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In heavy atoms and ions, nuclear structure effects are significantly enhanced due to the overlap of the electron
wave functions with the nucleus. This overlap rapidly increases with the nuclear charge Z . We study the
energy-level shifts induced by the electric-dipole and electric-quadrupole nuclear polarization effects in atoms
and ions with Z � 20. The electric-dipole polarization effect is enhanced by the nuclear giant dipole resonance.
The electric-quadrupole polarization effect is enhanced because the electrons in a heavy atom or ion move
faster than the rotation of the deformed nucleus, thus experiencing significant corrections to the conventional
approximation in which they “see” an averaged nuclear charge density. The electric nuclear polarization effects
are computed numerically for 1s, 2s, 2p1/2, and high-ns electrons. The results are fit with elementary functions
of nuclear parameters (nuclear charge, mass number, nuclear radius, and deformation). We construct an effective
potential which models the energy-level shifts due to nuclear polarization. This effective potential, when added
to the nuclear Coulomb interaction, may be used to find energy-level shifts in multi-electron ions, atoms, and
molecules. The fitting functions and effective potentials of the nuclear polarization effects are important for the
studies of isotope shifts and nonlinearity in the King plot which are now used to search for new interactions and
particles.
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I. INTRODUCTION

Hydrogen-like ions represent a powerful tool for study-
ing various aspects of quantum electrodynamics (QED) and
physics beyond the Standard Model (SM). Since these sys-
tems are, at least at the electronic level, free from many-body
interactions, the spectra of hydrogen-like ions may be calcu-
lated with high accuracy, see, e.g., Refs. [1,2] for a review.
Corrections to the electronic energy levels in these ions in-
cluding nuclear recoil, nuclear finite-size corrections, one-
and two-loop QED corrections (Lamb shift), and nuclear
polarization effects have been identified by the ever increas-
ing accuracy of modern experimental techniques, see, e.g.,
Refs. [3–5]. In this paper, we study the effects of nuclear
polarization on the energy spectra of hydrogen-like ions with
Z � 20. We also seek to extend the formalism for hydrogen-
like ions to the case of multielectron atoms.

The effects of nuclear polarization are significantly en-
hanced in a heavy ion because its s and p1/2 electron wave
functions have sizable overlaps with the nucleus. The tech-
nique for computing corrections to atomic spectra due to
the electric nuclear polarization was developed in a series of
papers [6–10]. Therein, it was demonstrated that the leading
corrections to an energy level arise from mixing with the
nuclear electric giant dipole resonance state (E1) and mixing
with nearby nuclear rotational states (E2). The latter mech-
anism may play a significant role in deformed nuclei where
the effect is enhanced by close nuclear rotational levels: in
very heavy atoms, these intervals become smaller than typical

energy intervals for virtual electron excitations. The goal of
this paper is to find the corrections to the atomic energy levels
due to these mechanisms for all medium and heavy atoms. The
results are presented in terms of simple interpolation formulas
which depend on the nuclear charge Z , nucleon number A,
nuclear radius R and quadrupole deformation parameter β2.

An important feature of a nuclear giant dipole resonance is
that its energy and transition strength are, to a good approx-
imation, monotonic functions of the atomic number Z and
mass number A. As a result, the energy levels shifts caused
by virtual nuclear giant dipole resonance transitions should
also be well described by functions which are monotonic in
these parameters. In this paper, we numerically calculate these
shifts for a variety of ions with (Z � 20) and fit the results
with elementary functions of Z , A, and R. These interpolat-
ing functions describe the corresponding energy shifts in all
heavy nuclei with a good accuracy: the error is under 2%, as
compared with the results of direct numerical calculations.

In a similar way, we fit the results of numerical calculations
for the energy shifts due to nuclear rotational E2 polarization.
The error of the interpolating functions in this case is also
under 2%. Note that, because the transition strengths of the
nuclear rotational E2 transitions have strong dependence on
the nuclear deformation parameter β2, which changes signifi-
cantly even between neighboring nuclei, the energy shifts are
nonmonotonic functions of Z and A. This behavior of the
energy shifts due to the nuclear polarization is expected to
give significant contributions to the nonlinearity of the King
plot for isotope shifts [11].
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In multielectron atoms and molecules, it is convenient
to describe the corrections to the spectra in terms of effec-
tive interactions VL(r) which should be added to the nuclear
Coulomb potential. By definition, the expectation values of
the potentials 〈VL(r)〉 are equal to the energy shifts due to the
dipole and quadrupole nuclear polarizations. These potentials
may be useful in the study of the nonlinearity of the King’s
plot [12–16], which provides information about physics be-
yond the SM [11,17–21]. For example, the nonlinearity may
be interpreted as a manifestation of a new boson-mediating
electron-nucleus interaction. The study of such non-SM non-
linear deviations would strongly benefit from the careful
accounting of SM contributions to the isotope shift nonlin-
earity. The current paper provides an important estimate for
the contributions due to the nuclear structure effects in atomic
spectra which would be subtracted from experimental data to
identify the strength of new, non-SM interactions.

