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Single and double charge transfer in the Ne2+ + He collision within time-dependent
density-functional theory
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We calculate the charge-transfer cross sections for the Ne2+ + He collision. To this end, we employ Ehrenfest
molecular dynamics with time-dependent density-functional theory. The active electrons of the projectile are
handled by applying an initial velocity to the Kohn-Sham orbitals via a Galilean boost. The dynamical calcula-
tions are performed in an inverse collision framework—the reference frame considers Ne2+ to be initially at rest,
which ensures numerically converged final-time scattering states. The charge-transfer probabilities are extracted
by extending the particle number projection technique to be able to handle the degenerate Ne2+ ion. Compared
with experimental data available at 10–3000 keV, a fairly good agreement is found for the calculated single- and
double-charge transfer cross sections, superior to other theoretical calculations for this Ne2+ + He collision. A
time-resolved analysis of the charge-transfer probabilities finds that ionization to the continuum also takes place
after the charge transfer has occurred. To account for it, the final scattering states should be followed for a long
time, approximately 350 fs, until they stabilize.
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I. INTRODUCTION

When a projectile ion collides with an atomic or molec-
ular target at low-to-intermediate energies, a charge-transfer
process usually occurs. It has been extensively studied for a
wide variety of ion-atom–molecule systems, both experimen-
tally and theoretically (for a recent review, see Ref. [1]). In
experiments, the ion beam can be prepared by ionizing multi-
electron atoms, thereby resulting in fully (bare) or partially
stripped (nonbare) ions. While collisions with bare ions have
been studied very often due to their simplicity [2,3], collisions
with nonbare ions can be more complex and interesting. It
was reported in Refs. [4–6], for example, that charge transfer
is rather sensitive to the projectile’s charge state, due to the
change of the Coulomb field, which can even cause charge-
transfer cross sections of nonbare and bare projectiles to vary
by orders of magnitude. Nonbare projectiles play a role in
a multitude of electronic and structural dynamics processes.
Clear evidences of the impact of the active electrons of the
projectiles have been found in several experiments, typically
in the measurements of (state-selective) cross sections [7–9]
and more recently in the momentum distributions of the recoil
ions [10].
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The description of the electronic screening effects of the
projectile ion is essential for the theoretical modeling of non-
bare ion collisions. In this context, the most straightforward
scheme is to utilize a model potential. For instance, using
the classical trajectory Monte Carlo (CTMC) method com-
bined with a Coulomb-like screening potential, Olson et al.
calculated charge-transfer cross sections for Bq+, Cq+, Nq+,
and Oq+ ions (here q stands for the charge state with q � 3)
in collisions with the H atom in the 20–260 keV/amu [11]
energy range. Within the Thomas-Fermi–type model poten-
tial, state-selective charge-transfer cross sections were also
reported for nonbare Fe and Ne ions colliding with H [12,13].

The model potential method, however, may not be ap-
plicable at low collision energies due to its disregard of
many-electron quantum effects. In this regime, alternative
methods based on the independent electron approximation
(IEA) have been applied with some success. In this regard,
Kirchner and coworkers proposed a coupling mean-field ap-
proach, accounting for initial electron states with the IEA
model [14]. It has been applied to study electron capture
and/or ionization in certain nonbare ion collisions, e.g.,
C3+ + Ne [15], He+ + Ne or Ar [16,17], B2+ or C3+ + Ne
[18], and He+ + H2O [19]. By adding a screening potential
to the Hamiltonian, the mean-field method was employed
to investigate electron capture in the He+ + He collision
[20]. Below 200 keV, the molecular-orbital close-coupling
(MOCC) method was used to study Ne2+ + He collisions
[21], based on potential-energy curves and their coupling
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matrix. The single-charge transfer cross sections agree well
with measured data, but the double-charge transfer results de-
viate substantially. At high energies, the continuum-distorted-
wave (CDW) method was validated to show a dependence
of electron capture on the electronic states of the projectile
[22,23].

Due to its computational efficiency and size scalabil-
ity, the time-dependent density-functional theory (TDDFT)
[24,25], together with nonadiabatic Ehrenfest dynamics, was
the method of choice for a number of previous studies to
simulate ionic projectile collisions with atomic, molecular,
and solid targets [26–32]. In most cases, the projectile ion was
either fully stripped (e.g., H+ or He2+) or at least stripped of
all its valence electrons (e.g., C4+ and Ar8+), such that the
external potential could be simply modeled as a perturbed
Coulomb field. However, the same treatment cannot be used
for partially stripped ions, e.g., He+, C2+, and Ar6+, because
the active projectile electrons (usually the valence electrons)
may behave in a complex way: for example, they cannot
tightly follow the nucleus during the collision, resulting in
a projectile electric-dipole moment. This decoupling effect
can be substantially enhanced when increasing the impact
energy and/or increasing the number of active electrons of
the projectile ion.

It is our goal in this paper to extend the TDDFT-Ehrenfest
approach for the practical description of nonbare projectile ion
collisions. We show an improved theoretical scheme that is
adequate to yield predictive results in rather good agreement
with experiments. To validate our method, we consider the
20Ne2+ + 4He collisions in the 10–3000 keV energy region
(where this energy is defined to be the kinetic energy of the
20Ne2+ ion, considering He to be initially at rest). To the best
of our knowledge, for this process, the charge-transfer process
and relevant cross sections spanning such region has yet to be
theoretically studied at a quantitative level.

