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Chirality-dependent scattering of an electron vortex beam by a single atom in a magnetic field
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Electron magnetic circular dichroism (EMCD) can detect the magnetic properties of materials at the nanoscale,
but its wide applications are limited by stringent specimen orientation and noisy signal outputs. To overcome
these challenges, electron vortex beams (EVBs) were most recently proposed to develop chirality-dependent
EMCD (CEMCD), yet convincing and reproducible CEMCD has not yet been demonstrated. In electron
energy-loss spectroscopy (EELS) experiments of EMCD, electron-atom scattering has played a core role. Here,
from a model research on the scattering of EVBs by a single atom in a magnetic field, we show a way of
generating chirality-dependent scattering which is of potential application to CEMCD. The mechanism is to
break the symmetry of the joint occupation probability amplitudes for two scattering channels with opposite
magnetic quantum number differences (�mj), respectively, for two EVBs with opposite topological charges (l).
Particularly, the Zeeman effect and spin-orbit coupling jointly can lead to this chirality-dependent scattering,
signaled as the chirality-dependent differential cross section (DCS) for the EVB. The DCS can be optimized
by choosing the magnetic field strength and topological charge for getting the strongest EMCD. Due to angular
momentum conservation, l = �mj is the optimum topological charge, which could be useful for the selective
probe of an internal state. We show that using EVB with a narrow width can relax the requirement of precise
controlling of the opening angle and improve the spatial resolution. Finally, we show that chirality-dependent
scattering strength decreases with increasing of the impact parameter.
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I. INTRODUCTION

Structured waves in acoustics [1] and optics [2] have
produced fruitful applications in bioimaging [3], sensing
[4], cooling and trapping of particles [5], and classical and
quantum communications [6,7]. Recently, there has been
an increasing interest in generating structured matter waves
[8–11], and correspondingly new quantum techniques are
emerging, for example, electron vortex beams (EVBs) [9–11]
could open up chirality-dependent electron magnetic circular
dichroism (CEMCD).

Magnetic circular dichroism (MCD) [12], referred to as
dichroism induced by an external magnetic field or an intrinsic
magnetization, is a powerful method for detecting the mag-
netic properties of matter in many fields, such as condensed
matter physics, and biological physics [13]. Currently, the
rapidly expanding spintronics field and nanotechnology as
well as biological imaging require reducing the spatial resolu-
tion MCD to the nanoscale or even subnanoscale [14–17]. The
resolution of well-developed x-ray MCD (XMCD) [18–26]
is limited by diffraction. Electrons can have a very short de
Broglie wavelength, and their optical properties have been
widely used in condensed matter physics [27], biology physics
[28], and conventional and cold atomic physics [29], however,
its potential for MCD [30] had not been demonstrated until
2006 [31]. Electron MCD (EMCD) [30–32] can offer depth
information and an extremely high spatial resolution down to
the atomic scale, and thus is drawing increasing interest as

an alternative to XMCD. However, the wide application of
EMCD has been limited by the precise orientation of a single-
crystalline specimen within two or more beams and a low
signal-to-noise ratio due to the measurement alongside Bragg
spots [33]. Exploiting the intrinsic chirality of EVBs, CEMCD
is proposed as an alternative EMCD technique [34,35].

A preliminary electron energy-loss spectroscopy (EELS)
experiment of CEMCD [10] has stimulated the theoretical
investigations [34–42] of the physical mechanism of gener-
ating CEMCD. In EELS experiments, an energy loss above
100 eV implies that the fast incident electron beam is scattered
against a core electron of the sample, so the collective effects
of the electron gas can be ignored [43], and the scattering
processing can be treated as an interaction between an in-
coming electron and an electron bound by a potential [43],
i.e., the EELS experiment of CEMCD can be modeled as a
scattering problem of an incident electron beam by an atom
[38,44–47]. Reference [41] studies the inelastic interaction of
EVB with chiral plasmons or biomolecules and shows that
in this situation large transfers of orbital angular momentum
(OAM) and a remarkable dichroism in the inelastic interaction
of EVB could be possible. However, theoretical investiga-
tions in Refs. [36,37,48–51] on scattering of the EVB with
a single atom without chirality show that the EELS cannot
discriminate the sign of the EVB topological charge, i.e., the
chirality of the EVB alone cannot generate CEMCD. A further
numerical simulation of the inelastic scattering of EVBs on
matter shows [34] that when using a beam size wider than
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FIG. 1. Schematic of scattering of a flying electron in a vortex
state by a fixed atom in a magnetic field B. The impact parameter
is b.

the interatomic separation in the crystal, the energy-filtered
diffraction pattern is nearly independent of the EVB topo-
logical charge; however, the electron energy spectroscopy is
sensitive to the magnetic properties of the target material
when channeling the EVB of atomic size through or very
close to atomic columns. Thus scattering of narrow EVBs
towards an atomic resolution of a magnetic measurement has
been explored [35,38,42]. Last year, another scheme using the
postselection of both energy and orbital angular momentum
of inelastically scattered electrons from a crystalline magnetic
sample had been proposed for CEMCD [40]. After significant
progress in producing atom-sized EVBs [52–57], a convinc-
ing and reproducible CEMCD experiment has not yet been
demonstrated [38,58].