The rest of the paper is organized as follows: In the next
section, we review the scalar and tensor nuclear polarizabil-
ities and estimate the effect of the latter in the spectra of
heavy atoms. In Sec. III, we calculate specific energy shifts
in the spectra of medium and heavy hydrogen-like ions and
multielectron atoms due to the scalar nuclear polarization.
The results for ions are represented in terms of interpolating
formulas which reproduce these energy shifts with good accu-
racy. The effective potentials that produce the energy shifts in
multielectron atoms are the subject of Sec. IV. In Sec. V, we
summarize and discuss our findings.

In this paper, we use natural units wherein h̄ = c = 1.
Nuclear energies are denoted by the Latin letter E whereas
for atomic energy levels we use the Greek letter ε.

II. TENSOR NUCLEAR POLARIZABILITY
CONTRIBUTION TO THE HYPERFINE SPLITTING OF

ATOMIC ENERGY LEVELS

In this section, we compare the effects of the hyperfine
splitting of atomic energy levels due to nuclear tensor polariz-
ability with those due to nuclear electric-quadrupole moment.
We start with a short review of the nuclear quadrupole moment
and its contribution to the atomic hyperfine structure. Then we
consider similar contributions from the nuclear tensor polariz-
ability and estimate the ratio between parameters of these two
effects.

A. Hyperfine splitting due to nuclear quadrupole deformation

In this section, we review the well-known results concern-
ing the contributions of the nuclear quadrupole moment to the
hyperfine level splitting [22,23]. Although the information in
this section is not new, it is useful for the next section, where
we estimate analogous contributions due to nuclear tensor
polarizability.

Let EηI be a nuclear energy corresponding to a state |ηIM〉.
Here, I is the nuclear spin, M is the magnetic quantum num-
ber, and η denotes all other relevant quantum numbers. By
definition, the quadrupole moment of the nucleus is a second-
rank tensor of the form

Qi j = 3Q

2I (2I − 1)

(
IiI j + I jIi − 2

3
I (I + 1)δi j

)
, (1)

where Q is the expectation value of the electric-quadrupole
operator Q̂i j = e(3rir j − r2δi j ) in the stretched state |ηI, M =
I〉. Here, e is the charge of the proton. This quantity Q may
be related to the intrinsic nuclear electric-quadrupole moment
Q0 (the quadrupole moment in the rotating body frame) via
[23,24]

Q = I (2I − 1)

(I + 1)(2I + 3)
Q0. (2)

The intrinsic quadrupole moment Q0 may, in turn, be related
to the nuclear radius R0 and the nuclear quadrupole deforma-
tion parameter β2 [25] via

Q0 = 3√
5π

eZR2
0β2. (3)

The values of quadrupole moments for different nuclei are tab-
ulated in Ref. [26]. In the nuclear droplet model, the nuclear
radius is described by the formula

R0 = 1.2A1/3 fm. (4)

Within a model where the nucleus behaves as a deformed
three-dimensional harmonic oscillator with frequencies ωx =
ωy �= ωz, one may derive an alternative representation for the
quadrupole moment (3) [27]:

Q0 = 2

5
eZR2

0ω̄
2

(
1

ω2
z

− 1

ω2
x

)
, (5)

where ω̄ = 1
3 (ωx + ωy + ωz) is a mean frequency which may

be estimated using the phenomenological formula [24]

ω̄ = 41A−1/3 MeV. (6)

In an atom, the nuclear quadrupole moment is known to
contribute to the hyperfine energy-level splitting [22,23] as

�εhfs,Q = BQ

3
2 K (K + 1) − 2I (I + 1)J (J + 1)

2I (2I − 1)2J (2J − 1)
, (7)

where J is the electronic total angular-momentum quantum
number, F is the atomic total angular-momentum quantum
number, which is the vector sum of I and J , and K ≡ F (F +
1) − I (I + 1) − J (J + 1). The coefficient BQ is proportional
to the nuclear quadrupole moment Q and the expectation value
of 1/r3 calculated with electronic radial wave functions,

BQ = eQ〈r−3〉CIJ . (8)

Here CIJ is a coefficient which takes into account the inte-
gration over angular variables. We do not specify the explicit
value of this coefficient here because it will drop out from the
final result.