Specifically, (1) to account for the initial velocity of the
electrons, we initially “boost” the Kohn-Sham (KS) orbitals
by applying a phase transformation. This is unnecessary when
dealing with bare ions. (2) An inverse collision framework is
employed: we set the reference frame in which the He atom
is the projectile that impacts the Ne2+ target. This choice has
proven to be more robust and reliable, since the final electronic
orbitals of the Ne ion can be propagated for a long time.
(3) We extended the particle number projector (PNP) tech-
nique [33–35] to deal with fractionally occupied orbitals and
analyzed the influence of ionization on charge-transfer proba-
bilities. This extension was done within the spin-unrestricted
version of KS TDDFT, and therefore it allows us to deal with
arbitrary spin configurations for both projectile and target.
This may be important because these processes are likely to
depend on the initial spin states. (4) We used an efficient expo-
nential representation of the PNP based on projection operator
theory, as suggested in Refs. [34,36], to extract the probabil-
ities. (5) We chose to test the simple adiabatic local density
approximation (ALDA) [37] for this study. While this func-
tional notoriously fails for the calculation of charge-transfer
excitations, the results below—as well as other calculations
(see Refs. [26,38] and other references therein)—show that
the transfer induced by fast collisions, described in real-time,
can be captured by the ALDA. The extension of this type

of studies to lower collision energies is a likely route for
the benchmarking of functionals (see, for example, Ref. [39],
where other frequently used xc functionals are discussed at
low impact energies). A relevant question, for example, would
be the effect of the self-interaction error present in the LDA
and in other common functionals. This error leads to a too low
highest single-particle eigenvalue, which should be, in exact
DFT, equal to the ionization potential. However, the LDA
ionization potentials computed as the total-energy differences
between the neutral and charged species and that removed
the outmost electron [40], are relatively good (for example
in the case of He and Ne+, the errors are 2.04% and 1.80%
compared with experimental values, respectively).

This article is organized as follows: Section II briefly
recalls the TDDFT-Ehrenfest model. We also discuss the mod-
ifications that are required to deal with electrons that have
a nonzero initial velocity. The extraction of charge-transfer
probabilities is described in detail. In Sec. III, we present
the computed charge-transfer cross sections, and we compare
them with experimental and other calculated data. We fur-
thermore inspect the impact-parameter-dependent electron-
capture probabilities and show the impact of ionization on the
charge transfer. Conclusions are finally drawn in Sec. IV.

II. THEORETICAL MODEL

A. Time-dependent density-functional theory together with
Ehrenfest dynamics

The ion-atom–molecule collisions were modeled by using
the TDDFT-Ehrenfest model [41]: the electrons are described
with TDDFT and are nonadiabatically coupled to the nuclei,
which are considered to be classical point particles. In prac-
tice, the propagation of an N-electron system is performed by
making use of N single-particle wave functions (the Kohn-
Sham orbitals, KSOs) {ψ j, j = 1, 2, . . . , N} governed by
the time-dependent Kohn-Sham (TDKS) equations. The nu-
clear motion is described by the spatial coordinates of nuclei
{RI , I = 1, 2, . . . , Nion} (Nion stands for the number of nuclei)
which is driven by the Coulomb force due to the presence of
both the electrons and the other ions. In summary, the model
consists of the following set of coupled equations (atomic
units are used hereafter):

i
∂ψ j (rσ, t )

∂t
=

[
− 1

2
∇2 + VH[ρ](r, t ) + Vxc[ρ](r, t )

+Ven(r, {R(t )})

]
ψ j (rσ, t ), (1)

MI
d2RI (t )

dt2
= −∇RI

[ ∫
d3rρ(r, t )Ven(r, {R(t )})

+ 1

2

Nion∑
I �=J

ZI ZJ

|RI (t ) − RJ (t )|

]
. (2)

The total density is defined as the sum of the spin-up and
spin-down densities:

ρ(r, t ) =
∑

σ=↑,↓

N∑
j=1

|ψ j (rσ, t )|2, (3)
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where σ runs over the two possible spin channels.
In these equations, MI and ZI are respectively the mass

and charge of the Ith nucleus. The KS effective potential
consists of the Hartree potential VH, the exchange-correlation
(xc) potential Vxc, and the electron-nucleus potential Ven. The
ionic motion is coupled to the electronic dynamics through the
electronic density ρ(r, t ) in Eq. (2). The electrons and nuclei
must be evolved simultaneously.

B. Initial state for nonbare projectiles

When simulating bare-ion collisions, one normally chooses
the laboratory rest frame in which initially the target is
static and the projectile—a charged classical point particle—is
simply given an initial velocity. If the projectile has active
electrons, however, one must consider more carefully the
problem of preparing the initial state and the reference frame.
To discuss this issue, we start first by considering the general
problem of changing the reference frame for collision prob-
lems within the TDDFT formalism.

At the initial time, the active electrons consist of two
spatially separated KS systems belonging to the target and
projectile. Then, the following two steps are required: (1)
One must prepare an initial state for both, which implies
providing an initial velocity to both electrons and nuclei of
the projectile—and perhaps also of the target, if we consider a
reference frame in which the target is also not initially at rest.
(2) All active electronic orbitals of both target and projectile
systems are then propagated on the same footing, along with
the ions, according to Eqs. (1) and (2). To prepare an elec-
tronic system with an initial velocity, one must consider how
to transform the KS equations between reference frames.

Let us consider the problem in full generality: consider
a KS system from the viewpoint of an accelerated observer
whose position relative to the original reference frame is given
by a transformed vector x(t ). Also, we assume that the accel-
erated and original reference systems are both initially in their
ground state, and the initial condition x(t0) = 0, so that the
two reference systems initially coincide at t0. The accelerated
observer can describe the time-dependent evolution of the sys-
tem by the following transformed TDKS equations [25,42]:

i
∂

∂t
ψob

j (rσ, t ) =
[

− 1

2
∇2 + Vne(r + x) + VH(r + x, t )

+Vxc(r + x, t ) − ẋ2

2
+ ẍ · r

]
ψob

j (rσ, t ),

j = 1, 2, . . . , N. (4)

The KSOs in the accelerated reference frame, ψob
j , are related

to the original ones by

ψob
j (rσ, t ) = e−iẋ·rψ j ((r + x)σ, t ), (5)

where we use the superscript “ob” to label the orbitals from
the viewpoint of the observer. The modified KSOs are simply
the product of the displaced original KSOs with a boosting
phase factor e−iẋ·r.

It is worth mentioning that the boosting phase factor used
in this work is physically equivalent to the electron translation
factor (ETF) [43], which has been widely implemented within
close-coupling treatments [44] such as two-center atomic

expansions [45–47]. At infinite separation, the factor makes
a single-electron wave function carry an additional linear mo-
mentum as well as a kinetic energy, avoiding nontravelling
stationary states.