In this paper, investigating the inelastic scattering of EVB
by an atom in a magnetic field, we theoretically prove
that chirality-dependent scattering, of potential application
to CEMCD, can be generated by breaking the symmetry of
the joint occupation probability amplitudes for two scattering
channels with opposite magnetic quantum number differ-
ences, respectively, for two EVBs with opposite topological
charges. Such a symmetry breaking can be induced by the
joint effect of spin-orbit coupling (SOC) and the magnetic
field.

This paper is organized as follows. In Sec. II, the dif-
ferential cross section of an electron vortex by single-atom
scattering is derived, and the condition of generating dichro-
ism is proposed. In Sec. III, taking the scattering of a single
hydrogen atom in a magnetic field by an electron vortex beam
as an example, we show that using the joint effect of spin-
orbital coupling and the Zeeman effect, chirality-dependent
scattering can be generated and the influence of the mag-
netic field, incident kinetic energy, opening angle, momentum
width, and the impact parameter are numerically investigated.
Finally, we give a summary in Sec. IV.

II. THEORY OF INELASTIC SCATTERING OF AN
ELECTRON VORTEX BEAM BY A SINGLE ATOM

Our scheme is shown in Fig. 1 where a free electron of
mass me in a vortex state is incident along the z axis on a

fixed atom with nuclei number Z in a magnetic field B = Bez,
whose nucleus is off the central axis of the electron vortex
beam by an impact parameter b. The nucleus mass Mn is
much larger than the electron mass me, and in our theoretical
analysis we investigate the inelastic interaction of an electron
vortex beam with the bound electron in the atom, neglecting
the interaction between the atom nucleus and the EVB due to
the weak energy transfer for the forward-scattering electron
in electron energy-loss spectroscopy [44]. The Hamiltonian
for the EVB-atom interaction system H = Hv + He + Hint in-
cludes the Hamiltonian Hv of an EVB in a magnetic field,
the Hamiltonian for the bound electrons of atom He, and the
interaction Hamiltonian Hint between the atom and the EVB.
The relativistic effect in general for the swift electron is not
significant [59], thus Hv is given by

Hv = p2
v/(2me,v ) + e(L̂v+2Ŝv ) · B/(2me,v ), (1)

where L̂v and Ŝv are the orbital and spin angular momentum
operators of the EVB, respectively. Here, we have neglected
the weak spin-orbital coupling of the vortex electron beam
whose strength is about 10−13 eV for an EVB with a topolog-
ical charge 1 [60]. The interaction between the EVB and the
atom is dominated by the Coulomb interaction, i.e.,

Hint =
∑

j

e2/(4πε0)|rv − re, j − b|−1, (2)

in which re, j is the position vector of the jth bound electron.
The weak spin-spin interaction between the EVB and the atom
has been neglected. Hereafter, the physical quantities for the
incident electron and the bound electron in the atom are distin-
guished by subscripts v and e, respectively. The Hamiltonian
He includes the dominant term

H0
e =

∑
j

[
p̂2

e, j/(2me) − Ze2/(4πε0|re, j |)
]

+
∑
i> j

e2/(4πε0|re,i − re, j |), (3)

the spin-orbit coupling energy

Hsoc = δ
∑

j

Se, j · Le, j/|re, j |3, (4)

with the orbital and spin angular momentum of the jth elec-
tron of atom Le, j and Se, j , respectively, the spin-orbit coupling
coefficient δ, and the Zeeman energy

Hzm =
∑

j

ZμBB
(
Le,z j + 2Se,z j

)
/h̄, (5)

with Bohr magneton μB. The spin-orbital coupling Hsoc and
the Zeeman term Hzm are treated as perturbation to H0

e .
The incident wave function for an EVB flying along the z

axis in the cylindrical coordinate (ρv, ϕv, zv) is

�i(rv ) = N fl (ρv )eilϕv eikzzvχs, (6)

where fl (ρv ) is the radial distribution of EVB with topological
charge l , and the normalization constant is N . χs = (1

0

)
for

s = 1/2, or χs = (0
1

)
for s = −1/2. When we neglect the

spin-spin interaction between the EVB and the bound electron
in the atom, the Zeeman effect term in Hamiltonian Hv is
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commutative with the free-electron Hamiltonian, thus the spin
state of the EVB is irrelevant to the scattering processing,
and thus, hereafter, we drop off χs from the incident wave
function.