B. Scalar and tensor nuclear polarizabilities

When an external electric field E is applied to a nucleus, the
nuclear energy levels EηI are shifted due the quadratic Stark
effect. These shifts may be written as �EηI = − 1

2αi jEiE j ,
where αi j is, by definition, the electric nuclear polarizability
tensor,

αi j ≡ −2
∑
η′I ′M ′

〈ηIM|di|η′I ′M ′〉〈η′I ′M ′|d j |ηIM〉
EηI − Eη′I ′

. (9)
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Here d = ∑A
k=1 qkrk is the nuclear electric-dipole operator, qk

is the nucleon charge which appears due to the recoil effect,
qk = eN/A for protons, and qk = −eZ/A for neutrons.

The symmetric tensor αi j may be decomposed into a
trace, α0 = ∑

k αkk/3, and a traceless part, α
(T)
i j = αi j −

δi j
∑

k αkk/3. Conventionally, the components α0 and α
(T)
i j are

referred to as the scalar and tensor polarizabilities, respec-
tively, see, e.g., Ref. [22].

The scalar polarizability will be considered in Sec. III. In
the present section, we focus on the tensor part. Similarly to
the nuclear quadrupole moment (1), α

(T)
i j may be expressed in

terms of the nuclear-spin operator Î as

α
(T)
i j = 3α2

2I (2I − 1)

(
IiI j + I jIi − 2

3
I (I + 1)δi j

)
, (10)

where the coefficient α2 is the value of α(T)
zz calculated with

the stretched state |ηII〉. Note that Eq. (10) defines the tensor
polarizability α2 in the laboratory frame. The corresponding
value in the rotating body frame α

(0)
2 is related to α2 via an

equation similar to (2):

α2 = I (2I − 1)α(0)
2

(I + 1)(2I + 3)
. (11)

The quantity α
(0)
2 may be estimated in the deformed

three-dimensional harmonic-oscillator model with frequen-
cies ωx = ωy �= ωz which was used to derive Eq. (5). In
Cartesian coordinates, the nuclear states have the form
|nxnynz〉 ≡ |nx〉|ny〉|nz〉 where nx,y,z are the quantum numbers
in respective directions. With these functions, the diagonal
components of the electric nuclear polarizability (9) read

α
(0)
ii = 2

A∑
k=1

q2
k

∑
n′=n±1

〈n|rk,i|n′〉〈n′|rk,i|n〉
E (i)

n′ − E (i)
n

, (12)

where E (i)
n = ωi(n + 1

2 ) are the harmonic-oscillator energies.
Note that, for any particular i, ωi is assumed to be the same
for all nucleons. The computation of the matrix elements in
Eq. (12) is elementary [28]. Using the identity

∑A
k=1 q2

k =
e2NZ/A, one finds

α
(0)
2 = 2

3
α(0)

zz − 1

3

(
α(0)

xx + α(0)
yy

) = 2NZ

3A

e2

mp

(
1

ω2
z

− 1

ω2
x

)
,

(13)

where mp is the nucleon mass.
Since the tensors (1) and (10) have the same structure,

at the atomic level, the operator (10) produces a hyperfine
energy-level splitting analogous to Eq. (7), but with the con-
stant BQ replaced by

Bα = e2α2〈r−4〉CIJ . (14)

An estimate of the shifts due to tensor nuclear polarizability
may thus be obtained by computing the ratio Bα/BQ. Note
that the power of r in Eq. (14) is different from that in Eq. (8)
because the operators (1) and (10) have different dimensions.
Making use of Eqs. (5) and (13), we find

Bα

BQ
= 5Ne2

3Ampω̄2R2
0

〈r−4〉
〈r−3〉 . (15)