The resulting total density is given by

ρob(r, t ) = ρ(r + x, t ), (6)

which illustrates that the result of the change of reference
frame on the total density distribution is merely a coordinate
displacement x. At time zero, this displacement is zero, and
the two densities coincide. It is also worth considering the
transformation on the classical velocity of the density distri-
bution, i.e., the velocity of the center of mass:

Dc = 1∫
ρ(r, t )dr

∫
r · ρ(r, t )dr. (7)

Starting from Eq. (5), it is easy to prove that the transformed
Dob

c satisfies

Dob
c = Dc − x, (8)

and the corresponding velocity is therefore given by

vob
c = dDob

c

dt
= d (Dc − x)

dt
= vc − ẋ. (9)

The average velocity of the projectile system in the acceler-
ated reference indeed relates to the original one by a velocity
difference −ẋ due to the relative motion.

The previous relations could be used to consider, for the
problem at hand, the (accelerated) reference frames in which
either the projectile, target, or center of mass, are constantly at
rest. Depending on the particular problem, any choice for the
reference frame can be computationally more advantageous.
In this work, we simply consider an inertial frame in which
one of the fragments has initial zero velocity, while the other
does not. We do need the previous relations, however, in order
to find what should be the initial KSOs of this latter fragment
that has nonzero initial velocity (and is, therefore, the “pro-
jectile”). One starts by considering that, before the collision,
this electronic system is initially in the ground state moving
at a constant velocity u. Therefore, in the reference frame in
which its velocity is zero, the KSOs are the ground-state ones,
ψ

g.s.
j (rσ, t ). To transform these to the laboratory reference

frame, one just needs to make use of Eq. (5), i.e., to “boost”
the KSOs of the projectile system with the constant velocity
u: ψ

g.s.
j (rσ, t ) → eiu·rψg.s.

j (rσ, t ).
Notice that the initial density remains invariant. Despite

this fact, the transformation of the KSOs is crucial to yield
results in quantitative accord with experimental data. It avoids
an unphysical initial decoupling of the projectile nucleus and
electrons.

C. Extraction of charge-transfer probability

The charge-transfer cross sections are defined in terms of
the charge-transfer probabilities: if NP

0 and NT
0 are the initial

number of electrons of the projectile and of the target, respec-
tively, the probability of k-electron transfer from the projectile
to the target is the probability of finding, at the end of the
process, the target into any of the bound states with NT

0 + k
electrons. These may be written in terms of the overlap of the
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final many-electron wave function onto these bound states, but
the calculation of these is cumbersome, and unfeasible in the
TDDFT formalism that we are using.

For this reason, we use a geometrical approximation based
on the division of the real space into regions. The idea is
to use projection operator techniques, in particular for the
number operator and the associated projectors onto its eigen-
subspaces. The following description of this “particle number
projector” (PNP) method is based on the results given in
Refs. [33–36,48]. This technique has proven to be a powerful
approach in many applications in nuclear physics [35,49–51].
For example, Simenel used the PNP method to investigate the
sequential transfer of nucleons in heavy-ion collisions below
the fusion barrier [34]. In the following, we make a brief
summary of the method, considering only a two-region case:
the electrons are either bound by the target or bound by the
projectile (although see the discussion below on ionization),
and ignoring the possibility of multifragmentation processes.

Consider a region τ of the full space. The hypothetical
measurement of the number of electrons contained in that
region is associated with the number operator observable for
that region, that can be written in various equivalent ways:

N̂τ =
∑

σ

∫
τ

d3rψ̂†
σ (r)ψ̂σ (r) =

∫
τ

d3rn̂(r)

=
∫

τ

d3r
N∑

i=1

δ(r − r̂i ) =
N∑

i=1

∫
d3r�τ (r)δ(r − r̂i )

=
N∑

i=1

�τ (r̂i ). (10)

Here, ψ̂†
σ (r) and ψ̂σ (r) are the creation and annihilation field

operators, respectively, for one electron at position r and with
spin σ ; n̂(r) = ∑N

i=1 δ(r − r̂i ) is the density operator, and �τ

is the characteristic function of τ :

�τ (r) =
{

1 for r ∈ τ

0 for r /∈ τ.
(11)

The total number operator N̂ results from the integration of the
density operator over all space, N̂ = ∫

d3rn̂(r). Obviously,
N̂ = N̂τ + N̂τ , where τ is the complement of τ .

The possible measurements of N̂τ (i.e., its eigenvalues)
must be integer numbers, n = 0, 1, . . . , N . The probability of
measuring n when the system is in state 	 must be given by
the projection of 	 onto the subspace of eigenvectors of N̂τ

associated with n. We call P̂n to the corresponding projection
operator, and Pn to the associated probabilities:

Pn = ||P̂n|	〉||2 = 〈	|P̂n|	〉. (12)

The projectors P̂n can be written in several different man-
ners. For example, consider first the set S of all possible
sequences (τ) = (τ1, . . . , τN ), where τi is either τ or its com-
plement τ (there are 2N possible sequences in S). We then
consider the subset Sn ⊂ S of all of those sequences where
τ appears n times and τ appears N − n times [there are

(N
n

)
sequences in Sn]. Using this definition, one may prove that

P̂n =
∑

(τ )∈Sn

�τ1 (r̂1) · · ·�τN (r̂N ). (13)

Likewise, using projection operator techniques [36], one may
also prove that, equivalently,

P̂n = 1

2π

∫ 2π

0
dθeiθ(n−N̂τ ). (14)

This expression, in fact, makes it easy to prove that P̂n is
indeed the projector onto the eigensubspace of N̂τ associated
with value n, i.e.,

N̂τ P̂n = nP̂n. (15)

The probabilities of finding n electrons when the system is
in state 	 [Eq. (12)] can now be written explicitly using these
expressions for P̂n; for example, using Eq. (13), one arrives at

Pn =
∑

(τ)∈Sn

∫
τ1

dx1 · · ·
∫

τN

dxN |	(x1, . . . , xN )|2. (16)

Here, we group the spatial and spin coordinates into the col-
lective variable xi and define

∑
σi

∫
d3ri ≡ ∫

dxi. Using this
formula and the normalization of 	, it is straightforward to
check that

∑N
n=0 Pn = 1.