Typically, the kinetic energy of EVB generated in an elec-
tron energy-loss spectroscopy experiment is hundreds of keV
[8–11], so the first-order Born approximation [61] can be
applied in our analysis [48] for calculating the scattering wave
function of an incident plane wave [61]. Thus, to calculate
the scattering wave function for the incident EVB, we expand
the wave function without including the spin state with plane
waves eik·rv , i.e.,

�i(rv ) = N

2π il

∫
al (k)eilφk eik⊥·rv d2k⊥eikzz, (7)

in which

al (k) ≡
∫

fl (ρ)Jl (k⊥ρ)ρdρ, (8)

and φk is the azimuthal angle of k. Using the quantum super-
position principle, the scattering wave function of the EVB by
the atom can be treated as the coherent superposition of the
scattering spherical wave functions eik′ ·rv/rv of the incident
plane waves eik·rv by the atom according to Eq. (7). In this
way, we obtain the scattering wave function of the incident
EVB with topological charge l ,

� (l )
sc = − Nme

4π2h̄2il

∫
eik′ ·rv

rv

eilφk al (k)〈k′, ψ ′
f |Hint|k, ψi〉dk⊥,

(9)

in which ψi and ψ ′
f are the initial and final electronic states of

the atom given by the Hamiltonian He. k′ is the wave vector of
the scattering plane wave. The conservation of energy requires

k′2 ≈ k2 + 2
√

m2
e + h̄2k2/c2�ε/h̄2, with �ε the energy dif-

ference of the initial and final atomic states, and

h̄k =
√

E2
k

c2
+ 2meEk, (10)

with incident kinetic energy Ek of EVB. Here, the relativistic
correction to the swift electron is included [59].

The initial and final atomic states |ψi〉 and |ψ ′
f 〉 can be

expanded by the unperturbed multielectron atomic eigenstates
of H0

e , |βLSJMJ〉 [62] in which β is an index to represent
additional information required to specify the state unam-
biguously (such as the radial part of the wave function, the
parity, and the electronic configuration), L is the total orbital
quantum number, S is the total spin quantum number, J is the
quantum number for the total angular momentum, and MJ is
the projection of J in the z direction, respectively, i.e.,

|ψi〉 =
∑

J

CβLSJMJ (B)|βLSJMJ〉, (11)

and

|ψ ′
f 〉 =

∑
J ′

Cβ ′L′S′J ′M ′
J
(B)|β ′L′S′J ′M ′

J〉, (12)

where CβLSJMJ (B) and Cβ ′L′S′J ′M ′
J
(B) are, respectively, the

probability amplitudes of occupied states |βLSJMJ〉 and

|β ′L′S′J ′M ′
J〉. Now inserting Eqs. (11) and (12) into Eq. (9)

we obtain the scattering wave function

� (l )
sc (rv ) = −Neikzbz

πa0il
ei(l−�MJ )φk′

∫
eik′rv

rv

e−ik′ ·bA(k⊥)dk⊥,

(13)

with the Bohr radius a0, and the difference of magnetic quan-
tum numbers between the final and initial atomic states

�MJ = M ′
J − MJ . (14)

The scattering amplitude,

A(k⊥) = ∑
J,J ′

W β ′L′S′J ′M ′
J

βLSJMJ
T β ′L′S′J ′M ′

J ,l
βLSJMJ

, (15)

is the summation of the scattering amplitude for the single
scattering channel, T β ′L′S′J ′M ′

J ,l
βLSJMJ

, over all scattering channels
with the scattering weight probability which is the joint oc-
cupation probability amplitude,

W β ′L′S′J ′M ′
J

βLSJMJ
= C∗

β ′L′S′J ′M ′
J
(B)CβLSJMJ (B). (16)

Here, the scattering amplitude T β ′L′S′J ′M ′
J ,l

βLSJMJ
is given by

T β ′L′S′J ′M ′
J ,l

βLSJMJ
= ei�MJ φv

∫
M f i(�k)eik⊥·b⊥eilφdφ, (17)

where

M f i(�k) = ∑
j
〈β ′L′S′J ′M̃J |ei�k·re, j

|�k|2 |βLSJM̃J〉 (18)

is the atomic transition matrix element. Applying the Wigner
rotation transform which rotates the quantized axis z along the
direction of the momentum transfer vector �k = k − k′ [63]
to Eqs. (18) and (17), we get

