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The energy deposition of hydrogen projectiles in material targets is of great importance in material damage,
as well as in radiotherapy and dosimetry, particularly for the treatment of cancer tumors. The energy-loss de-
scription has to take into account electronic excitation, electron transfer, and nuclear displacement for collisions
with atomic targets. Each of these processes become relevant at different projectile collision energies, making
the modeling of the full energy-loss curve difficult to accomplish. In this article, an analytical expression for the
electronic stopping cross section of atomic gas targets at nonrelativistic velocities for hydrogen ions is reported.
As the energy deposition process requires a correct description of the energy-loss and scattering process, our
formulation uses theoretical results at low collision energies derived from ab initio electron-nuclear dynamics
(END), which accounts for the nuclear displacement, electronic excitation, and charge-transfer process. At high
collision energies, the expression is based on the independent particle orbital description [R. Cabrera-Trujillo,
Phys. Rev. A 60, 3044 (1999)] combined with Bethe’s analytical expression obtained through a harmonic
oscillator representation of a target [L. Trujillo-Lopez et al., Radiat. Phys. Chem. 156, 150 (2019)]. The two
approaches are matched at intermediate energies through the charge-exchange cross sections obtained from
the END approach in a probabilistic interpretation of the processes [E. Montenegro et al. Phys. Lett. A 92,
195 (1982)]. The excellent agreement obtained when compared to experimental data for H to Ar gas targets
(Z � 18) when hydrogen projectiles impinge gives support to the theoretical arguments implied in its derivation.
The analytical expression is simple and has the correct asymptotic behavior at low and high collision energies.
Furthermore, the formula explains properly the threshold effects at low collision energies which are the result
of polarization effects and energy gaps in the excitation process of the target, as confirmed by our ab initio
results.
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I. INTRODUCTION

The study of the penetration of charged particles through
matter has been the subject of continuous theoretical and
experimental efforts since the pioneering work of Rutherford,
which gave rise to our understanding of quantum mechan-
ics [1]. However, the many-body character of atomic and
molecular systems imposes serious difficulties to fully under-
stand the various mechanisms that participate in the slowing
down process of projectiles. The electronic stopping cross
section is a response of the system electrons to the energy
deposited by the projectile; electrons are promoted to ex-
cited states [2]. The electronic excitations are classified as
ionization [3,4], charge transfer [5], excitation [6], and molec-
ular fragmentation (bond breaking) [7]. Thus, the electronic
stopping curve shows three separate regimes, which are a
consequence of the different processes that participate in the
energy-loss phenomenon more or less dominantly, according
to their probability to occur. At high energies, the ioniza-
tion of individual atoms becomes the main source of energy
loss. As the projectile slows down, other processes such as
electron capture and loss and excitations become impor-
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tant. At low velocities, a “friction” mechanism becomes
increasingly important, leading, in principle, to a velocity-
proportional behavior. The first theoretical studies of the elec-
tronic stopping cross section were carried out by Bohr [8,9]
and Bethe [3,4] at high collision energies. In the low collision
energy region several theoretical approaches have been pro-
posed [10–12]. One of these approaches is due to Lindhard,
which evaluates the interaction of a moving charge through
a uniform free-electron gas via a complex dielectric response
function which accounts for the polarization effects of the tar-
get electronic cloud. Another approach is Firsov’s model [12],
which describes the projectile and target as Thomas-Fermi
atoms whose electrons exchange momentum, consequently
producing a net “drag force” on the projectile, resulting, the-
oretically, in a linear velocity dependence of the electronic
stopping cross section. However, there is not a theory that
accounts for all these processes for the whole energy range
of the projectile.

There have been many efforts to formulate empirical or
semiempirical approaches to generate an equation valid for all
velocities and ion-target combinations. Burenkov et al. [13]
developed a semiclassical theory to account for the inelastic
energy loss of heavy ions, valid for a wide range of energies.
Sugiyama [14] proposed a composite formula for the elec-
tronic stopping valid in the intermediate-energy range.
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Montenegro, Cruz, and Vargas (MCV) [15] proposed a univer-
sal formula for the electronic stopping cross section without
adjustable parameters that connects the linear behavior at low
collision energies with the Bethe region at high collision ener-
gies. Later, Wang and He proposed a modification to the MCV
equation for highly charged projectiles [16]. Kobadayi and
Gümüs [17] and Gümüs and Kobadayi [18] have made com-
parisons of electronic stopping cross sections and ion ranges
for heavy ions incident in Si and SiO2 with formulas based
on the MCV universal proposal with excellent comparison
to the experiment. The MCV formula uses a linear velocity
dependence expression for the low-energy collision region,
as deduced by Ahkiezer and Davydov [19] with parameters
being tabulated by Andersen and Ziegler [20].

From the computational point of view, there is the SRIM
(stopping and ranges of ions in matter) computer program that
calculates the electronic and nuclear energy loss of ions in
matter [21] of any ion in any material based on an averaged
parametrization of a vast range of experimental data [20]
through a universal interaction potential. Another approach
to study the stopping cross section at intermediate energies
is due to Schiwietz [22]. The Schiwietz approach is based
on the coupled-channel approach to solve the time-dependent
Schrödinger equation for a target with an active electron with
the nuclear motion being described approximately by New-
ton’s equations of motion in a classical-trajectory Monte Carlo
approach. A new promising first-principles approach that has
been used to study the electronic stopping cross section is due
to Artacho [23,24]. The approach uses the time-dependent
density-functional theory (TDDFT) where adiabatic forces
acting on nuclei are calculated to perform molecular dy-
namics calculations, which follow the Newtonian dynamics
of classically treated nuclei. However, an ab initio descrip-
tion of the energy deposition at low collision energies that
accounts for electronic excitations, charge transfer, and nu-
clei coupling has not been possible. Furthermore, there is
experimental evidence that at low collision velocities, the the-
oretical description for the electronic stopping cross section
fails to properly describe the energy-loss process [25,26] due
to threshold effects.

In this article, we propose an analytical general expres-
sion for the electronic stopping cross section of hydrogen
projectiles valid for nonrelativistic collision energies, in all
gas targets. We present results for hydrogen beams colliding
on all atomic targets with Zt � 18. At low collision ener-
gies, excitations and charge exchange are accounted for by
the first-principles ab initio electron-nuclear dynamics (END)
approach [27] to properly describe the energy-loss process,
differential scattering, charge transfer, and target excitations
of the involved atoms. At high collision energies a simple
universal formula, already reported by the author [28], has
been matched to the low END energy results following a
similar procedure as that of MCV [15].

