dimer
states. We introduced an overall scaling factor A, which may
deviate from the universal value 67.1177, as an additional fit
parameter to the universal expression to improve the quality
of the fit. The results can be found in Tables I and II for
different values of rb. We find good agreement for both the
square-well and Lennard-Jones potentials in a(0)

− and a(1)
+ with

rb = 2000 rsw or rb = 2000 rvdW, respectively, with a devi-
ation of � 1% in all cases. We note that due to the finite
potential range of the square-well and Lennard-Jones poten-
tials the universal scaling relation for the lowest consecutive
Efimov features like a(1)

− /a(0)
− deviate from the universal value

of approximately 22.7 [7,34,44]. This deviation has also been
observed experimentally [45].

The mapped DVR approach allows us to obtain t even for
deep potentials without any complications. However, in the
equations for three-body recombination, Eq. (10), we have to
limit to a finite integration range [0, qmax] in q and to a finite
expansion in relative atom-dimer partial waves �. In the fol-

FIG. 4. We show the dependence of the lowest Efimov resonance position a(0)
− and width η(0) on the integration range of the atom-dimer

momentum [0, qmax] for a Lennard-Jones van der Waals potential with almost four s-wave bound states (black squares) and almost six s-wave
bound states (red dots). The vertical lines indicate the positions of two-body bound states for almost four (solid) and six (dashed) s-wave bound
states when the system is tuned close to the lowest Efimov resonance.
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lowing we consider the lowest Efimov resonance of VLJ close
to the fourth and sixth potential resonances. We include up to
�max = 20 to guarantee the convergence in � and analyze the
convergence in qmax. The results are shown in Fig. 4. We find
that the convergence in qmax of a(0)

− is similar in both cases.
For a value of a(0)

− accurate up to 2%, it is sufficient to choose
qmax ≈ 20 h̄/rvdW. For qmax ≈ 40 h̄/rvdW, we find a(0)

− to be
accurate up to 0.2%. The resonance width η(0) is however
converging more slowly in qmax. To obtain converged results
we find that qmax needs to be chosen such that 3q2

max/4m is
larger than the lowest two-body binding energy. We note that
when 3q2

max/4m is lower than some dimer binding energies
recombination into those dimer states will be neglected. The
values of a(0)

− for the fourth and sixth potential resonances
of a Lennard-Jones potential have been calculated earlier by
an adiabatic hyperspherical coordinate approach in [15] to be
a(0)

− /rvdW ≈ −10.7 and ≈ −10.4, respectively. Comparing to
our results we find a relative deviation of about ∼10%. We
checked the convergence of our results in momentum grids,
partial waves, separable expansion terms of the t operator
and the number of two-body x-grid points, but were not able
to explain this deviation. We hope to be able to resolve this
discrepancy in future work.

IV. CONCLUSION AND OUTLOOK

We extended a well established mapped DVR method to
calculate off-shell scattering properties of a two-atom system
that can be used directly as input for three-body scattering
calculations in an AGS momentum space approach. Using
an analytic example we demonstrated that results from a
method restricting to a finite distance region with a hard wall
boundary condition such as the mapped DVR can be used
to approximate the free space result on the two-body level.
We performed three-body recombination calculations using
the mapped DVR and compared them with results calculated
with a standard Weinberg expansion of the t operator. The
corresponding results are in good agreement when the mag-
nitude of the scattering length is much smaller than the size of
the finite distance region in the mapped DVR scheme. Using

the mapped DVR method we are able to perform three-body
calculations even for deep interaction potentials that are more
difficult to access with standard momentum space treatments.
We find that applying a cutoff in the relative atom-dimer
momentum for the three-body recombination equations can
lead to accurate results within a few percent when determining
the three-body parameter a(0)

− . However, this approximation
is much less accurate for the Efimov resonance width η(0),
since effects of recombination into dimer states beyond the
integration range are neglected.