T β ′L′S′J ′M ′
J ,l

βLSJMJ
(k, k′) =

∑
j

|�MJ |∑
q=0

∫ 2π

0
dφeik⊥b⊥ cos (φ+φk′−ϕb)

× Rβ ′L′S′J ′M ′
J

βLSJMJ , j (k, k′, φ)al (k)

× cos {[l − q�(�MJ )]φ}, (19)

with the shape function

Rβ ′L′S′J ′M ′
J

βLSJMJ , j (k, k′, φ)

= gq

(�k⊥)|�MJ |

min(J ′,J )∑
m̃ j=− min(J ′,J )

d (J ′ )
M ′

J ,M̃J
(θ̃�k )d (J )

MJ ,M̃J
(θ̃�k )

× ˜〈β ′L′S′J ′M̃J |ei|�k|re, j cos θe, j

|�k|2
˜|βLSJM̃J〉, (20)

in which

gq = (−1)q+|�MJ |
(|�MJ |

q

)
k′|�MJ |−q
⊥ kq+1

⊥ . (21)

φ is the angle between the scattering wave vector k′ and
incident wave vector k, ϕb is the azimuthal angle of b, and
�(�MJ ) is a sign function. The state vectors |βLSJMJ〉,
|β ′L′S′J ′M̃J〉 are transformed into ˜|βLSJM̃J〉, ˜|β ′L′S′J ′M̃J〉 by
the Wigner rotation transform with rotation angles φ̃�k and
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θ̃�k. φ̃�k and θ̃�k are, respectively, the azimuthal angle and
zenith angle of �k, and the Wigner d ( j)

mj ,m̃ j
(θ̃�k ) matrix is

defined by Ref. [63].
In Eq. (19), when l − q�(�MJ ) 	= 0, the value of

the oscillatory integration decreases with the increas-
ing of |l − q�(�MJ )|, thus the EVB with topologi-
cal charge l > 0 prefers to excite the scattering chan-
nel with �MJ > 0; noting that cos {[l − q�(�MJ )]φ} =
cos {[−l − q�(−�MJ )]φ}, thus, on the contrary, the EVB
with topological charge l < 0 tends to excite the scattering
channel with �MJ < 0 more. Especially, when the topolog-
ical charge l can be equal to q�(�MJ ) in Eq. (19), the
scattering amplitude T β ′L′S′J ′M ′

J ,l
βLSJMJ

can get higher, and equiva-
lently the momentum conservation requires the EVB of the
topological charge l to strongly excite the scattering channel
with �MJ satisfying l − q�(�MJ ) = 0, as confirmed in the
following numerical simulation (cf. Fig. 3).

To make |� (l )
sc (rv )| 	= |� (−l )

sc (rv )| (chirality-dependent
dichroism), Eqs. (13), (15), (16), and (19) show two possible
approaches: In the first approach, if it is possible, we make the
transverse shape of EVB in the preparation of the EVB stage
in such a way that

| fl (ρv )| 	= | f−l (ρv )|, (22)

such that al 	= a−l , and consequently T β ′L′S′J ′M ′
J ,l

βLSJMJ
(k, k′) 	=

T β ′L′S′J ′−M ′
J ,−l

βLSJ−MJ
(k, k′), and thus |� (l )

sc (rv )| 	= |� (−l )
sc (rv )|.

When al = a−l , T β ′L′S′J ′M ′
J ,l

βLSJMJ
(k, k′) = T β ′L′S′J ′−M ′

J ,−l
βLSJ−MJ

(k, k′).
In this situation, Eq. (15) shows a second way of using an
external field to control the internal states to make

W β ′L′S′J ′,−M ′
J

βLSJ,−MJ
	= W β ′L′S′J ′,M ′

J
βLSJ,MJ

, (23)

i.e., breaking the symmetry of the joint occupation probability
amplitudes for two scattering channels with opposite magnetic
quantum number differences, respectively, for two EVBs with
opposite topological charges.

The dichroism can be demonstrated by measuring the dif-
ferential cross section. Using Eq. (13), we can obtain the
probability flux for the scattered electron by

Jsc = ih̄/(2me)[�sc(rv )∇�∗
sc(rv ) − �∗

sc(rv )∇�sc(rv )]. (24)

The incident particle flux Jin = h̄kz/(meV )ez [64] for a finite
width of EVB in a volume V , and the differential cross section
(DCS) [61] dσ

(l )
i→ f (b)/d� = r2

vJsc/Jin is given by

dσ
(l )
i→ f

d�
= Cf

k′

kz

∣∣∣∣∣
∑
J,J ′

∫
e−ik′ ·bW β ′L′S′J ′M ′

J
βLSJMJ

T β ′L′S′J ′M ′
J ,l

βLSJMJ
dk⊥

∣∣∣∣∣
2

.