II. THEORETICAL APPROACH

In order to set the basis of our theoretical formulation, let
us start reviewing the concept of energy loss and stopping
cross section. Let us consider a target material of thickness
�x and n2 atoms per volume (target number density). For

a projectile impinging in this material, the energy loss is
given by �E = ∑

i ωi�Ei, where ωi is the probability for the
projectile to have an energy loss �Ei at the ith collision when
the target and the sum is over all the collision events occurring
in the path. The collision probability is given by ωi = n2σi�x,
where σi is the cross section for the projectile to have the ith
collision with a target. Consequently, the projectile energy
loss is �E = n2�x

∑
i σi�Ei. In the limit of infinitesimal

thickness, one defines the stopping cross section as

1

n2

dE
dx

= S =
∫

�E dσ. (1)

This definition of the stopping cross section, i.e., the energy
loss of a projectile per path traveled and per target, can be
expressed as

S(Ep) =
∫

�E (Ep)
dσ (Ep)

d�
d�, (2)

where dσ/d� is the differential cross section for the pro-
jectile to be scattered within a solid angle d�. Here, Ep is
the projectile initial kinetic energy. Therefore, one observes
that the stopping cross section per target depends directly
on how much energy the projectile loses, �E , and how the
scattering process occurs through the differential cross section
dσ/d�. For the particular case of a classical description of
the scattering process, the classical differential cross section
is given by

dσ

d�
= b

sin θ

∣∣∣∣ db

dθ

∣∣∣∣, (3)

where d� = sin θdθdϕ is the differential of a solid angle and
the impact parameter b is related to the angular momentum
of the scattering process. With this, the stopping cross section
can be recast as

S(Ep) = 2π

∫
b�Edb. (4)

Furthermore, the classical differential cross section can be
improved by incorporating semiclassical corrections due to
quantum effects on the projectile trajectory. The author has al-
ready achieved this through the Schiff approximation [29,30],
where the differential cross section is given by

dσ

d�
= k f

ki
| f (θ, ϕ)|2, (5)

with

f (θ, ϕ) = iki

∫ ∞

0
J0(qb)(e2iδ(b) − 1)b db (6)

being the scattering amplitude [30]. Here, J0(x) is the Bessel
function of zero order, h̄q = h̄|k f − ki| is the momentum
transfer, which depends on the scattering angle θ , and δ(b)
is the semiclassical phase shift given by


(b) = 1

2ki

dδ(b)

db
, (7)

where 
(b) = θ is the deflection function for the scattering
process which describes the attractive and repulsive behaviors
of the projectile-target interaction [30]
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Thus, a proper description of the energy-loss process as
well as of the scattering process is required in order to obtain
a reliable stopping cross-section description.

A. Electron-nuclear dynamics

In order to account for the electron-capture, electronic
excitations, and energy-loss processes, we use a nonadia-
batic approach that takes into account the electronic and
nuclear coupling within the time-dependent variational princi-
ple (TDVP). This method is called electron-nuclear dynamics
(END) and has the advantage that it is not restricted to
straight-line trajectories. As the details of the END method
have been reported elsewhere [27,31], we present here only a
brief summary of the theory.

The END wave function is expressed as

|ψ〉 = |z, R, P〉|R, P〉 = |z〉|φ〉, (8)

where |φ〉 = |R, P〉 is the nuclear wave function and |z, R, P〉
is the electronic wave function. Here, R and P are 3N-
dimensional arrays of the positions and momenta of all nuclei
and z are the probability amplitudes for the excitations.

The nuclear wave function |φ〉 is described by a Gaussian
wave packet

|φ〉 =
∏

l

exp

[
−1

2

(
Xl − Rl

βl

)2

+ iPl · (Xl − Rl )

]
, (9)

where Rl and Pl are the average position and momentum
of the lth nucleus. The width parameters βl are taken to the
narrow wave-packet limit (βl → 0, for all βl ).

The electronic wave function is expressed as a complex,
spin-unrestricted single determinant,

|z〉 = det{χi(x j )}. (10)

Here, x j is the three-dimensional coordinate of electron j.
The determinantal wave function is built from nonorthogonal
dynamical spin orbitals

χi = φi +
K∑

j=N+1

zi jφ j, i = 1, 2, . . . , N, (11)

which in turn are expressed in terms of a basis of atomic
spin orbitals φi of rank K . Here, zi j are the amplitude prob-
abilities for excitations. The spin orbitals are formed from a
Gaussian basis set centered on the average positions Rl of
the participating atomic nuclei, which take into account the
momentum of the electron explicitly through electron trans-
lation factors (ETFs). The particular form of parametrization
of |z〉 with complex, time-dependent coefficients zi j is due to
Thouless [32], and is an example of a so-called generalized
coherent state [33].

Application of the TDVP produces a set of dynamical
equations that govern the time evolution of the dynamical
variables {z, R, P}. The END dynamical equations are ex-
pressed in matrix form as [27]⎛
⎜⎜⎝

0 −iC∗ −iC∗
R 0

iC 0 iCR −iCP

iCR
† −iCT

R CRR −I + CRP

iCP
† −iCT

P I + CRP CPP

⎞
⎟⎟⎠

⎛
⎜⎜⎝

ż
ż∗

Ṙ
Ṗ

⎞
⎟⎟⎠ =

⎛
⎜⎝

∇zE
∇z∗E
∇RE
∇PE

⎞
⎟⎠,

(12)

where ∇yE = ∂E/∂y is the gradient (force) on the energy by
the variable y and E is the total energy of the system given by

E =
∑

k

P2
k

2Mk
+ 〈z, R, P|Hel|z, R, P〉

〈z, R, P|z, R, P〉 . (13)

Here, Hel is the electronic Hamiltonian and contains the
nuclear-nuclear repulsion potential energy. The nonadiabatic
coupling terms between the electronic and nuclear dynamics
are expressed in terms of the elements of the dynamical metric
on the left. In particular,

C = ∂2 ln S(z∗, R, P, z, R′, P′)
∂z∗∂z

∣∣∣∣
R′=R,P=P′

, (14)

CR = ∂2 ln S(z∗, R, P, z, R′, P′)
∂z∗∂R′

∣∣∣∣
R′=R,P=P′

, (15)

CRR = −2 Im
∂2 ln S(z∗, R, P, z, R′, P′)

∂R∂R′

∣∣∣∣
R′=R,P=P′

, (16)

with similar definitions for CRP, CP, and CPP. These
coupling terms are defined in terms of the overlap
S(z∗, R, P, z, R′, P′) = 〈z, R′, P′|z, R, P〉 of the determinan-
tal states of two different nuclear configurations. When the
effects of the electron translation factors are neglected, these
sets of equations reduce to a simple form [34] with the purely
classical equation of motion for the nuclear position.