Up to now, all previous considerations are exact and gen-
eral for any region τ . To apply these concepts to the collision
processes, the idea is to define a region of space around, for
example, the target (τ = VT ) and identify the probability of
finding n electrons bound to the target as the probability of
finding n electrons in region VT . This is a first approximation.

A second approximation that we will make is the substi-
tution of the exact many-electron wave function 	 by the
one-determinant time-dependent Kohn-Sham fictitious wave
function formed by one-electron orbitals ψ1, . . . , ψN intro-
duced above.

	(x1, . . . , xN , t ) = 1√
N!

det{ψi(x j, t )}. (17)

Note that in DFT methods only the density of the Kohn-Sham
system can be identified with that of the real one, and therefore
this identification of the wave function is an approximation,
whose validity is one of the issues at stake in this work.

In any case, if the wave function is, as we will as-
sume hereafter, one Slater determinant, Eq. (16) can be
substituted by

Pn =
∑

(τ)∈Sn

det
{〈ψi|ψ j〉τi

}
, (18)

an equation that, to the best of our knowledge, was first pro-
vided by Ludde and Dreizler [33]. Here, we use an orbital
overlap reduced to a given region, i.e.,

〈ψi|ψ j〉X =
∑

σ

∫
X

d3rψ∗
i (rσ )ψ j (rσ ), (19)

where X is either τ or its complement τ . Note that these
objects satisfy the orthogonal relation:

〈ψi|ψ j〉τ = δi j − 〈ψi|ψ j〉τ , (20)

and, therefore, the probability Pn can be computed by con-
sidering only one of the regions, and making use only of the
inner products integrated in it, with no need of integrating or
even knowing the value of the orbitals in the complementary
region.
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v

VT

x

He Ne
2+

VP

y

z

b

FIG. 1. The schematic diagram of the simulations, displaying the
inverse collision framework. The He atom is treated as the projectile,
and the Ne2+ ion as the target. The impact parameter is denoted by
b, and pink arrows point out the incident direction. The whole space
is divided into two, the region VT that contains the target, and its
complementary, the region VP that contains the projectile.

There has been a few applications of Eq. (18) for
many-electron systems [26,30,38,52]. However, it is com-
putationally intensive due to the number of combinations
contained in the set S: one has to deal with the determi-
nant det{〈ψi|ψ j〉τi} for 2N times to get the full series of
charge-transfer probabilities Pn(n = 0, 1, . . . , N ), which soon
becomes prohibitive as N increases.

This can be alleviated, as suggested by Simenel [34], by
departing, instead of from Eq. (13), from the expression (14)
for P̂n. In that case, one arrives at

Pn = 1

2π

∫ 2π

0
dθdet(〈ψi|ψ j〉τ + e−iθ 〈ψi|ψ j〉τ ). (21)

In contrast with Eq. (18), the sum over a large number of
determinants is substituted by an integral over the angles, and
in this way the computation of the determinant det{〈ψi|ψ j〉τi}
must be done (N × Nθ ) times, with Nθ corresponding to the
number of angles in the angular discretization. As a result,
the use of Eq. (21) can indeed speed up the calculations,
especially when one is dealing with systems with several tens
of electrons. It is not difficult to demonstrate the fact that
both methods are mathematically identical—see Ref. [35] for
detailed derivations.

It only remains to relate the obtained probabilities with
the energy-dependent cross section that k electrons transfer
from the projectile to the target—the experimentally acces-
sible magnitude. First, one must consider that the previously
considered probabilities Pn are in fact function of E—the col-
lision energy, i.e., the kinetic energy of the projectile—and of
the impact parameter b (see Fig. 1): Pn = Pn(E , b). Then, the
cross sections can be computed by making use of the classical
impact-parameter approximation, performing an integration
over the impact parameter:

σk (E ) = 2π

∫ bmax

bmin

dbbPN0
T +k (E , b), (22)

where b is usually extended from an allowed minimum up to
a sufficiently large value at which the target-projectile interac-
tion is negligible.

D. Numerical details

1. Use of fractional occupation numbers

In this work, we concentrate on a Ne2+ (3P) ion colliding
with a He (1S) atom at intermediate and high energies. To this
end, we consider six active electrons for the Ne2+ ion (2s22p4)
and two for the He atom (1s2). Initially, both the atom and the
ion are considered to be in their electronic ground states. The
Ne2+ ion is, however, degenerate: in addition to two electrons
occupying the ψ2s↑ and ψ2s↓ orbitals, there are four electrons
that can occupy the six equal-energy orbitals {ψ2p1↑, ψ2p1↓,
ψ2p0↑, ψ2p0↓, ψ2p−1↑, ψ2p−1↓} [53].

Due to this degeneracy, the straightforward application of
the theory presented in Sec. II C to the Ne2+ + He collision
would lead to spurious results because it was built on the
assumption of a single nondegenerate ground state for both
target and projectile. We must consider all possible degenerate
initial states because they would all be present in the corre-
sponding experiment. Fortunately, the ensemble-TDDFT [54]
method provides a solution to this issue: Given the degener-
acy, we must consider an ensemble of equally weighted and
degenerate KS systems. These are described by single Slater
determinants; in our case, to match up the PNP formalism,
given that the total spin quantum number equals S = 1 and
classified by the z-component spin Sz = 1, 0,−1, the follow-
ing nine determinants are explicitly given for the fractionally
occupied system [26]:

	1,1 = det{ψ1s↑ψ1s↓ψ2s↑ψ2s↓ψ2p1↑ψ2p1↓ψ2p0↑ψ2p−1↑},
	2,1 = det{ψ1s↑ψ1s↓ψ2s↑ψ2s↓ψ2p1↑ψ2p0↑ψ2p0↓ψ2p−1↑},
	3,1 = det{ψ1s↑ψ1s↓ψ2s↑ψ2s↓ψ2p1↑ψ2p0↑ψ2p−1↑ψ2p−1↓},