The expectation values of the operators r−3 and r−4 in
Eq. (15) receive their main contributions from the near-
nucleus region, where r � aB/Z1/3. In this region, the
screening of the Coulomb field of the nucleus is negligible and
the electron radial wave functions may be well approximated
by the Bessel functions [29],

fn jl (r) = cn jl

r

[
(γ + κ )J2γ (x) − x

2
J2γ−1(x)

]
,

gn jl (r) = cn jl

r
ZαJ2γ (x), (16)

where x ≡ √
8Zr/aB, γ = (κ2 − Z2α2)1/2, and κ =

(−1) j−l+1/2( j + 1/2). The value of the normalization
constant cn jl may be found in Ref. [29]. For our purpose, the
explicit value of this constant is not needed since it cancels
out in the ratio (15).

With the wave functions (16), the expectation value of the
r−p operator may be found analytically for p < 1 + 2γ ,

〈r−p〉
c2

n jl

= 1

32

(
8Z

aB

)p−1
�(p − 3/2)�(1 + 2γ − p)√

π�(p)�(p + 2γ )

× {2γ 2 + p[5 + p(p − 4) + 4Z2α2] − 6Z2α2

+ κ2(4p − 6) − 2κ (p − 1)(2p − 3) − 2}. (17)

Here we have used the wave functions (16) with j > 1/2
because the expectation values of the operators (1) and (10)
vanish in s1/2 and p1/2 states. The equation (17) allows us to
estimate the ratio of the expectation values operators r−4 and
r−3 for heavy atoms (Z > 70) in the p3/2 state:

〈r−4〉
〈r−3〉 = ξZ

aB
, ξ ≈ 1.3. (18)

Substituting this relation into Eq. (15), we find∣∣∣∣ Bα

BQ

∣∣∣∣ = 5ξNZe2

3AaBmpω̄2R2
0

≈ (6.1 × 10−7)Z, (19)

where we have used Eqs. (4) and (6) and assumed the approx-
imations N ≈ 1.5Z and A ≈ 2.5Z for heavy nuclei.

Numerically, for heavy atoms with Z ≈ 100, the ratio in
Eq. (19) is on the order of 10−4 and is smaller for lighter
elements. The effect of the tensor nuclear polarizability on
electronic spectra is nearly four orders of magnitude smaller
than that of the quadrupole nuclear moment. As a result, in
many cases, the nuclear tensor polarizability effect may be
neglected. In the next section, we focus on the effects of scalar
nuclear polarizability.

III. ENERGY SHIFT DUE TO SCALAR NUCLEAR
POLARIZABILITY IN MEDIUM AND HEAVY

HYDROGEN-LIKE IONS

In this section, we study the energy-level shifts in medium
and heavy hydrogen-like ions due the nuclear polarization
induced by the electron-nucleon interaction. In Sec. III A,
we review the necessary theoretical background developed
in Refs. [6–10]. In the subsequent sections, we present and
discuss the results of numerical calculations of these effects.
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FIG. 1. Contributions to electronic self-energy due to nuclear
polarization. Solid and double solid lines correspond to the electron
and nucleon propagators, respectively, while the wavy lines represent
the photon propagators.

A. Theoretical background

It is well known that nuclear polarization due to the
electron-nucleon interaction contributes to the electronic
Lamb shift, see, e.g., Ref. [1] for a review. In light atoms and
ions this effect is very small [30,31], but it becomes significant
in heavy atoms and ions, where the electron wave functions
have sizable overlap with the nucleus and may thus be con-
siderably affected by the nuclear structure. In this section we

study these energy shifts in hydrogen-like medium and heavy
ions. The effects in multielectron atoms will be discussed
in Sec. IV. Motivated by future study of the nonlinearity
of King’s plot [13] induced by the nuclear polarization, we
mainly focus on the even-even nuclei with vanishing nuclear
spin.

The atomic energy shifts due to nuclear polarization are
well understood within the framework of QED and may be
represented by a two-photon exchange between the electron
and an unpaired nucleon in the nucleus. This process may be
illustrated by the Feynman diagrams in Fig. 1.