In contrast to other approaches used to study energy de-
position, e.g., Schiwietz [22] or Artacho [23,24], END uses
trajectories as given by the dynamical system in a nonadia-
batic approach and all degrees of freedom are included. The
only exception is ionization due to the lack of continuum wave
functions in a Gaussian basis set.

Analysis of the collision requires the specification of initial
conditions of the system under consideration. The initial pro-
jectile velocity is set parallel to the z axis and directed towards
the stationary target with an impact parameter b along the xy
plane. The target atom has been initially placed at the origin of
a Cartesian laboratory coordinate system. In these calculations
the projectile is initially set at a distance of 20 a.u. from the
target and in the self-consistent electronic ground state. The
impact parameter b is chosen in the range 0–20 a.u. in steps
of 0.1 from 0.0 to 4.0, in steps of 0.2 from 4.0 to 6.0, in steps
of 0.4 from 6 to 10, and in steps of 1.0 from 10 to 20 a.u.
This gives a total of 70 fully dynamical trajectories for each
projectile energy.

The electronic basis set used for the atoms from 1 �
Zp � 18 is the augmented correlation-consistent polarized va-
lence double zeta (aug-cc-pVDZ) basis set of Dunning [35]
consisting of [5s3p/2s2p] orbitals for 1 � Zt � 10 and
[13s9p2d/5s4p2d] for 11 � Zt � 18. These basis sets pro-
vide a good compromise between computational time and a
proper description of the low excited states of the system.
For instance, a calculation at 10 eV/amu for hydrogen tar-
gets would take around 2 h in a 3.2-GHz computer, while
at 5 keV/amu it takes a few minutes per impact parameter.
However, for Ar at 10 eV it would take 20 days at 10 eV
and for 5 keV/amu around 15 h for these basis sets. As this
approach lacks the proper description of the continuum states,
ionization processes are not properly described. Thus, we

032812-3



R. CABRERA-TRUJILLO PHYSICAL REVIEW A 103, 032812 (2021)

cannot apply the END approach to high collision energies yet,
so consequently we limit the applicability of END to collision
energies below 5 keV/amu (0.4475 a.u. in Bohr velocity) to
account for the low excitation spectrum.

1. Stopping cross section

Once the wave function is determined at the end of the time
evolution, the electron-capture or electron-loss probability,
as a function of the impact parameter b, is obtained by a
projection of the projectile nth state as

Pn(b, Ep) = |〈ψn|�(b, Ep)〉|2, (17)

where ψn is the final capture state of the projectile and
� is the final evolved molecular wave function. The total
electron-capture probability P(b) is the sum over all the state
contributions.

The charge-exchange cross section is given by

σ (Ep) = 2π

∫
bP(b, Ep)db. (18)

Here, P denotes either the total or the nth state electron-
capture probability.

The END approach provides the final momentum of the
nuclei, which allows one to determine the kinetic energy loss
for the projectile as �E (b, Ep) = E f

p (b, Ep) − Ep, where E f
p

is the projectile final kinetic energy and Ep the projectile initial
kinetic energy. From energy conservation, we have that

−(
E f

p − Ep
) = (

E f
p,e − Ei

p,e

) + (
E f

t,e − Ei
t,e

)
+(

E f
t − Ei

t

) ≡ −�E , (19)

where the superscripts i or f stand for initial or final, while
the subscripts p or t stand for projectile or target. Here, the
subindex e indicates the electronic energy in the projectile or
target. This means that for a projectile energy loss �E < 0,
there is an energy gain in the target nuclear energy and in
the excitation energy of the system. Thus, the stopping cross
section, that is, the cross section for the projectile kinetic
energy loss, is given by

S(Ep) = −2π

∫ ∞

0
b�E (b, Ep)db. (20)

This is a measure of the nonadiabatic effects that take place
during the collision as the projectile kinetic energy is modified
by the momentum and charge transferred during the collision.
The negative sign is to assure that S is positive for energy
loss [36]. With this, the electronic stopping cross section is
given as

Se(Ep) = 2π

∫ ∞

0
b�Ee(b, Ep)db, (21)

and the nuclear stopping cross section as

Sn(Ep) = 2π

∫ ∞

0
b�En(b, Ep)db. (22)

Here, �Ee = (E f
p,e − Ei

p,e) + (E f
t,e − Ei

t,e) is the energy loss
of the projectile that goes into electronic excitations and ion-
ization in the projectile-target system and �En = (E f

t − Ei
t ) is

the target recoil kinetic energy (nuclear displacement). These

are positive quantities when the transferred energy is gained
by the target through target excitations and target nuclei recoil.
This approach has been used with success to describe the
charge-exchange process in highly charged systems [37] as
well as in the description of the electronic stopping cross
section [38].

2. Projectile beam charge fraction

During the collision the beam has a fraction of charged
components. Following the charge-state approach devised by
Dalgarno and Griffing [39], the fractions of proton and hydro-
gen atoms in the beam are given by

f01 = σ01

σ01 + σ10
= f (H+) (23)

and

f10 = σ10

σ01 + σ10
= f (H), (24)

where fi j is the charge fraction for the projectile to go from
an initial charge state i to a final charge state j, with the
same meaning for the cross section σi f (charge-transfer cross
section). Note that we have neglected the formation of neg-
ative hydrogen during the collision [39]. Consequently, the
stopping cross section is given by

Se(v) = f (H)Se(H) + f (H+)Se(H+), (25)

where Se(H+) is the electronic stopping cross section when
an initial proton projectile collides with a target and Se(H)
is the electronic stopping cross section for an initial neutral
hydrogen projectile. Here, v is the initial projectile velocity,
commensurate with the projectile initial kinetic energy Ep,
i.e., Ep = Mpv

2/2, where Mp is the projectile mass.
A similar expression is used to obtain the nuclear stopping

cross section

Sn(v) = f (H)Sn(H) + f (H+)Sn(H+), (26)

which represents the averaged nuclear stopping cross section
over the hydrogen beam charge fraction.