	4,0 = 1√
2

(det{ψ1s↑ψ1s↓ψ2s↑ψ2s↓ψ2p1↑ψ2p1↓ψ2p0↑ψ2p−1↓

+ det{ψ1s↑ψ1s↓ψ2s↑ψ2s↓ψ2p1↑ψ2p1↓ψ2p0↓ψ2p−1↑)},

	5,0 = 1√
2

(det{ψ1s↑ψ1s↓ψ2s↑ψ2s↓ψ2p1↑ψ2p0↑ψ2p0↓ψ2p−1↓

+ det{ψ1s↑ψ1s↓ψ2s↑ψ2s↓ψ2p1↓ψ2p0↑ψ2p0↓ψ2p−1↑)},

	6,0 = 1√
2

(det{ψ1s↑ψ1s↓ψ2s↑ψ2s↓ψ2p1↑ψ2p0↓ψ2p−1↑ψ2p−1↓

+ det{ψ1s↑ψ1s↓ψ2s↑ψ2s↓ψ2p1↓ψ2p0↑ψ2p−1↑ψ2p−1↓)},
	7,−1 = det{ψ1s↑ψ1s↓ψ2s↑ψ2s↓ψ2p1↑ψ2p1↓ψ2p0↓ψ2p−1↓},
	8,−1 = det{ψ1s↑ψ1s↓ψ2s↑ψ2s↓ψ2p1↓ψ2p0↑ψ2p0↓ψ2p−1↓},
	9,−1 = det{ψ1s↑ψ1s↓ψ2s↑ψ2s↓ψ2p1↓ψ2p0↓ψ2p−1↑ψ2p−1↓}.
Note that this labeling of the orbitals corresponds to the
(initial) ground-state configuration; as soon as the collision
happens, their s or p character is lost.

Within ensemble-TDDFT, one need not, however, make
nine different propagations, one for each of the Slater deter-
minants listed above. The procedure consists of propagating
the TDKS equations for all the 10 KSOs, populating these
orbitals with the eight electrons by making use of fractional
occupation numbers: since the 2p4 electrons of Ne2+ ion must
occupy six orbitals, a fractional occupation number of 2/3 is
thus assigned to each orbital in order to retain the symmetry
of the 2p orbital, whereas the s electrons have an integer
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occupation number of one. To compute the density of the
ensemble, one must then substitute Eq. (3) by

ρ(r, t ) =
∑

σ=↑,↓

Nσ∑
j=1

f j |ψ j (rσ, t )|2, (23)

where f j are the occupation numbers. Summarizing, in
our calculations, in order to describe the Ne2+ + He col-
lision, we have eight active electrons distributed over
10 KSOs.

The charge-transfer probability Pn is then calculated by
averaging the probabilities of all configurations:

Pn =
9∑

i=1

ωiP
i
n, (24)

where Pi
n is the charge-transfer probability of configuration i.

We assume the weight of every configuration to be ωi = 1/9,
equal for all of them.

2. An inverse collision framework

All previous considerations assume that the calculations
may follow the evolution of all KSOs during the full process.
In our real-space numerical implementation of the theory,
however, the KSOs and other variables must be enclosed in
a finite but large (for convergence reasons) simulation box.
We may initially enclose both projectile and target in this
box, and therefore the starting KSOs are capable of describing
the full electronic system at time zero. After the collision,
however, the projectile abandons the simulation box, carrying
part of the electrons with it, a fact that is handled by making
use of absorbing boundary conditions, that deplete the part
of each KSO that approaches the simulation box boundary.
This is of course an approximation and introduces the error
of assuming that the parts of the KSOs that remain in the
simulation box evolve as if the full KSOs were propagated—
when in fact the influence of the external fraction is being
ignored.

The application of the PNP method must be done after
the collision has taken place, and therefore the projectile has
abandoned the simulation box—whereas the target remains in
it. The region τ used for the application of the PNP method
is therefore that of the target: a volume VT around the target
fragment that is contained in the simulation box, or is even
coincident with the full simulation box. Its complement is VP,
although it should be clear that the electron charge contained
in VP is not necessarily bound to the projectile, as some ion-
ization may take place, as we show below. Thanks to relation
(20), one does not need to compute the overlaps in VP—which
is outside the simulation box anyways.

These considerations take us back to the problem of de-
ciding on the reference frame: in essence, this amounts to
deciding which ion to be considered as target, and which one
as the projectile. From the viewpoint of the experimentalist,
one would normally consider the He atom to be the target and
Ne2+ to be the projectile—but as discussed in Sec. II B, one
may change the reference frame and, with it, the apparent role
of the ions. Physically, an inverse framework is, in principle,
equivalent to the normal one, as long as one performs correctly
the Galilean transformation [38,55]. Numerically, the choice

has consequences given the approximations mentioned above:
the electrons around the projectile are ignored, and the results
depend on the quality of the description of the electronic cloud
around the target. In keV regimes, postcollision ionization
of the nonbare Ne2+ usually lasts hundreds of femtoseconds,
resulting in a sustained decreasing of the capture probabilities.
To extract the probabilities as accurately as possible, it is nec-
essary to set a long propagation time, and, more importantly,
to obtain the electronic wave functions associated with the
scattered Ne ion. We have found that, in this case, the inverse
collision framework, in which Ne2+ is the target, is the most
convenient choice. Therefore, we initially boost the He atom
and then use it to impact the Ne2+ target. The reason is that
this fragment contains most of the electrons of the system, and
it is the one that gains electrons through charge transfer. After
the collision, the Ne target and its associated electrons remain
in the target region, VT , whereas the ionized electrons and
those bounded by the scattered He exist in the complementary
region, VP.