(25)

Here, Cf = N2V/(πa0)2, and the superscript (l ) denotes the
dependence of dσi→ f (b)/d� on the topological charge l .
When inequality (22) or (23) holds,

dσ
(l )
i→ f (b)

d�
	= dσ

(−l )
i→ f (b)

d�
, (26)

which is an indication of chirality-dependent scattering.
In the above analysis, we have assumed the impact pa-

rameter is fixed. But, when the atom can wander in space,

we need to include the influence of the probability density
of the center of mass �(b). The averaged differential cross
section is defined by dσ

(l )
i→ f /d� = ∫

dσ
(l )
i→ f (b)/d��(b)d2b,

i.e.,

dσ
(l )
i→ f /d�

= N2V

2π2a2
0

k′

kz

∫∫
d2k⊥d2k̃⊥al (k̃⊥)al (k⊥)

× [M∗
f i(�k̃)M f i(�k)eil (φ̃−φ̂)�̃(k⊥−k̃⊥) + c.c.], (27)

with

�̃(k⊥−k̃⊥) =
∫

ei(k⊥−k̃⊥)·b�(b)d2b. (28)

Here, c.c. represents the complex conjugate. In the inelastic
scattering of EVB, where the wave-packet width of EVB
is much less than the momentum transfer vector, we have
|k − k̃| � |�k| ∼ |�k̃|, so that we can get

dσ
(l )
i→ f /d� ≈ N2V

2π2a2
0

k′

kz

∫∫
d2k⊥d2k̃⊥al (k̃⊥)al (k⊥)

× |M f i(�k)|2[eil (φ̃−φ̂)�̃(k⊥−k̃⊥) + c.c.].

(29)

For the special case �(b) = �(b), i.e., the center-of-mass
density is symmetric with respect to the central axis of the
vortex beam, from Eq. (29) we have

dσ
(l )
i→ f /d� ≈ N2V

π2a2
0

k′

kz

∫∫
d2k⊥d2k̃⊥al (k̃⊥)al (k⊥)

× |M f i(�k)|2�̃(|k⊥−k̃⊥|) cos(lφ̃′), (30)

where φ̃′ = φ̃ − φ̂. Equation (30) shows that when �(b) =
�(b) (symmetric trapping of the atoms) and |al (k⊥)| =
|a−l (k⊥)| [equivalently, | fl (ρv )| = | f−l (ρv )|], dσ

(l )
i→ f /d� =

dσ
(−l )
i→ f /d�, the averaged DCS with respect to the impact

parameter is independent of the sign of the topologi-
cal charge, agreeing with recent results in Refs. [48–51].
When | fl (ρv )| = | f−l (ρv )|, in the experiment to observe
dσ

(l )
i→ f /d� 	= dσ

(−l )
i→ f /d�, the atom should be anisotropi-

cally confined in such a way that �(b) 	= �(b), i.e., the
wave function is asymmetric with respect to the central axis
of the vortex beam. We should note that when | fl (ρv )| 	=
| f−l (ρv )|, even in the case of �(b) = �(b), the averaged
differential cross section dσ

(l )
i→ f /d� 	= dσ

(l )
i→ f /d� can be

generated.
Possibly, some works have already generated a

chirality-broken amplitude of EVBs, for example, Fig. 3
in Ref. [65] shows | fl (ρv )| 	= | f−l (ρv )|, but this feature
has not been explored for CEMCD experiments. So far,
how to make a chirality-broken amplitude of EVB wave
functions [Eq. (22)] is not clear and will not be further
explored in this paper. Hereafter, we focus on the second way.
Without including SOC and the Zeeman effect [36,37,48],
the condition (23) cannot be met. When solely including
the Zeeman effect in the analysis, though energy levels
can be split due to the Zeeman effect, the spatial wave
function cannot be changed, and thus the condition (23)
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cannot be met. When SOC is included in the analysis
but without the Zeeman effect, though the energy levels
are split, the weight factors CβLS(L±S)MJ = CβLS(L±S)(−MJ ),
which cannot lead to the condition (23). When both
the Zeeman effect and SOC are added, CβLS(L±S)MJ is
magnetic field dependent, and especially CβLS(L±S)MJ 	=
CβLS(L±S)(−MJ ), resulting in the satisfaction of the
condition (23).