3. Low-energy threshold effects

For a binary collision, the minimum momentum transferred
during a collision in the relative frame, obtained through en-
ergy conservation, is given by [38,40]

qmin = μv

h̄

[
1 −

√
1 − 2(En − E0)

μv2

]
, (27)

where μ is the reduced mass of the projectile-target system,
v the projectile incoming speed, and En − E0 the electronic
energy absorbed by the target from the initial state E0 to the
final state En. In order that the momentum transfer be enough
for an electronic transition, it is necessary that the minimum
momentum absorbed overcomes the electronic transition
energy

h̄2q2
min

2me
� En − E0. (28)
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Solving for the projectile energy for a target at rest, we obtain

Ep �
μ2

4Mpme
(En − E0)

[
1 + me

Mp

]2

, (29)

where Mp is the projectile mass. This expression shows the
discretized behavior of energy transfer and provides the theo-
retical explanation of a threshold energy for the first electronic
excitation in the target. If we would have a continuum distri-
bution of transition energies starting from zero, as is assumed
in the atomic Thomas-Fermi model, the projectile would
transfer energy continuously to the target for all projectile
energies. However, this is not the case, and consequently
electronic excitations demand a threshold velocity for the
projectile in the electronic stopping cross section [38].

4. Analytic expression for Se at low velocities

As mentioned before, in the low-energy region, the theory
suggests a linear velocity dependence of the electronic stop-
ping cross section. However, because of the discrete excitation
spectrum of atoms and molecules, a threshold velocity appears
depending on the density of the excitation spectrum, such that
the electronic stopping cross section shows a bilinear velocity
dependence. Our END results precisely show that behavior
(see below). In order to properly describe it, we propose the
following formula valid at low collision velocities,

SL
e (v) =

{
Av, v < vtr,

Bv + C, v > vtr,
(30)

where A and B are the slopes of the electronic stopping cross
section at low collision energy. Here, vtr is the threshold ve-
locity for the change of that behavior. Notice that by energy
conservation assumptions, Se(v = 0) = 0.

In order to obtain an analytical continuum expression, one
proceeds as follows: Let us take the derivative of the previous
equation,

dSL
e (v)

dv
=

{
A, v < vtr,

B, v > vtr,

= A + (B − A)
(v − vtr ), (31)

where 
(x) is the Heaviside function, i.e., 
(x) = 0 if x < 0
and 
(x) = 1 if x > 0. In order to account for a smooth
transition at v = vtr, we replace the Heaviside function by
an equivalent smooth function. In this case, we propose the
Wood-Saxon function [41],


(x) → 1

1 + e−x/δ
, (32)

where δ is the diffuseness of the transition in the step of the
Heaviside function. Consequently,

dSL
e (v)

dv
= A + (B − A)

1 + e−(v−vtr )/δ
. (33)

Integrating back again, we have that in the low-energy region

SL
e (v) = C + Av + (B − A) ln[1 + e(v−vtr )/δ]δ, (34)

with C an integration constant.

Using the fact that Se(v = 0) = 0, we obtain

SL
e (v) = Av + (B − A)δ ln

[
1 + e(v−vtr )/δ

1 + e−vtr/δ

]
. (35)

Mathematically, this expression is called a wedge function
since it provides a mathematical expression for a wedge with
a sharp edge. The sharpness of the edge is adjusted by the
diffuseness parameter δ. This is the expression we will use to
describe the low-energy stopping cross section as obtained by
the END approach, that is, we adjust A, B, vtr, and δ to the
END ab initio numerical results.

B. High-energy stopping cross section

In the independent particle model [42], the electronic stop-
ping cross section, within the first Born approximation, is
written as

SH
e (v) =

∑
i

Se,i(v), (36)

where

Se,i = 4πe4Z2
p

mev2

∫ qmax

qmin

Fn0(q)

q
dq (37)

is the contribution of the ith electron, q goes from a minimum
qmin to a maximum qmax momentum transfer, and Fn0(q) are
the generalized oscillator strengths (GOSs). When a target’s
electron is described under the assumption of being har-
monically bound with an angular frequency ω0n, the target’s
electronic spectrum is replaced by that of a harmonic oscilla-
tor (HO) [42]. One consequence of the HO model is that the
orbital mean excitation energy is related to the orbital electron
angular frequency as I0i = h̄ω0i, connecting directly the HO
angular frequency ω0i and the orbital mean excitation energy
I0i, i.e., I0i = h̄ω0i. The GOSs have already been determined
for the HO and an analytical expression for the electronic
stopping cross section, given in terms of the projectile and tar-
get properties, has been reported [28]. The simple expression
for the orbital stopping cross section, valid at high collision
velocities, is

Se,i(v) = πe4Z∗
p

2

I0i

ln(1 + 16ε2)

(c + ε)
, (38)

where ε is the reduced energy given by

ε = meEp

MpI0i
. (39)

Here, Z∗
p is the projectile effective charge and c takes the value

of 2/π for the case of a harmonic oscillator [43].
We will use Eq. (36) together with Eq. (38) for the elec-

tronic stopping cross section at high collision energies. The
values of the orbital mean excitation energy have been already
reported by Cabrera-Trujillo [42] when replacing the HO
spectrum by a self-consistent field (SCF) approach through
the virial theorem in an atomic system.

C. Analytical expression for the electronic stopping cross section

Now, we are in position to match these two behav-
iors. As originally proposed by Montenegro et al. [15], we
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(a) (b) (c)

(d) (e) (f)

θ (deg) θ (deg) θ (deg)

FIG. 1. Direct differential cross section for H+ and H atoms incident in He, Ne, and Ar atoms for collision energies of 0.5, 1.5, and
5.0 keV/amu equivalent to a projectile velocity of 0.1415, 0.245, and 0.4475 a.u., as a function of the scattering angle in the laboratory frame.
The experimental data are from the AMO group at Rice University. Specifically, for H+ + He are from Johnson et al. [44], H + He, H + Ne,
and H + Ar are from Gao et al. [45], and H+ + Ne and H+ + Ar are from Johnson et al. [46]. See text for discussion.

recognize the probabilistic character of the stopping cross sec-
tion. Following the same line of reasoning, we assume that the
probability for a proton to remain in a particular charge state,
as a function of velocity, can be approximated analytically by

P ≈ e−u. (40)

Thus, we postulate that the electronic stopping cross sec-
tion is given by

Se(v) = SL
e (v)P + SH

e (v)(1 − P), (41)

which corresponds to a weighted electronic stopping cross
section over the low- and high-energy regions. Consequently,
our universal expression for the electronic stopping cross sec-
tion is given by

Se(v) =
{

Av + (B − A)δ ln

[
1 + e(v−vtr )/δ

1 + e−vtr/δ

]}
e−u

+ (1 − e−u)
∑

i

πe4Z∗
p

2

I0i

ln(1 + 16ε2)

(c + ε)
, (42)

where ε is given by Eq. (39). Thus, the only parameters that
characterize the general expression for the electronic stopping
cross section are A, B, δ, vtr, I0i, and c, all of them obtained
from theoretical considerations. Note that at high collision
energies we use Z∗

p = Zp.