All calculations are carried out by the OCTOPUS program
[56–58]. All numerical quantities are discretized in a rect-
angular box (64 × 34 × 24a3

0) with a uniform grid spacing
of 0.4a0. The simulation diagram is shown in Fig. 1. As it
is shown there, the boosted He atom is initially positioned
at (−20a0,−5a0 + b, 0), where b is varied from 0.2 to 5a0

with b = 0.2a0 and from 5 to 10a0 with b = 0.25a0, and
the ground-state Ne2+ ion is initially placed at (0, −5a0, 0).
The initial velocity �v points along the positive x axis, and
we vary its magnitude from the one corresponding to Ne2+

ions at 10 keV, to 3 MeV. The core electrons of Ne ion are
frozen through the use of an optimized soft norm-conserving
pseudopotential [59] that describes the core-electron effects.
The adiabatic local density approximation (ALDA) [37] is
employed as the xc functional. The equation for the nuclear
motion is solved by the velocity Verlet algorithm [60]. With
respect to the time evolution and the size of VT , the total
simulation time is set to 350 fs and the VT covers the whole
simulation box, which were found to be enough to ensure
converged electron-capture cross sections (more numerical
details can be found in the Appendix). The iteration time
step is fixed to 4.83 × 10−4 fs. A complex absorbing potential
(CAP) boundary [61] is used, with sin2 form and a width of
2a0 at each edge in all simulation boundaries.

III. RESULTS AND DISCUSSIONS

A. Single- and double-charge transfer cross sections

We present calculated single- and double-charge transfer
cross sections as a function of impact energy in the range
10–3000 keV, where experimental data and other theoretical
results are partially available, in Fig. 2. This impact energy is
defined as the incident energy of the Ne2+ ion.

Regarding single-charge transfer (SCT) cross sections,
shown in Fig. 2(a), on the whole, the present results agree
fairly well with experiments: a maximum occurs at about
200 keV, beyond which the curve is seen to decay mono-
tonically with the impact energy. Quantitatively, for energies
larger than 200 keV, our results are consistent with those
measured by Nikolaev et al. and Kase et al. to within an
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FIG. 2. Single- and double-charge transfer cross sections as a
function of impact energy. The present results shown by full black
circles are calculated by choosing the Ne2+ region (VT ) to be the
whole simulation box. The other scattered symbols are experimental
data of Flaks from Refs. [62,63], Nikilaev from Refs. [64,65], Winter
from Refs. [66,67], Suk from Ref. [68], Bloemem from Ref. [69],
Kusakabe from Ref. [70], and Kase from Ref. [71]. The curves
are calculations from Rapp and Francis theory [71,72], the MOCC
method calculations are from Ref. [21], and the results of Friedman
are reported in Ref. [73].

accuracy of around 2%–18%, but overestimate the results
from Winter et al. and Bloemen et al. by a factor of about
two. For energies lower than 200 keV, our results do not match
quantitatively the previous experiments, but the overall trend
is similar. Surprisingly, the present data points are still within
the error bars of the measurements of Bloemen et al. It should
be noted, however, that there are substantial deviations among
the various experiments: for example, the value reported by
Kusakabe et al. is higher than that of Flaks et al. by about a
factor of three at 10 keV. One of the main reasons might be
attributed to the impurity of the Ne2+ ions in the experiments:
a portion of the metastable ions brought in the ion beam of
Ne2+ may lead to a fluctuation of the SCT cross sections.
The possible treatment of this issue is beyond the scope of
the present study.

Other theoretical results from semiclassical models either
overestimate or underestimate experimental data, depending
on the energy range. For example, Friedman et al. [73] re-
cently proposed a semi-empirical scaling rule for SCT cross
sections which overestimates the experimental results roughly
by a factor of three. The calculated curves, which use an
interpolating formula in terms of ionization potentials, devi-
ate remarkably from experiments, especially at high impact
energies. Rapp et al. [72] calculated the SCT cross sections
considering the ground and excited states of the Ne2+ ion
and are respectively plotted as RF(G-G) and RF(11eV) in
Fig. 2(a). The discrepancy may indicate the fact that an
inadequate description of the active electrons of Ne2+ can
significantly influence charge-transfer process. Other calcu-
lations based on a molecular-orbital close-coupling (MOCC)
method considered singlet and triplet states, i.e., Ne2+(1D),
Ne2+(1S), and Ne2+(3P), for collision energies below 200
keV. Our results are in good agreement with these MOCC
calculations for the Ne2+(3P) case, except at 10 keV, where
our result happens to be in line with the Ne2+(1D) result.
Unfortunately, the absence of MOCC results at high energies
prevents further comparison. The MOCC results cannot be
extended beyond the maximum of the cross sections because
the molecular expansion with a common ETF does not cor-
rectly separate electron-capture and target ionization [74].
Besides, the straight-line approximation is employed to de-
scribe projectile trajectory, but taking into account trajectory
effects would lead to a decrease of the cross section since the
transitions in the rectilinear trajectories take place at short
internuclear separations that are not accessible for curved
trajectories [75]. As a matter of fact, the MOCC study of Imai
et al. [21] is considered to provide evidence that metastable
ions can play a role in the measurement of ground-state
ions. In summary, from all theoretical models, the TDDFT
calculations not only reproduce more satisfactorily the SCT
numbers but also are applicable to a more extended energy
range.

The double-charge transfer (DCT) cross sections are shown
in Fig. 2(b). It shows how these DCT cross sections are
generally lower than the SCT cross sections by more than
one order of magnitude. Double-charge transfer is a relatively
weak process, and thereby it has been rarely investigated both
experimentally and theoretically. The present DCT results are
in excellent agreement with the experiments of Kase et al.
at 500–3000 keV and are quantitatively comparable with the
results of Kusakabe et al. at 10–20 keV. Early measurements
from Flaks et al. show a monotonic growing trend with in-
creasing the energy below 60 keV. It is hard to compare
with the results of Nikolaev et al. since the authors merely
measured the DCT at 600 keV. Regarding the MOCC calcu-
lations, it seems that the Ne2+ (1D) results are independent
of impact energy, whereas the Ne2+ (1S) results show a rapid
increasing curve, which considerably overestimates the exper-
iments. To our knowledge, Ne2+(3P) results are not available.
Interestingly, the present TDDFT results smoothly connect
the experiments from low to high energies. In particular,
these results fill in the broad gap at the intermediate ener-
gies (60–500 keV), where experiments are absent for some
reason. Future experiments would be desirable to confirm our
predictions.
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FIG. 3. Single-electron-capture probability as a function of im-
pact parameter for impact energies at (a) 200–3000 keV and
(b) 10–100 keV.