As mentioned above, we are considering nuclei with van-
ishing angular momentum in the ground state, L = 0. The
excited nuclear states may, on the other hand, have arbitrary
angular momentum L and energy EL. The initial electronic
state may be characterized by its principal quantum number
n, its orbital angular momentum l and its total angular mo-
mentum j. The electronic energies will be denoted εnl j . The
atomic energy level shift due to the processes presented in
Fig. 1 was calculated in Ref. [10] and reads

�εnl j = − α

4π
(2L + 1)B(EL; L → 0)

∑
j′

(2 j′ + 1)

(
j′ j L
1
2 − 1

2 0

)2

×
(∑

n′l ′

|〈nl j|FL|n′l ′ j′〉|2
εn′l ′ j′ − εnl j + EL

+
∫ −me

−∞

|〈nl j|FL|ε j′〉|2
ε − εnl j − EL

dε +
∫ ∞

me

|〈nl j|FL|ε j′〉|2
ε − εnl j + EL

dε

)
, (20)

where B(EL; L → 0) is the reduced transition probability for
nuclear electric transitions from an excited state with angular
momentum L to the ground state, and FL(r) is a radial function
of the form

FL(r) = 4π

(2L + 1)RL
0

(
rL

RL+1
0

�(R0 − r) + RL
0

rL+1
�(r − R0)

)
,

(L � 1). (21)

which behaves like 1/rL+1 outside the nucleus and like rL

inside. The function (21) represents a regularization of the
1/rL+1 potential to the case of an extended nucleus.

The three terms in the second line in Eq. (20) correspond
to the contributions from intermediate electronic states in dis-
crete, negative-energy continuum spectra and positive-energy
continuum spectra, respectively. The matrix elements in these
terms are defined as

〈A|FL|B〉 ≡
∫ ∞

0
drr2FL( fA fB + gAgB), (22)

where fA and fB and gA and gB are, respectively, the upper and
lower Dirac radial wave functions of the electron.

It was pointed out in Refs. [7,8] that the intermediate
electronic states in the discrete spectrum give negligible
contribution to the energy shift as compared with the con-
tributions from the lower and upper continua. Indeed, the
radial integral in Eq. (22) receives the main contribution from
the vicinity to the surface of the nucleus, where the radial
function (21) peaks. Thus, the dominant contributions come
from small distances, i.e., from states with high energies in the

continuous spectrum. Moreover, the discrete spectrum terms
in Eq. (20) are suppressed by large denominators because
εn′l ′ j′ − εnl j � EL. Therefore, in our calculations below, we
ignore the contributions from the discrete spectrum.

In Eq. (20), the leading contributions come from the low-L
transitions while the higher-L terms are suppressed because
the corresponding electron wave functions have a small over-
lap with the nucleus. Therefore, to a good degree of accuracy,
it is sufficient to consider only the terms with L = 1 and L =
2: the former corresponds to a nuclear giant electric-dipole
resonance while the latter may be interpreted as a contribution
from nuclear rotation associated with the collective nuclear
quadrupole moment in a deformed nucleus. In the following
sections, we consider these two contributions separately.

B. Contribution from giant electric-dipole resonance transition

The giant electric-dipole resonance nuclear transitions cor-
respond to L = 1 in Eq. (20),

�εnl j = − 3α

4π
B(E1)

∑
j′

(2 j′ + 1)

(
j′ j 1
1
2 − 1

2 0

)2

×
(∫ −me

−∞

|〈nl j|F1|ε j′〉|2dε

ε − εnl j − EGR

+
∫ ∞

me

|〈nl j|F1|ε j′〉|2dε

ε − εnl j + EGR

)
, (23)
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FIG. 2. Shifts of 1s, 2s, and 2p1/2 energy levels in medium and heavy hydrogen-like ions (dots) due to nuclear polarization through E1
nuclear transitions. Solid lines represent the best fit of these shifts with the function (28).

where the energy of giant dipole resonance, EGR, in a heavy
nucleus is given by [25,32]

EGR = 95(1 − A−1/3)A−1/3 MeV. (24)

The transition probability B(E1) ≡ B(E1; 1 → 0) in
Eq. (23) for giant electric-dipole resonance transitions may be
estimated by using the Thomas-Reiche-Kuhn sum rule [25],
giving

B(E1) ≡ B(E1; 1 → 0) = 3

8π

Z (A − Z )e2

AEGRmp
. (25)

Integration of experimental data for the giant resonance is
known to saturate over 90% of the sum rule [24]. Therefore,
we assume that Eq. (25) provides the transition probability
with error under 10%.