III. NUMERICAL RESULTS OF CHIRALITY-DEPENDENT
SCATTERING OF AN EVB BY A SINGLE ATOM

Now, we take a hydrogenlike atom as the target atom to
illustrate chirality-dependent scattering. The SOC [62] can
split the eigenstate of H0

e into two branches as shown in Fig. 2,
where the splitting of 1s and 2p states of a hydrogen atom in
a magnetic field is plotted, and the magnetic field further fully
lifts off the degeneracy. Using the perturbation theory [62],
the corresponding perturbed wave functions are given by∣∣ψ p

n�mj

〉 =
∑

j=�±1/2

Cp
n�s jmj

(B)|n�s jmj〉, (31)

where p = 1, 2 denotes the branches of the split energy levels
(lowercase letters, rather than capital letters, are used for the
quantum number of a single electron atom as in conventional
textbooks, and n is the principal quantum number), and the
probability amplitudes are

C1
n�s,�±1/2,mj

= ±
√

(1 ± Dn�mjγ )/2,

C2
n�s,�±1/2,mj

=
√

(1 ∓ Dn�mjγ )/2, (32)

with

Dn�mjγ = 1/

√
1 + 1 − (2mj/�r )2

[�r/(2�γ ) + 2mj/�r]2
, (33)

where �r = 2� + 1,

γ = μBB/εn,� (34)

is the ratio of Zeeman energy to SOC energy, and

εn,� = α4mec2/[n3�r (� + 1)]. (35)

Using CβLSJMJ (B), Cβ ′L′S′J ′M ′
J
(B) in Eq. (16), we have cal-

culated the scattering weight probability W
n′�′s′ j′m′

j

n�s jmj
. For

example, for the transition 1s1/2,1/2 → 2p3/2,−1/2 (�m =
−1),

W
21 1

2
3
2 − 1

2

10 1
2

1
2

1
2

=

√√√√1+ 1√
1+8/(9/γ−1)2

2
+

√
1− 1√

1+8/(9/γ−1)2
,

(36)

and for the 1s1/2,−1/2 → 2p3/2,1/2 (�m = 1),

W
21 1

2
3
2

1
2

10 1
2

1
2 − 1

2

=

√√√√1+ 1√
1+8/(9/γ+1)2

2
−

√
1− 1√

1+8/(9/γ+1)2
.

(37)

FIG. 2. Splitting 1S states (bottom) and 2P states (top) of
a hydrogenlike atom with the ratio of Zeeman energy to SOC
energy γ .

From the analysis of Eq. (19), 1s1/2,1/2 → 2p3/2,−1/2

(�m = −1) is a favored scattering channel by the EVB with
l < 0, and 1s1/2,−1/2 → 2p3/2,1/2 (�m = 1) is a scattering
channel more excited by the EVB with l > 0. Without the
magnetic field (γ = 0) or not including the spin-orbital cou-

pling (γ = ∞), W
21 1

2
3
2 − 1

2

10 1
2

1
2

1
2

= W
21 1

2
3
2

1
2

10 1
2

1
2 − 1

2

; however, for a finite

γ > 0, W
21 1

2
3
2 − 1

2

10 1
2

1
2

1
2

	= W
21 1

2
3
2

1
2

10 1
2

1
2 − 1

2

. We find that the joint effect of

SOC and the Zeeman effect leads to the condition (23).
Taking transitions from 1s1/2 → 2p3/2 and 1s1/2 → 3d5/2

excited by EVBs with ±l as examples, we study the chirality-
dependent scattering quantitatively. For an ideal Bessel beam,
al (k) ∼ δ(k⊥ − k⊥,0)/k⊥, but for the experimentally gener-
ated EVB, the momentum distribution cannot be so sharp. In
the following calculation, we adopt a model recently proposed
in Ref. [66], where al (k) is given by [66]

al (k) =
√

2√
πσ

e− (k⊥−k⊥,0 )2

2σ2

k⊥
, (38)

with e−1 the width of the momentum density σ , and the central
transverse momentum k⊥,0. According to this model, al (k) is l
independent, and when σ → 0, al (k) approaches the momen-
tum distribution for the ideal Bessel beam. In the numerical
calculation, the incident kinetic energy Ek of EVB is 200 keV,
and the impact vector b is along the x axis (ϕb = 0). Due
to the magnetic field and SOC, the energy levels are split,
the atom is scattered from the fine state of the ground state
to the fine state of the excited state, i.e., the initial state |i〉
and final state | f 〉 are the fine states, thus dσ (l )(b)/d� =∑

i, f σ
(l )
i→ f (b)/d�. Figure 3 studies the relation of the DCS

difference, S(θ ) ≡ dσ (−l )(b)/d� − dσ (l )(b)/d�, to the scat-
tering angle θ for l = 1, 2, and 3, opening angle α ≡
arctan(k⊥,0/kz ) = 0.1 mrad, wave-packet width σ = 0.01a−1