B. Electron-capture probabilities

Although we have found a good agreement for charge-
transfer cross sections between the present TDDFT calcula-
tions and experiments in the preceding section, it can be also
useful to examine the more detailed electron-capture proba-
bilities from which the cross sections are calculated. In this
way, we can learn about the dependence on the impact param-
eter and collision energy. To this end, we plot the calculated
probability 2πbP as a function of impact parameter in Figs. 3
and 4 for a sequence of energies for single and double electron
capture, respectively. It should be noted that electron capture
of more than two electrons is impossible, as the source of the
electrons, He, has only two electrons.

Single-electron-capture processes, shown in Fig. 3, have
a unimodal distribution peaked at 1.5a0 and 1.2a0 at 2000
and 3000 keV, respectively. As the energy is decreased to
1000 keV, the peak magnitude and its width are enhanced,
while a feature starts to grow in the region of moderate impact
parameters (b = 3a0–6a0). At 500 keV, we observe a bimodal
distribution peaked at b ≈ 2 and 4.2a0. A similar bimodal
curve is also seen at 200 keV, but with a steady broad structure
extended around 5.6a0. The position of the second peak is then
shifted to 3.9a0 at 100 keV. Interestingly, the unimodal struc-
ture appears again at low energies (10 and 20 keV). All in all,
the probability distribution can be categorized as “bimodal”
for the intermediate-energy region, and as “unimodal” in other
regions. At low energies, the projectile interacts with the target
for much longer time than at high energies, although its inter-
action is limited by the available energy that can be deposited
into the target. In contrast, at high-energies the projectile ion
suffers from much too short an interaction time, even below
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FIG. 4. Same as Fig. 3, but for double-electron-capture probability.

one femtosecond. The situation is slightly different for the
intermediate-energy region, where the projectile is capable of
capturing the electron in a wide b range. The enhancement in
the cross sections may be interpreted as a velocity-matching
effect, e.g., for Ne2+(3P) the energy region of 200–500 keV
corresponds to a velocity of 0.63–1.00 a.u., which is close to
that of 1s electrons in the neutral He atom. Previous studies
have reported that electronic states and their angular orien-
tations may significantly affect the charge-transfer processes
near the velocity-matching region [76,77].

Figure 4 presents double-electron-capture probabilities. As
expected, the magnitudes of DCT probabilities are much
lower than those of SCT, by more than one order of
magnitude—especially for the intermediate- and high-energy
regions. The unimodal distribution is observed for all the
selected energies, except for 200 keV, for which two peaks are
located nearly symmetrically around b = 1a0. However, we
notice that the dependence of the peak location with respect
to the energy is similar to that shown in Fig. 3 for the single-
electron case. Here, the probability curve corresponding to
50 keV yields the largest DCT cross section. DCT processes
seem to be dominated by close collisions (b � 3a0), while
SCT processes can take place for a wider range of impact
parameters.

The impact-parameter effects can be further interpreted
by making use of the potential-energy curves (PECs). Using
a configuration-interaction (CI) method, Mercier et al. [78]
calculated the diabatic PECs of NeHe2+ for the ground state,
and for some low-lying excited states. Basically, they found
a series of crossings among these states at short internuclear
distances (less than 3a0). The DCT process was suggested to
be an intermediary for electron capture to the excited Ne+(2S)
states. Consistent with the existence of these crossings, our
results predominantly present a short-range distance feature
for both SCT and DCT probabilities in the region of 0a0–3a0.

C. Electron loss process

In ion-atom collisions, there are three main outcome
channels [79]: electron capture (transfer), excitation, and ion-
ization. Each one of these may be dominant, depending on the
collision energy. Regarding ionization, the electron ejection
can proceed through a one-step or a multiple-step process
[80]. The former is also called direct ionization: electrons
are promoted directly from bound to continuum states. The
latter process consists of a series of transitions to intermediate
states, which finish with a final transition to the continuum.
In this section, we focus on the analysis of the electron loss
during the Ne2+ + He collision, showing how it influences the
charge-transfer probabilities, and hence the cross sections.

For this purpose, we have analyzed the time-resolved val-
ues of electron-capture probabilities. In the previous sections,
we have displayed values for these probabilities (and the
corresponding cross sections) computed at very long times,
when the process has reached convergence with respect to the
propagation time. Before those converged values are achieved,
however, the probabilities are depleted as a function of time,
as part of the electronic charge abandons the target region.
Long after the projectile has passed, that depletion can only
be assigned to ionization.
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FIG. 5. The SCT probability as a function of impact parameter
and simulation time at 20, 200, and 2000 keV. The entire numerical
box is considered to be the Ne2+ target region VT .

Therefore, we will now show the electron-capture prob-
abilities as they vary in time before the convergence is
achieved. The single-electron-capture probabilities (for 20,
200, and 2000 keV collisions) are displayed as a function of
time in Fig. 5. As can be seen, the electron capture is stabi-
lized after 200 fs. Before that, the region of the peak plateau
shrinks considerably as time passes. This attenuation of the
SCT probability until convergence is due to the slow transition
to the continuum, i.e., a postcollision ionization of the Ne
ion. The shapes of the curves corresponding to the 20 and
2000 keV energies do not change with time. However, at the
intermediate energies (200 keV), the subsequent ionization
does not only lower the electron-capture probability, but also
modifies the peak structures: the peak at about 1a0 is gradually
split up into two independent peaks, and, interestingly, the
plateau-like region for b ≈ 3a0–6a0 is suppressed by nearly
one order of magnitude. A similar behavior was also observed
for the double electron processes.

To further illustrate this ionization process, Fig. 6 shows
the electronic density distribution inside the simulation box,
for 200 keV collisions, for the sequence of time instants also
displayed in Fig. 5(b). It should be mentioned here that the
Ne2+, at those times, is almost isolated from the He atom, due
to their long separation. The electronic density distributions
become more localized as the time increases. The ionized
electrons are gradually absorbed by the boundaries, and the
remaining electrons get more concentrated around the Ne ion.
We display the processes for three different impact parame-
ters b, since this plays a key role in the ionization process.
At b = 0.2a0, the Ne nucleus suffers an obvious displace-
ment on the +X axis, and the electronic density is highly
dispersed throughout the simulation box. This is an obvious
case of close collision, in which a lot of the impact energy is
transferred to the nuclear kinetic energy and to the electronic
excited states. In the lower panels, as b is increased to 3a0

and 6a0, the nuclear motion becomes less obvious, and the
electronic excitation is weaker.