III. RESULTS AND DISCUSSION

A. Low-energy END results

1. Direct differential cross section

In Fig. 1, we show the direct differential cross section
for H+ and H projectiles when colliding with He, Ne, and
Ar targets as a function of the laboratory scattering angle as
obtained within the Schiff approximation, Eq. (5), from our
END trajectories. The results are shown for collision energies
of 0.5, 1.5, and 5 keV/amu equivalent to a projectile velocity
of 0.1415, 0.245, and 0.4475 a.u. In Fig. 1(a), we show the
results for H+ colliding on He (lines) and we compare to the
experimental data of Johnson et al. [44] showing an excellent
agreement. Notice in particular the good description of the
interference effects due to the rainbow and glory angles. This
is a consequence of the proton penetrating the He electronic
cloud and being repelled for small impact parameters and at-
tracted for large impact parameters. In Fig. 1(d), we show the
neutral case, H projectiles colliding with He, and we compare
to the experimental data of Gao et al. [45], showing again a
good to excellent agreement. In this case, the whole collision
is repulsive, with no penetration of electronic clouds.

In Fig. 1(b), we show the case for a Ne target when a
H+ projectile collides with it. The experimental data are from
Johnson et al. [46], showing again an excellent agreement to
our theoretical results. The neutral case is shown in Fig. 1(e)
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(a)

(d) (e) (f)

(b) (c)

FIG. 2. Electronic energy loss (black lines) and charge-exchange probability (red lines) for H+ and H atoms incident in He, Ne, and Ar
atoms for collision energies of 0.5, 1.5, and 5.0 keV/amu equivalent to a projectile velocity of 0.1415, 0.245, and 0.4475 a.u., as a function of
the impact parameter b. See text for discussion.

where neutral H collides with Ne and we compare to the
experimental data of Gao et al. [45], showing an excellent
agreement for all three collisions considered.

Finally, in Fig. 1(c), we show the case for a neutral Ar
target when H+ collides with it and we compare to the ex-
perimental data of Johnson et al. [46], showing excellent
agreement and a good description of the scattering process.
In Fig. 1(f), we show the case for neutral H colliding with Ar
and its comparison to the experimental data of Gao et al. [45].
In this case, the collisions at 0.5 and 1.5 keV/amu show an
excellent agreement. However, in the case for 5 keV/amu,
we present a bump, which results from the interference effect
present in the deflection function. This is a consequence of
the slightly smaller basis set used to describe the hydrogen
projectile as compared to the Ar target. Thus, our END results
show a good to excellent agreement for H+ and H when col-
liding with neutral He, Ne, and Ar showing a good description
of the scattering process as a result of the correct trajectory
description of the dynamics. Similar results are obtained for
the other atomic gas targets considered in this work but are
not shown.

2. Energy loss and charge exchange

In Fig. 2, we show the energy loss of the projectile trans-
ferred as excitations, weighted by the impact parameter for
H+ and H projectiles colliding with He, Ne, and Ar (black
lines) as a function of the impact parameter for the collision

energies of 0.5, 1.5, and 5.0 keV/amu. In the same figure,
we show the charge exchange probability on the projectile,
weighted by the impact parameter (red lines). The case of
H+ colliding on He is shown in Fig. 2(a). Interestingly, we
note that the energy loss has the same structure as the proton
charge capture, except for the scale. This is observed for the
three collision energies and for all the cases considered here,
showing a correlation between the energy loss and the charge-
transfer process. The same behavior is observed for the neutral
case, shown in Fig. 2(d) for H colliding on He. In the case of
H+ colliding with Ne, we find that for intermediate impact pa-
rameters, b > 1, the energy-loss and charge-exchange process
are correlated. The same is observed for the neutral cases of H
colliding with Ne in Fig. 2(c), except for the scale. Finally, in
Figs. 2(c) and 2(f) we show the case for H+ and H colliding
with Ar targets, respectively. A similar correlation between
the energy-loss and charge-transfer process is observed in this
case as a function of the impact parameter.

3. Beam charge fraction

With the integration of the charge-exchange probabilities,
one determines the electron-capture cross section σ10 and
the electron-loss cross section σ01 as required by Eqs. (23)
and (24) to determine the charge fraction of the beam and the
contributions from protons and neutral hydrogen projectiles as
they interact with the target. In Fig. 3, we show the ab initio
results, as obtained with END for the charge beam fraction of
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(a)

(d)

(g) (h) (i)

(e) (f)

(b) (c)

FIG. 3. Hydrogen beam charge fraction as a function of the projectile velocity, in the low collision energy region. The blue solid line
corresponds to electron capture f10, i.e., the hydrogen projectiles present in the beam, and the red dashed line corresponds to the electron loss
f10, i.e., the number of proton projectiles present in the beam. The symbols are the experimental data of Allison [47].

protons and hydrogen projectiles when colliding with the gas
phase targets H, He, C, N, O, F, Ne, Cl, and Ar. The blue solid
line corresponds to the neutral hydrogen beam fraction f10

while the red dashed line corresponds to the proton fraction
in the beam f01. In the same figure, we compare to the exper-
imental data, as reported by Allison [47], showing a good to
excellent agreement.