Using the formula (23) with the nuclear transition strength
(25), we numerically calculate the energy shifts for 1s, 2s, and
2p1/2 states in hydrogen-like ions. The radial integrals (22)
are calculated numerically by using known continuum and
discrete-state Dirac radial wave functions, taking into account
the finite size of the nucleus. The integrals over dε in Eq. (23)
are also evaluated numerically.

We consider hydrogen-like ions with nuclear charges rang-
ing from Z = 20 (calcium) to Z = 98 (californium) and
extend the results to superheavy elements up to Z = 136. For
each Z , ions with different A are also considered. Note that, al-
though we restrict ourselves to even-even nuclei, Eq. (23) also
applies to nuclei with odd A, only in this case the structure of
atomic energy levels is more complicated due to the hyperfine
interactions. On the other hand, extending the current compu-
tation to odd-A nuclei proves to be convenient for fitting the
results, see Eqs. (26) and (27) below.

The results of our numerical calculation are presented in
Table I. In Table II, we compare our results with those pub-
lished earlier [7–10] for certain heavy elements. This table
shows that our numerical methods provide the accuracy within
5% of earlier publications [7–10].

One of goals in this paper is to establish an analytical de-
pendence �ε = �ε(Z, A), which should give the energy shifts
for medium and heavy ions including isotopic dependence.
We find that to a high degree of accuracy, the isotopic depen-
dence of the energy shifts is linear. For each Z we consider the

isotope with the atomic number1

A0(Z ) = [−17.62 + 2.737Z], (26)

and write the mass number of the other isotopes as

A = A0(Z ) + �A. (27)

In the series decomposition of energy shift �ε, it is suffi-
cient to keep only linear terms in �A, �ε(Z, A) = �ε0(Z ) +
�ε1(Z )�A. The functional behavior of �ε0(Z ) is presented
by dots in Fig. 2 for 1s, 2s, and 2p1/2 states. These graphs
show that −�ε0(Z ) grows approximately exponentially with
Z . It may be verified that �ε1(Z ) shows similar behavior.
Therefore, we use the following fitting functions to approx-
imate the energy shift:

�ε(Z,�A) = − [exp(a0 + a1Z + a2Z2)Za3

+ exp(b0 + b1Z + b2Z2)Zb3�A] meV, (28)

with fitting parameters a0, a1, a2, and a3 and b0, b1, b2, and b3

presented in Table III. With these parameters, equation (28)
reproduces the numerical results in Table I with an accuracy
under 2% for 20 � Z � 98. As a demonstration, the functions
(28) are plotted in Fig. 2 for 1s, 2s, and 2p1/2 states.

In computing the energy-level shifts in Table I, we em-
ployed the empirical formula (4) for the nuclear radius. This
formula is, however, only approximate, and experimental val-
ues of R may have deviations from Eq. (4),

R = R0 + δR. (29)

To take into account such deviations, we modify Eq. (28) as

�ε(Z, A, R) = �ε(Z, A, R0) + δRε(Z )δR, (30)

where �ε(Z, A, R0) is given by Eq. (28), and the correction
term δRε(Z ) may be approximated by the function

δRε(Z ) = exp(c0 + c1Z + c2Z2)Zc3 meV/fm. (31)

The coefficients c0, c1, c2, and c3 in Eq. (31) are computed
numerically and collected in Table III. We stress that the

1In Eq. (26), the square brackets denote the rounding to the nearest
integer. This formula covers most of the stable isotopes (when they
exist) for each Z in the region 20 � Z � 98. We note also that
the choice of A0 here is entirely for convenience. Different choices
require different fitting functions and parameters but are otherwise
equivalently legitimate.
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TABLE I. Nuclear giant electric-dipole resonance contributions to the energy shifts of the 1s, 2s, and 2p1/2 levels in hydrogen-like ions
due to nuclear polarization effects. The values of the coefficient δRε characterizing the linear dependence of �ε on the nuclear radius variation
�R are also presented. The errors of energy-level shifts (which include errors from numerical calculations of integrals of electronic matrix
elements and errors in the nuclear reduced transition probability) are estimated to be under 12% for all atoms. In the brackets, we present
the deviations of the energy-level shifts obtained via the fitting formula (28) from the results of numerical calculations. Note that the fitting
function (28) is applicable for 20 � Z � 98.