A number of experiments [69,80–82] have also reported
the formation of ionizing states of multiply charged Ne ions in
collisions with noble gases (e.g., He, Ar, Xe) at keV energies.
A more detailed study of these electronic states is unfortu-
nately not possible within TDDFT, and it would require more
elaborate wave-function methods.

Finally, we display in Fig. 7 the “cross section decay,”
which we define as the difference of the electron-capture cross
section computed at time t and the one computed at a final
converged t∞ (in practice, we have found this convergence

t=15 fs 342 fs246 fs149 fs48 fs

z
x

0.4 0.8 1.2 1.6 20

6
4
a.
u
.

24 a.u.

FIG. 6. Snapshots of the electronic density distribution inside
the simulation box for 200 keV collisions, for the sequence of time
instants displayed in Fig. 5(b). (top panel) b = 0.2a0, (middle panel)
b = 3a0, (bottom panel) b = 6a0. The red dot represents the Ne
nucleus. The density values are represented by the colors mapped
in the color bar.

t∞ at around 350 fs). For example, for the SCT process at
200 and 2000 keV, the cross sections at 15 fs are about triple
and double, respectively, than the converged cross sections
shown in Fig. 2. For the 20 keV collision, however, although
the value at 15 fs is still higher than the converged one, it
is already comparable. It is evident that the decaying rate
strongly depends on the impact energy. For example, it rapidly
converges within about 75 fs for the 2000 keV collision,
whereas it requires more than 200 fs for the 200 keV one.
Basically, the same patterns can also be found for the DCT
processes, perhaps even more pronounced.

IV. CONCLUSIONS

We have theoretically studied the SCT and DCT processes
for the Ne2+ + He collision, using the TDDFT-Ehrenfest
formalism. To account for the initial velocity of the active
electrons of the projectile, they are initially boosted with a
phase transformation. The KSOs are then propagated in an
inverse collision framework for a long time (typically several
hundreds of fs), which guarantees that the scattering wave
functions are fully converged. At a sufficiently long final
time, the charge-transfer probabilities are extracted by making
use of a particle number projection technique. Due to the
ground-state degeneracy of the initial state, we employ an
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FIG. 7. The increment of (a) SCT and (b) DCT cross sections
calculated at the time instant t relative to the converged ones, e.g.,
SCT(DCT) = σSCT(DCT)(t ) − σSCT(DCT)(t → ∞). The solid curves are
shown to guide the eye.

ensemble-TDDFT formulation that requires fractional occu-
pation numbers for the orbitals.

Our calculated single- and double-charge transfer cross
sections show good agreement with experiments. For the
DCT process, we provide results at intermediate energies
(60–500 keV), for which no measured data exist. Quantita-
tively, our results outperform other theoretical calculations
for Ne2+ + He collisions. By analyzing the impact-parameter-
dependent charge-transfer probabilities, we have found that
these peak in the region below 3a0. Finally, a time-resolved
analysis has provided a quantitative evaluation of the impact
of electron loss on the charge-transfer cross sections. We con-
clude that this TDDFT-Ehrenfest formalism, in combination
with the particle number projection technique, may provide
satisfactory results for charge-transfer processes in ion-atom
collisions.

Due to the good scalability of TDDFT, we expect that
the present method will prove helpful to explore more com-
plicated nonbare ion collisions, such as ions colliding with
molecules or materials. For instance, one may be interested
in the charge-transfer dynamics of biomolecules, or in the

stopping powers of solids. Another noteworthy possibility is
the extension of the method to deal with excited or negatively
charged projectiles colliding with periodic systems, which
have been traditionally described by model potentials.
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APPENDIX: CONVERGENCE WITH RESPECT TO THE
TARGET REGION SIZE

In the present scheme, one crucial choice to make is the
target region VT , since it plays a decisive role in the equations
that define the probability Pn. From these equations, it is clear
that the cross sections in principle depend on the size of VT .
For this reason, we dedicate this Appendix to show how the
final cross sections must be carefully checked for convergence
with respect to the size of this region. The size must be large
enough so that the final scattering states are fully contained
in it. However, it cannot be too large because it would make
the calculations unfeasible and also because excessively large
regions would include electronic charge corresponding to ion-
ized states.

In Table I we display cross-section values for various times
and for three choices of the target region size. This region

TABLE I. The calculated SCT cross sections at 1000 keV for
selected times (second column). The comparison is made among a
variety of sizes for the Ne2+ region (first column). The benchmark
value is σSCT = (1.32 ± 0.13) × 10−16 cm2.

RVT (a0) t (fs) SCT cross section (10−16 cm2)

Whole boxa 48 2.16
101 1.60
197 1.38
290 1.29

15 48 1.62
101 1.40
197 1.29
290 1.24

5 48 0.91
101 0.92
197 0.93
290 0.97

aThe VT region is the full simulation box.
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is defined as a sphere of radius RVT centered on the Ne ion,
although it is to be noted that, since the simulation box is a
parallelepiped, VT is in fact the intersection region of the full
simulation box and that sphere.

For RVT = 5a0, the calculated SCT cross sections are al-
most stable at all times, around 0.93 × 10−16 cm2, which
is lower than the measured value, σSCT = (1.32 ± 0.13) ×
10−16 cm2. The difference must be interpreted by the
incomplete description of the final-time scattering states.

By increasing RVT , one obtains larger SCT results. For RVT =
15a0, we see that the SCT results converge to an asymptotic
value of 1.24, which already compares well with experiments,
within the error bar. However, by still increasing RVT further,
the cross section still changes slightly and saturates to its
final value 1.29. In the main text, all the reported results are
computed using the whole simulation box as VT region. The
chosen size for the simulation box was found to be big enough
to obtain converged results.
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