0 ,
and γ = 0.5, 4, 9, and 100 [67]. When γ � 1 (B ≈ 0), SOC is
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FIG. 3. The angular distribution of DSCS difference S(θ ) for
different magnetic field strengths γ = 0.5 (black dotted line), γ = 4
(red dashed line), γ = 9 (blue dashed-dotted line), and γ = 100
(dark-cyan solid line) with l = 1, 2, and 3 are shown, respectively.
The atomic transitions 1s1/2 → 2p3/2 (left panel) and 1s1/2 → 3d5/2

(right panel) are considered here. Other parameters: EVB opening
angle α = 0.1 mrad and wave-packet width σ = 0.01a−1

0 , impact
parameter b = a0, and the incident kinetic energy of EVB, Ek =
200 keV.

dominant, S(θ ) ≈ 0, and chirality-dependent scattering can be
hardly generated. With increasing γ , the Zeeman effect starts
to play, and the DCS difference increases until it reaches its
maximum around γm ≈ 9 for 1s1/2 → 2p3/2 (B ≈ 4.7 T) and
γm ≈ 4 for 1s1/2 → 3d5/2 (B ≈ 0.25 T). When γ increasing
crosses over the γm for the maximum of DCS differences, the
Zeeman effect dominates, and further increasing γ drives the
atom into the Paschen-Back region [62] and thus the chirality-
dependent scattering effect is reduced. Thus, Fig. 3 shows
there is an l-dependent optimum magnetic field strength.

Figure 3 shows that for the same transition, there is an
optimum topological charge l to achieve the maximum S(θ ).
Actually, when l − q�(�mj ) 	= 0 in Eq. (19), the oscillatory
integration in this equation leads to the decreasing of the
scattering amplitude for the single scattering channel with
topological charge l . When l − q�(�mj ) = 0 in Eq. (19),
this implies the orbital angular momentum of the swift vortex
electron can meet the requirement of the angular momentum
conservation for the transition. For the 1s1/2 → 2p3/2 transi-
tion, �mj = ±1, thus the maximum S(θ ) can be achieved for
the topological charge l = ∓1. For the 1s1/2 → 3d5/2 tran-
sition, �mj = ±1,±2, thus S(θ ) for l = ∓1 is compatible
to that for l = ∓2, while the latter (right panel of Fig. 3) is

higher, because the scattering weight probability|W n′�′s′ j′m′
j

n�s jmj
|

for �mj = ±2 is higher than that for �mj = ±1. Thus, we
can use EVB with different topological charges l to distin-
guish the internal energy levels. Recently, there has been
growing interest in generating EVBs with topological charges
much larger than 1 [11,68–71]. We note that the magnitude of

FIG. 4. The peak value of the angular distribution of the DSCS
difference Smax(θ ) vs opening angle α and the incident kinetic en-
ergy Ek of EVBs with wave-packet width σ = 0.01a−1

0 and impact
parameter b = a0 is plotted for (a) the transition 1s1/2 → 2p3/2 with
the ratio of the Zeeman energy over the spin-coupling energy γ = 9
and (b) 1s1/2 → 3d5/2 transition with γ = 4, respectively.

S(θ ) for the transition to a higher state, i.e., 1s1/2 → 3d5/2, is
much lower than that for the lower state, e.g., 1s1/2 → 2p3/2,

as shown in Fig. 3, and as a result the shape function R
n′�′s′ j′m′

j

n�s jmj ,q

defined by Eq. (20) decreases with the energy loss. Therefore,
it is not necessary to use an extremely high topological charge
to probe the low-lying states.
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FIG. 5. Controlling Smax(θ ) with opening angle α for different
wave-packet momentum widths σ = 0.001a−1

0 , 0.01a−1
0 , 0.4a−1

0 , and
1a−1

0 . The optimum magnetic fields are used for each transition
channel, impact parameter b = a0, topological charge l = 1, and
Ek = 200 keV.

According to Eq. (9), the scattering wave function of the
EVB by the atom is a coherent superposition of the scattering
wave functions of the incident plane waves composing eik·rv

of the EVB according to Eq. (7). As a result, constructive
interference of the scattered spherical electron waves eik′ ·rv/rv

can be generated in a specific scattering angle, thus Fig. 3
shows that there is a scattering angle that S(θ ) can get the
maximum value Smax(θ ).