Z A −�ε1s −�ε2s −�ε2p1/2 δRε1s δRε2s δRε2p1/2

(meV) (meV) (meV) (meV/fm) (meV/fm) (meV/fm)

20 40 3.93 × 10−3 (0.33%) 5.01 × 10−4 (0.36%) 1.84 × 10−6 (0.31%) 3.53 × 10−4 4.48 × 10−5 1.69 × 10−7

20 44 4.37 × 10−3 (0.12%) 5.57 × 10−4 (0.17%) 2.04 × 10−6 (0.064%)
26 54 1.53 × 10−2 (1.7%) 1.97 × 10−3(1.7%) 1.24 × 10−5 (1.41%) 1.45 × 10−3 1.88 × 10−4 1.22 × 10−6

26 60 1.70 × 10−2 (1.2%) 2.20 × 10−3(1.2%) 1.39 × 10−5 (0.90%)
34 72 6.29 × 10−2 (0.82%) 8.33 × 10−3 (0.86%) 9.23 × 10−5 (1.2%) 6.53 × 10−3 8.64 × 10−4 9.80 × 10−6

34 80 7.00 × 10−2 (0.88%) 9.26 × 10−3 (0.88%) 1.03 × 10−4 (1.2%)
42 92 0.207 (0.79%) 2.83 × 10−2 (0.78%) 4.93 × 10−4 (0.85%) 2.08 × 10−2 2.84 × 10−3 5.03 × 10−5

42 100 0.225 (0.62%) 3.07 × 10−2 (0.58%) 5.36 × 10−4 (0.61%)
50 112 0.583 (0.33%) 8.23 × 10−2 (0.28%) 2.11 × 10−3 (0.092%) 6.44 × 10−2 9.09 × 10−3 2.36 × 10−4

50 126 0.649 (0.42%) 9.17 × 10−2 (0.35%) 2.35 × 10−3 (0.12%)
58 136 1.51 (0.078%) 0.223 (0.13%) 8.00 × 10−3 (0.44%) 0.167 2.46 × 10−2 8.91 × 10−4

58 142 1.57 (0.075%) 0.232 (0.13%) 8.31 × 10−3 (0.45%)
66 154 3.51 (0.095%) 0.543 (0.12%) 2.64 × 10−2 (0.38%) 0.409 6.32 × 10−2 3.09 × 10−3

66 164 3.70 (0.20%) 0.573 (0.22%) 2.79 × 10−2 (0.48%)
74 180 8.11 (0.098%) 1.33 (0.077%) 8.55 × 10−2 (0.15%) 0.974 0.159 1.02 × 10−2

74 186 8.33 (0.091%) 1.36 (0.070%) 8.78 × 10−2 (0.14%)
82 204 18.0 (0.15%) 3.13 (0.20%) 0.262 (0.36%) 2.22 0.388 3.22 × 10−2

82 210 18.4 (0.17%) 3.20 (0.23%) 0.268 (0.39%)
90 228 39.1 (0.15%) 7.33 (0.18%) 0.792 (0.45%) 5.13 0.963 0.103
90 230 39.4 (0.15%) 7.38 (0.18%) 0.797 (0.45%)
92 234 47.5 (0.21%) 9.07 (0.20%) 1.04 (0.47%) 6.34 1.21 0.137
92 240 48.4 (0.23%) 9.23 (0.22%) 1.06 (0.47%)
98 248 84.3 (0.55%) 17.1 (0.64%) 2.38 (0.67%) 12.2 2.48 0.339
98 252 85.3 (0.56%) 17.3 (0.66%) 2.40 (0.69%)
106 272 186 41.2 7.39 29.0 6.44 1.13
106 274 187 41.4 7.42
114 294 426 104 24.4 71.3 17.5 4.10
114 296 427 104 24.5
122 316 1050 286 90.8 195 53.6 16.5
122 318 1053 287 91.1
130 338 3046 936 437 642 200 90.5
130 340 3054 939 438
136 354 9972 3334 2629 2427 829 629
136 356 9987 3339 2633

TABLE II. Comparison of our calculations for the nuclear giant
dipole resonance contributions to the energy shifts due to nu-
clear polarization (23) with earlier calculated values presented in
Refs. [7–10]. The difference of these results is within 5%. The values
of �ε are given in units of meV.