In Fig. 3(a), we show the results for a hydrogen beam col-
liding with atomic hydrogen. We find that the beam consists
principally of neutralized hydrogen atoms as a consequence of
the high electron capture of a proton when colliding with an
atomic hydrogen target. The proton beam has a small fraction,
which implies that the stopping cross section is dominated
by the neutral hydrogen fraction. In Fig. 3(b), we show the
charge fraction beam for a hydrogen beam colliding with a
helium atom. In this case, the dominant fraction in the beam
is the proton ion, due to the very small charge capture cross
section of a proton when colliding with a helium atom. This
behavior is a consequence of the high ionization potential
of the helium target. In Figs. 3(c)–3(e), we show the results
for a hydrogen beam colliding with atomic carbon, nitrogen,
and oxygen gas phase targets, respectively. Our results for a

nitrogen target agree well with the experimental results of
Allison [47]. However, the case of an oxygen target shows
a difference of around 10% when compared to the Allison
results. In both cases, the contribution of the proton beam
charge fraction increases, with respect to the previous cases.
A possible explanation for this behavior in our theoretical
approach is the difficulty to treat the atomic oxygen atom
within a single determinant as the one used by END. The case
for a fluorine atomic target is shown in Fig. 3(f) where the high
ionization potential of fluorine produces a large contribution
from the proton at collision velocities below 0.2 a.u. while
the neutral hydrogen beam starts to have a larger contribution
for v > 0.2 a.u. The same occurs for a neon target, shown in
Fig. 3(g) around v ≈ 0.32 a.u., however, in this case we find
an inversion at very low collision energies. A possible reason
for this behavior is the fact that at low collision energies, the
small electron-gain and -loss cross section starts to compete
within these basis set descriptions due to its limited size.
Finally, the cases of chlorine and argon are shown in Figs. 3(h)
and 3(i), where the hydrogen atom fraction of the beam starts
to dominate, as a consequence of a lower ionization poten-
tial as compared to helium and neon. Again, the behavior
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(a)

(d)

(g) (h) (i)

(e) (f)

(b) (c)

FIG. 4. Stopping cross section for hydrogen projectiles colliding on H, He, C, N, O, F, Ne, Cl, and Ar targets, as a function of the projectile
velocities up to 0.45 a.u. (equivalent to 5 keV/amu collision energy). The black dashed line with a star symbol is the result for neutral hydrogen
projectiles and the red dotted-dashed line with open square symbols is for protons as obtained with the END approach. The blue long-dashed
line is the result of averaging through the charge beam contributions, Eq. (25). The purple solid line is the result of the bilinear Eq. (35) for SL

e .
The solid green circles with triple-dashed lines are the TDDFT results of Halliday and Artacho for hydrogen projectiles incident on graphite
(carbon) [48] shown for comparison purposes. See text for discussion.

observed for the case of argon is a consequence the compe-
tition between electron gain and loss in the charge-transfer
process within our basis sets.

4. Electronic stopping cross section

Now that we have the charge fractions in the beam and
the energy loss of protons and hydrogen projectiles obtained
with END at low collision energies, we proceed to study the
electronic stopping cross section.

In Fig. 4, we show the electronic stopping cross section for
hydrogen, helium, carbon, nitrogen, oxygen, fluorine, neon,
chlorine, and argon gas targets for protons and hydrogen pro-
jectiles, as obtained by our ab initio END approach in the low
velocity region. The red dotted-dashed line with open square
symbols shows the END results at low collision energies for
proton projectiles and the black short-dashed line with asterisk
symbols is for neutral hydrogen projectiles’ electronic stop-

ping cross section. The blue dashed line is the average over
the charge fraction results from END and the purple solid line
is the adjusted theoretical approach from Eq. (35) for SL

e .
In Fig. 4(a), we find that for an atomic hydrogen tar-

get, both protons and neutral hydrogen produce an almost
linear electronic stopping cross section. We also observe a
slight threshold around 0.05 a.u. in the projectile velocity.
The charge fraction analysis shows that because of the high
electron charge transfer from the target to the projectile, the
dominant beam charge is the neutral hydrogen projectile, i.e.,
the beam is neutralized. This produces a dominant electronic
stopping cross section from neutral hydrogen beams, as ex-
pected. However, this is not the case for a helium target, as
shown in Fig. 4(b). Here, as a consequence of the noble gas
nature, it is very difficult to extract an electron from helium
and consequently the dominant charge fraction in the beam
is a proton beam for velocities up to 0.3 a.u. After that, high
excitations start to become important. This is a consequence
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of the high excitation gap in the helium atom as shown by
the large threshold velocity, at vtr = 0.336 a.u. The cases for
carbon, nitrogen, and oxygen show a bilinear behavior in the
electronic stopping cross section. For atomic carbon, in the
gas phase, the open shell structure allows high excitations to
become important at collision energies above 0.2 a.u. In a
condensed phase, that would occur at higher collision ener-
gies due a larger energy gap introduced by the surrounding
neighbors. In this case, the dominant channel is the neutral
hydrogen beam. In nitrogen, we observe that both protons and
hydrogen beams produce a similar stopping cross section, but
the dominant beam charge fraction is the neutral hydrogen
beam. This also occurs for oxygen. However, the ionization
potential increases as the target nuclear number increases,
such that the proton charge fraction increases. This makes
the final SL

e to depart from the neutral hydrogen contribution
and increases the proton charge fraction contribution. How-
ever, the threshold is clearly discerned as well as the bilinear
behavior. These projectile threshold energies are again of
slightly higher consequence in the role of the polarization of
the target electronic cloud. In all our results, we observe that
our expression for the SL

e adjusts correctly to the ab initio
END averaged results from Eq. (25). In Fig. 4(f), we show
the results for fluorine. In this case, for collision velocities
above 0.3464 a.u., the electron capture dominates, but for
lower collision energies it is the proton beam charge fraction
that dominates, again as a consequence of the increase of
the ionization potential. We observe a threshold effect that
becomes more pronounced for the case of neon targets. The
behavior of the Ne target, in Fig. 4(g), is very similar to the
case of helium because as the target nuclear charge increases,
so does the ionization potential, making it more difficult to
exchange electrons to neutralize a proton beam and conse-
quently the proton beam becomes more dominant. This has
as a consequence an increasing threshold velocity, which is
observed in the bilinear behavior of the electronic stopping
cross section. However, the case of Ar does not follow this
behavior. Here, the ionization potential is not as high as that
of He or Ne and the neutral hydrogen beam is dominant,
although at low collision we observe a threshold due to the
large excitation gap.