Our results for the atom-dimer cutoff momentum depen-
dence suggest that the method can easily be generalized to
deep realistic potentials without significant numerical com-
plications. Since mapped DVR methods have been applied
to multichannel systems as well, the presented numerical
procedure allows for a straightforward generalization to a
multichannel version. So far multichannel methods including
the full spin structure of the atomic system just exist for
effective nonlocal potentials with a few separable terms [46].
For local van der Waals potentials on the other hand the spin
structure is usually just approximated by effective models to
be able to perform the calculations. The method we present
here allows for calculating three-body scattering amplitudes
involving local potentials including the full spin-structure
of the atomic system. In addition, we find that the regime
|a|/rvdW � 1 is particularly well represented in the mapped
DVR approach. This is promising since in this regime par-
tial recombination rates have been determined experimentally
[20,21]. Also the prospects for studying three-body elastic
collisions around |a|/rvdW ≈ 0 are good with the method pre-
sented here. The corresponding elastic cross sections affect
the phase diagram of a Bose-Einstein condensate, as has been
demonstrated recently [22,24].
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APPENDIX A: DETAILS FOR THE K3 DETERMINATION

We start by giving the separable expansion of Tα explicitly

Tα (z) =
∫

dqdkdk′〈k′|t (z − 3q2/4m)|k〉|k′, q〉αα〈k, q|

=
∑

L,�,J,MJ

∫
q2k2k′2dqdkdk′t�(z − 3q2/4m, k′, k)|L, �, J, MJ , k′, q〉αα〈L, �, J, MJ , k, q|

=
∑

L,�,J,MJ ,n

∫
q2k2k′2dqdkdk′τ�,n(z−3q2/4m)χ∗

�,n(k′, z−3q2/4m)χ�,n(k, z−3q2/4m)|L, �, J, MJ , k′, q〉αα〈L, �, J, MJ , k, q|

=
∑

L,�,J,MJ ,n

∫
q2dqτ�,n(z − 3q2/4m)|L, �, J, MJ , n, q〉αα〈L, �, J, MJ , n, q|

=
∑

i

∫
q2dqτ (q, i)|q, i〉αα〈q, i| . (A1)
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With i we introduced a multiindex representing the tuple (L, �, J, MJ , n), where L, �, J are the partial-wave quantum numbers
of atom-dimer, dimer and total angular momenta, respectively, MJ is the projection quantum number corresponding to J and n
numbers the separable expansion terms χ�,n with coefficients τ�,n of t�. In the following, we will indicate the quantum numbers
belonging to the tuple i with a subscript such that i = (Li, �i, Ji, MJi, ni ). To make the notation more compact we will sometimes
denote χ�i,ni (k, z − 3q2/4m) by χ (k; q, i) or τ�i,ni (z − 3q2/4m) by τ (q, i), such that the dependence on z is implicit.

We rewrite Eq. (10) as

Ā(q′, i) =
∑

j

∫
dqq2Z (q′, i, q, j)τ (q, j)[Ā0(q, j) + Ā(q, j)], (A2)

where Ā(q, i) = α〈q, i|Aα|�in〉, Z (q′, i, q, j) = α〈q′, i|G0(P+ + P−)|q, j〉α and Ā0(q, j) = α〈q, j|(1 + P+ + P−)|�in〉. Equation
(A2) is a Fredholm equation of the second kind, which can be sloved by standard numerical recipes [47] when Z (q′, i, q, j),
τ (q, j) and Ā0(q, j) are known. Since we work at zero three-body collision energy, J and MJ can be set to zero and (L�JMJ ) can
be restricted to (��00). For identical bosons (� = 0, 2, 4, . . . ) in general. For incoming states of three free atoms, � = 0, such
that we can write

|�in〉 = |L = 0, � = 0, J = 0, MJ = 0, k = 0, q = 0〉, (A3)

Thus Ā0(q, j) is expressed as

Ā0(q, j) = 3δ(q)

q2
χ (0; q, j)δ(L j� j J j MJ j ),(0000), (A4)

and Z (q′, i, q, j) is given by

Z (q′, i, q, j) = (−1)� j
√

2�i + 1
√

2� j + 1

2

∫ 1

−1
duP�i

(
q′2/2 + q′qu

q′√q′2/4 + q2 + q′qu

)
P� j

(
q2/2 + q′qu

q
√

q2/4 + q′2 + q′qu

)

× χ∗(
√

q′2/4 + q2 + q′qu; q′, i)χ (
√

q2/4 + q′2 + q′qu; q, j)

−q′2/m − q2/m − q′qu/m
, (A5)

where P� is the Legendre polynomial.