The relation of the peak value of DCS differences Smax(θ )
to the incident kinetic energy Ek and opening angle α of
EVBs with topological charges l = 1 and 2 is shown in
Fig. 4, respectively, for the 1s1/2 → 2p3/2 transition with
γ = 9 [Fig. 4(a)] and the 1s1/2 → 3d5/2 transition with γ = 4
[Fig. 4(b)] calculated with a wave-packet width σ = 0.01a−1

0
and impact parameter b = a0. For a given incident kinetic
energy, there is an optimum opening angle, denoted as αo.
When α is off from αo, Smax(θ ) quickly decays. The optimum
opening angle αo is different for different transitions (1s1/2 →
2p3/2 transition, and 1s1/2 → 3d5/2 transition).

The momentum width σ of the EVB is another impor-
tant parameter for controlling the scattering, as confirmed
in Fig. 5, where the relation of Smax to α and σ is investi-
gated for the EVB with Ek = 200 keV. Smax gets its highest
value at α = 0.1 mrad and σ = 0.01a−1

0 for the 1s1/2 → 2p3/2

transition (left panel in Fig. 5), the corresponding average
transverse radius 〈ρ〉 = ∫ |�i(rv )|2ρd3rv of the incident EVB
is numerically found to be about 16 nm. There is a similar
feature for the 1s1/2 → 3d5/2 transition (right panel in Fig. 5),
where the curve Smax gets its maximum value at σ = 0.4a−1

0
and α = 0.4 mrad. Therefore, there is an optimum beam size
for getting the strongest CEMCD signal. On the other hand,
pursuing the strongest signal faces the challenge of precise
controlling of the opening angle. For a relatively narrow mo-
mentum distribution σ , for example, in the 1s1/2 → 2p3/2

transition, σ � 0.01a−1
0 , the Smax-α curve has a narrow peak

width (�0.1 mrad), such that it is hard to detect CEMCD when
α deviates slightly from the peak position. Increasing the mo-
mentum distribution (σ � 0.4a−1

0 ), equivalently reducing the
EVB width, the Smax vs α curves are nearly flat for a relatively
large range (∼1 mrad) of α, thus the requirement of precise
controlling of the opening angle can be relaxed. In contrast,

FIG. 6. Smax(θ ) vs the impact parameter b for different wave-
packet momentum widths σ = 0.003a−1

0 , 0.4a−1
0 , and a−1

0 . The
optimum magnetic fields, opening angles α = 0.1 mrad (left panel)
and 0.4 mrad (right panel), Ek = 200 keV, and topology charges
l = 1 (left panel) and 2 (right panel) are used.

the Smax vs α curves for the 1s1/2 → 3d5/2 transition (right
panel in Fig. 5) have a larger momentum width σ (�a−1

0 )
which relatively relaxes the precise controlling of the opening
angle.

In Fig. 6, Smax versus the impact parameter b is shown.
Smax decreases with the increasing of the impact parame-
ter b for both 1s1/2 → 2p3/2 (left panel) and 1s1/2 → 3d5/2

(right panel) transitions. Moreover, with increasing momen-
tum width σ , equivalently reducing the wave-packet width,
Smax strongly decreases with b. In this sense, it is better to use
a relatively larger wave-packet width to reduce the off-center
effect.

IV. SUMMARY

In summary, we have obtained the differential cross section
for the scattering of an EVB by an atom using the Born
approximation. The total scattering amplitude is the sum-
mation of the scattering amplitude over the entire scattering
channel with a scattering weight probability which is the
joint probability amplitude occupying the initial state and the
final state in a single scattering channel. When the symmetry
of the scattering weight probability for a single channel of
the EVB with a topological charge l between that for its
counterpart of the EVB with a topological charge −l is break-
ing, chirality-dependent scattering can be generated. Such a
symmetry breaking can be realized in the presence of SOC
and the Zeeman effect. In this approach, chirality-dependent
scattering can be optimized by choosing the proper magnetic
field strength and topological charge, incident energy, as well
as beam size. Especially, using a narrow beam size, the re-
quirement of precise controlling of the opening angle can
be relaxed. The optimum topological charge l of EVB for
realizing chirality-dependent scattering is l = �mj , thus we
can use EVBs with different topological charges to selectively
probe the atomic internal states. When the atom is off center
of the EVB, the dichroism decreases with increasing of the
impact parameter b. We also propose one approach to induce
CEMCD by breaking the chiral symmetry of the incident EVB
wave function.

Chirality-dependent scattering could be applied to generate
CEMCD [38,46]. The scattering theory in this paper should be
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modified by taking account of the distortion of the EVB within
a crystal [72]. To detect the magnetic properties, the magnetic
field in our analysis should be modified to include the local
magnetic field of the magnetic material.

Our theory can be further extended from a single atom to
ultracold gas dynamics to explore the possibility of chirality-
dependent scanning electron microscopy of ultracold gases
[29,73,74], an important tool for manipulating and probing
ultracold gas dynamics, particularly for probing the quantum
magnetism of spinor gases.
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