In Table I, we provide the values for the low-energy stop-
ping cross-section parameters, as required by Eq. (35) for
reference purposes. The energy values for the orbital mean
excitation energy have been already reported by the author in
Ref. [42] and are used in the expression for the high-energy
stopping cross section in Eq. (36). Notice that the values that
c take are around 3, except for the He target where it is close to
the theoretical value of the HO when a bare charged projectile
collides. Except for H and O, we find thresholds (A = 0) in
the electronic stopping cross section. The threshold velocity
is between 50 and 100 eV, except for He and Ne where it is
around 1–2 keV.

In Fig. 5, we show the results for the electronic stopping
cross section from the low to high collision range, as obtained
by the general expression, Eq. (42), for atomic hydrogen,
helium, carbon, nitrogen, oxygen, fluorine, neon, chlorine,
and argon targets in a gas phase for a hydrogen beam. The
general expression is shown by a red dotted long-dashed line
that goes from 10 eV/amu to 10 MeV/amu, that is a six

TABLE I. Parameters for the low-energy stopping cross-section
expression, Eq. (35), as obtained with END. A and B are in 10−15

eV cm2 when v is expressed in a.u. while δ and vtr are in a.u. for
velocity and c is dimensionless.

Target A B δ vtr c

H 5.5000 10.6723 0.0050 0.04000 2.47839
He 0.0000 5.3143 0.0316 0.33600 0.40018
C 16.0852 19.1826 0.0100 0.07000 4.50000
N 0.0000 30.9949 0.0100 0.05000 4.84400
O 5.8589 24.4211 0.0100 0.06328 3.74695
F 0.8000 13.2761 0.0100 0.08500 3.00000
Ne 0.0000 23.1153 0.0200 0.27000 3.61737
Cl 0.0000 39.2136 0.0020 0.03464 3.36259
Ar 0.0000 45.5856 0.0500 0.15000 3.13875

orders-of-magnitude range. The ab initio END results are
shown by a blue dotted long-dashed line with a solid squared
box in the low-energy region. In order to understand the
behavior of the general expression, we also show its low-
and high-energy contributions, SL

e and SH
e , respectively. The

solid purple line is the low-energy contribution SL
e , and the

short-dashed black line is the high-energy contribution SH
e .

For comparison, we show Paul’s IAEA experimental data
compilation [49] with capital letter symbols as well as the
empirical results from SRIM [21] shown by a brown long-
dashed line. The experimental labels correspond to A [51],
B [52], C [53], D [54], E [55], F [56], G [57], H [58], I [59],
J [60], K [61], L [62], M [63], N [64], O [65], P [66], Q [67],
R [68], S [69], T [70], U [71], V [72], W [73], X [74], Y [75],
Z [76], and a [77]. Our expression completely agrees with
the experimental data for atomic hydrogen targets, as shown
in Fig. 5(a). Our END results predict a higher electronic
energy loss, as a consequence of the gas phase state of the
target, when compared to the SRIM data. Let us notice that
the experimental data are obtained for molecular hydrogen
targets while ours is for atomic targets. Note that our results
predict a lower-energy loss at very low collision energies
with a threshold energy around 60 eV/amu. This threshold
projectile energy of 0.06 keV/amu is much lower than the
predicted results from Eq. (29) for the first excitation energy
of a hydrogen target of �E = 10.2 eV. The predicted results
of Eq. (29) are 2.34 keV/amu, which agrees completely well
with the threshold observed for SH

e (black dashed line) which
is the expression that accounts for the direct excitations in
the stopping cross section. The low SL

e from END reports
polarization effects induced by the collision interaction in the
target electronic cloud. Interestingly, the low-energy contri-
bution SL

e extends to intermediate energies, as a consequence
of the large charge exchange that neutralizes the beam. The
high-energy contribution from protons becomes important at
energies above 100 keV/amu.

In Fig. 5(b), we show the results for a helium target when
a hydrogen beam impinges on it. Again, our results show
an impressively good agreement with the experimental data
compilation. Our results show a threshold energy around 3
keV/amu resulting from the large excitation gap in helium and
the low charge-exchange process. This makes the low-energy
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(a)

(d)
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(e) (f)

(b) (c)

(i)

FIG. 5. Electronic and nuclear stopping cross sections for H, He, C, N, O, F, Ne, Cl, and Ar gas phase atoms for a hydrogen beam as a
function of the collision energy. The red dotted long-dashed line is the result of the universal expression, Eq. (42). The ab initio END electronic
stopping cross section is shown by blue dotted long-dashed line with a solid square symbol in the low-energy region. We also show the low-
and high-energy contributions to the electronic stopping cross section by a purple solid line, SL

e , and a dashed black line for SH
e , respectively.

For comparison, we show the results from SRIM [21] with a brown long-dashed line and also some experimental data, as compiled in Paul’s
database [49,50] shown with letter symbols. The experimental labels correspond to A [51], B [52], C [53], D [54], E [55], F [56], G [57],
H [58], I [59], J [60], K [61], L [62], M [63], N [64], O [65], P [66], Q [67], R [68], S [69], T [70], U [71], V [72], W [73], X [74], Y [75],
Z [76], and a [77]. In (c), the case for atomic carbon is compared the TDDFT results of Halliday and Artacho for hydrogen incident on graphite
(carbon) [48] shown with solid green circles with triple-dashed lines for comparison purposes. See text for discussion.

contribution small and the high-energy contribution dominant,
contrary to the hydrogen target case. This threshold energy
agrees well with Eq. (29) for the first excitation of a helium
atom of �E = 20.956 eV as reported by the Atomic Spectra
Database of NIST [78], such that we find a projectile thresh-
old energy of 7.7 keV. Again, this agrees with the threshold
observed for SH

e for the direct excitations, as here the low-
energy-loss contribution is small.

In Fig. 5(c), we show the case of a hydrogen beam colliding
with atomic carbon (gas phase). This case is shown to prove
the feasibility of our expression to be applied in condensed
phase materials. Let us keep in mind that the parametrization
of the bilinear expression has to be carried out through a theo-
retical approach that accounts for the condensed phase effects.
However, we show that when using a gas phase approach such
as END, we obtain excellent agreement when compared to the

available experimental data. The atomic gas phase description
by END is shown in good agreement up to 1 keV. At higher
collision energies, a better condensed phase description is
required.