APPENDIX B: DERIVATION OF THE SQUARE-WELL t OPERATOR

Our derivation is closely related to that presented in Ref. [48]. In the following, we set rsw = m = h̄ = 1 and denote the
complex two-body energy z2b simply with z for notational convenienc. We want to find an expression for t�(z, k′, k) and use the
identity

t (z) = V + V g(z)V, (B1)

with g(z) = (z − H )−1 the Green’s operator of the relative two-body Hamiltonian H . With that we arrive at

t�(z, k′, k) = 2

π

∫
dr r2j�(k′r)V (r)j�(kr) + 2

π

∫
dr′dr r′j�(k′r′)V (r′)g�(z, r′, r)V (r)rj�(kr)

= 2

πkk′

[∫
dr S�(k′r)V (r)S�(kr) +

∫
dr′dr S�(k′r′)V (r′)g�(z, r′, r)V (r)S�(kr)

]
, (B2)

with g�(z, r′, r) the kernel of the Green’s operator g�(z) = (z − H�)−1 of the radial partial wave component

H� = −∂2
r + �(� + 1)

r2
+ Vsw(r) (B3)

of the Hamiltonian in the relative coordinate. We realize that∫
dr g�(z, r′, r)V (r)S�(kr) = φ(z, k, r′) (B4)

is nothing but a solution to the inhomogeneous differential equation

(z − H�)φ�(z, k, r) = V (r)S�(kr) (B5)

that vanishes for r = 0 and r → ∞. For the square-well potential a solution for the inner part r � rsw with correct boundary
condition at r = 0 is then given by

φinner
� (z, k, r) = V0

z − k2 − V0
[S�(kr) + CS�(q0r)] , (B6)
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with q0 = √
z − V0. C is a coefficient that needs to be determined by matching to the solution in the outer region r > rsw where

the differential equation is homogeneous since the potential Vsw = 0 vanishes

(z − H�)φrb
� = 0 , (B7)

with boundary condition φ∞
� (qz, r) decaying as r → ∞ or φ

rb
� (qz, rb)) = 0 in case of finite rb. The matching condition at r = rsw

is realized when

W
[
CS�(q0r) + S�(kr), φrb

� (qz, r)
]∣∣

r=rsw
= 0 , (B8)

which leads to

C = − W
[
S�(kr), φrb

� (qz, r)
]

W
[
S�(q0r), φrb

� (qz, r)
] ∣∣∣∣

r=rsw

. (B9)

The resulting expression for t�(z, k′, k) can be further simplified with the integral identity

∫ x

0
dr S�(ar)S�(br) = W[S�(br), S�(ar)]

a2 − b2

∣∣∣∣
r=x

(B10)

such that we arrive at

t�(z, k′, k) = 2

πkk′

[
V0

W[S�(k′r), S�(kr)]

k2 − k′2 + V 2
0

z − k2 − V0

(
W[S�(k′r), S�(kr)]

k2 − k′2 + C
W[S�(k′r), S�(q0r)]

q2
0 − k′2

)]
r=rsw=1

. (B11)

To bring t� in symmetric form in k and k′ and to analyze the difference in t rb
� with differing rb we use the Plücker identity

0 = W[ f1, f2]W[ f3, f4] + W[ f1, f3]W[ f4, f2] + W[ f1, f4]W[ f2, f3] . (B12)

We use

1
2 W

[
S�(kr), φrb

� (qz, r)
]
W[S�(q0r), S�(k′r)] = − 1

2

(
W[S�(kr), S�(q0r)]W

[
S�(k′r), φrb

� (qz, r)
]

+ W[S�(kr), S�(k′r)]W
[
φ

rb
� (qz, r), S�(q0r)

])
(B13)

to arrive at Eq. (14) and

W
[
S�(kr), φrb

� (qz, r)
]

W
[
S�(q0r), φrb

� (qz, r)
] − W

[
S�(kr), φr′

b
� (qz, r)

]
W

[
S�(q0r), φ

r′
b

� (qz, r)
] = − W[S�(kr), S�(q0r)]W

[
φ

r′
b

� (qz, r), φrb
� (qz, r)

]
W

[
S�(q0r), φrb

� (qz, r)
]
W

[
S�(q0r), φ

r′
b

� (qz, r)
] (B14)

to arrive at Eq. (15).

APPENDIX C: THREE-BODY RECOMBINATION FOR SMALL ABSOLUTE VALUES OF THE SCATTERING LENGTH

We analyzed our calculations of the three-body recombination rate in the regime where |a|/rsw < 1.5 for the square-well
potential and |a|/rvdW < 1.5 for the Lennard-Jones potential in view of the effects resulting from the hard wall boundary
condition and the mapped DVR approach. Our results can be found in Fig. 5.
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FIG. 5. We show the absolute relative deviation of the finite rb and free space three-body recombination rates �K3/K3 for sizes of the finite
distance region rb/rsw or rb/rvdW of 1000 (green circles), 2000 (blue squares), and 5000 (red diamonds). The upper panel shows the square-well
results and the lower one the Lennard-Jones results.
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