In Fig. 5(d), we show the results for a gas phase atomic
nitrogen target when bombarded with a hydrogen beam. No-
tice that our expression predicts a large low-energy stopping
cross-section contribution, similar to the hydrogen target be-
havior, with a very good comparison the experiment. When
the charge-exchange process and energy loss is described
properly by the ab initio END approach, then the universal
expression has an excellent agreement with the experimen-
tal data, as observed for atomic oxygen targets, as shown
in Fig. 5(e). As the ionization potential increases, the high-
energy contribution increases too. Notice that the results for
atomic oxygen are also in excellent agreement, despite the
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FIG. 6. Nuclear stopping cross section for H, He, C, N, O, F, Ne, Cl, and Ar gas phase atoms for a hydrogen beam as a function of the
projectile collision energy. The red medium-dashed line is the result of Eq. (25). For comparison, we show the results from SRIM [21] with a
brown long-dashed line. See text for discussion.

experimental data being for a molecular oxygen target. The
difference is shown in the low-energy collision. In all our
results, we can observe the bilinear behavior shown in Fig. 4
and the respective threshold effects as a consequence of the
excitation gap as the ionization potential increases. In this
case, Eq. (29) predicts a threshold velocity of 0.42 and 0.39
a.u. in the projectile velocity, corresponding to 4.4 and 3.9
keV/amu in the projectile energy, respectively, for the first
excitation of �E = 10.3 and 9.14 eV for N and O targets
as reported by NIST [78]. The agreement with the threshold
projectile energy observed in SH

e is excellent.
In Figs. 5(f)–5(i), we show the results for the case of flu-

orine through argon gas phase atomic targets. There is no ex-
perimental data available for the case of a fluorine target, how-
ever, we find an excellent agreement with SRIM. Furthermore,
our results show an impressively good agreement with the
experimental data for the case of a neon target, as shown by
Fig. 5(g). Here, the excitation threshold occurs at 1 keV/amu
and our universal curve matches all the experimental data. For
F and Ne, NIST reports �E = 12.7 and 16.61 eV correspond-
ing to 5.5 and 7.3 keV/amu, in agreement with the observed

threshold shown by SH
e . The cases for chlorine and argon,

shown in Figs. 5(h) and 5(i), are in excellent agreement with
the available experimental data. Our results predict an increas-
ing contribution from the high-energy region as the ionization
potential increases as well as a threshold energy. In this case,
the NIST ASD database reports �E = 8.92 and 11.54 eV [78]
for the first direct excitation of Cl and Ar with a corresponding
threshold energy reported by Eq. (29) of 4 and 5.2 keV/amu
and in excellent agreement with the high-energy stopping
cross section SH

e . Thus, we find that the threshold predicted by
Eq. (29) corresponds to the high-energy expression SH

e given
by Eq. (36), while the results obtained by SL

e correspond to
the polarization (dragging or friction force) at low collision
energy and in agreement with the experimental data.

5. Nuclear stopping cross section

In Fig. 6, we show the nuclear stopping cross section as
obtained by the END approach for H+ (blue short-dashed line)
and neutral H (red medium-dashed line). In the same figure,
we show the averaged result over the beam charge fraction
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shown by the purple solid line. For comparison purposes, we
show the nuclear stopping cross section as obtained by the
SRIM approach (brown long-dashed line). In Fig. 6(a), we
show the results for a hydrogen beam colliding with an atomic
hydrogen gas target. We find that due to the same projectile-
target mass, the projectile charge makes a large difference
between the energy loss of protons and neutral hydrogen
projectiles when interacting with atomic hydrogen. Due to the
neutral hydrogen charge fraction in the beam, the dominant
contribution is due to neutral hydrogen collisions, with a very
good agreement with the SRIM results for E > 100 eV. For
lower collision energies, we predict a larger nuclear energy
loss. The case of a helium target is shown in Fig. 6(b). Here,
the dominant beam charge fraction is the proton, with a similar
contribution as the neutral hydrogen for collision energies
above 200 eV and in excellent agreement with SRIM. For
collision energies below 200 eV, we have a smaller nuclear
stopping cross section than SRIM. In Fig. 6(c), we show the
results for atomic carbon, while in Fig. 6(d), we show the re-
sults for atomic nitrogen, where we observe that both the
hydrogen and proton energy loss is very similar and in good
agreement with SRIM results, but with a smaller contribution
from END for collision energies below 100 eV. The case of
an oxygen target is shown in Fig. 6(e), where the proton and
hydrogen beams have the same nuclear energy loss and with a
very good agreement with SRIM for collision energies above
100 eV. This same behavior is observed for F, Ne, Cl, and
Ar in Figs. 6(f)–6(i) where the proton and neutral hydrogen
beams have similar energy losses. All these previous results
have a good comparison with the results of SRIM. Let us
recall that the SRIM results are obtained with a universal
potential proposed by Andersen and Ziegler [20]. From our
results, we confirm that this universal potential has a very
good description of the nuclear energy loss for the case of
heavy targets for collision energies above 100 eV/amu.

IV. CONCLUSIONS

We have derived a general expression for the electronic
stopping cross section for a gas phase atomic target when a

hydrogen beam slows down. Our expression is based on an
ab initio approach to account for the electronic excitations
and charge-exchange processes at low collision energies and
the correct Bethe approach at high collision energies. Inter-
estingly enough, the equation is simple and accurate. The
universal expression has the proper limits at low and high col-
lision energies and captures the threshold effects correctly. For
the low collision energy, we use the electron-nuclear dynam-
ics to obtain the correct description of the slowdown process
as well as the electron-capture and scattering processes. With
that, we report an analytic expression at low collision energy.
By using a probabilistic approach, we match it to the Bethe
electronic stopping cross section at high collision energies
by means of the charge fraction of the beam. A systematic
test of the equation against experiments shows a very good to
excellent agreement, which strengthens the physical basis on
which the equation has been derived. Of major relevance is
that our low-energy stopping cross section is bilinear in the
projectile velocity describing properly the threshold effects
due to the excitation spectrum of the target. We find that
the experimental threshold energy corresponds to dragging or
friction effects in the low-energy region, while our previous
reported theoretical result from Bethe’s theory works in the
high-energy contribution. We find that the charge-exchange
process is crucial to describe properly the low-energy region
up to the maximum of the stopping curve. At high energies,
a general analytical expression based on the harmonic oscil-
lator representation provides an excellent description of the
excitation process when adapted to an atomic target.

Work is in progress to extend this approach to the whole
periodic table as well as to molecular targets with the incor-
poration of phase effects.
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