Z A �ε1s �εref
1s �ε2s �εref

2s �ε2p �εref
2p1/2

82 208 18.2 17.3 3.2 3.0 0.27
90 232 39.6 41.8 7.4 7.7 0.80 0.84
92 234 47.5 49.8 9.1 9.4 1.0 1.1
92 236 47.8 50.1 9.1 9.4 1.1 1.1
92 238 48.1 42.4 9.2 8.1 1.1 1.0
98 250 84.8 87.2 17.2 17.3 2.4 2.4
98 252 85.3 87.6 17.3 17.4 2.4 2.5

corrections due to variations of the nuclear radius are impor-
tant within the study of possible nonlinearity of King’s plot
[12–16] and physics beyond the SM [11,17–21].

We note that here we consider only the giant dipole res-
onance nuclear transitions with the nuclear energy (24) and
reduced transition probability (25). In certain nuclei, such
as 228Th, there can be additional E1 transitions from the
ground state to low-lying levels with typical energy in the
keV range. As a result, the contributions of such transitions
to the overall energy shift are, to a certain degree, enhanced
when compared with other typical transitions with energy in
the MeV range. However, we point out that the probability
B(E1) of these low-lying transitions is three to four orders
of magnitude smaller than that of the giant dipole resonance.
Therefore, contributions from isolated low-lying E1 nuclear
energy levels are still negligible.
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TABLE III. Numerical values of the fitting parameters in the for-
mulas (28) and (31) describing 1s, 2s, and 2p1/2 energy-level shifts
in hydrogen-like ions due to nuclear giant electric-dipole resonance.

1s 2s 2p1/2

a0 −22.2 −24.4 −36.3
a1 −2.21 × 10−2 −2.36 × 10−2 −2.92 × 10−2

a2 3.07 × 10−4 3.66 × 10−4 4.40 × 10−4

a3 5.64 5.67 7.80
b0 −19.9 −22.0 −33.5
b1 4.23 × 10−3 3.44 × 10−3 4.41 × 10−3

b2 1.77 × 10−4 2.32 × 10−4 2.82 × 10−4

b3 3.56 3.57 5.52
c0 −24.0 −26.2 −38.1
c1 −1.70 × 10−2 −1.94 × 10−2 −2.56 × 10−2

c2 3.39 × 10−4 4.02 × 10−4 4.75 × 10−7

c3 5.44 5.49 7.63

Finally, we point out that the accuracy of calculation of
the energy shift with Eq. (23) strongly depends on the value
of the nuclear reduced transition probability (25). The latter
formula provides an approximate, average description of giant
dipole resonance transitions, and particular isotopes may have
considerable deviations from this formula. For such isotopes
one can improve the accuracy of calculations of the energy
shift by applying the correcting coefficient Bexact (E1)/B(E1),
where Bexact (E1) is the exact value of the nuclear reduced
transition probability found from experiments and B(E1) is
the approximate value calculated with the use of Eq. (25). In
particular, the values of Bexact (E1) may be derived from the
photonuclear cross-section data collected, e.g., in Ref. [33].

C. Contribution from nuclear rotational transition

A spinless nucleus with quadrupole deformation may have
collective E2 excitations from the ground state into the rota-
tional band. The energies of these transitions are typically on
the order of a few dozens keV, that is, much lower than the
energy of giant electric dipole resonance transition which is
about a dozen of MeV. As a result, the shifts due to nuclear
rotational transitions receive sizable enhancements.

It is worth noting that nuclear transitions to higher
rotational states give minor contributions to the atomic
energy-level shifts [8] because the reduced transition prob-
ability B(E2; 2 → 0) decreases rapidly for such states, and
there is additional suppression from higher nuclear energy in
the denominator. Therefore, in this paper we consider only
the nuclear transition from the ground state to the lowest
rotational state with L = 2. In this case, Eq. (20) may be
written as

�εnl j = − 5α

4π
B(E2)

∑
j′

(2 j′ + 1)

(
j′ j 2
1
2 − 1

2 0

)2

×
( ∫ −me

−∞

|〈nl j|F2|ε j′〉|2dε

ε − εnl j − Erot

+
∫ ∞

me

|〈nl j|F2|ε j′〉|2dε

ε − εnl j + Erot

)
, (32)

where Erot is the energy of the lowest nuclear rotational
level.

The transition probability B(E2) ≡ B(E2; 2 → 0) may be
expressed via the intrinsic nuclear quadrupole moment (5) as
B(E2; 2 → 0) = Q2

0/(16π ) (see, e.g., Ref. [25]), which gives

B(E2) ≡ B(E2; 2 → 0) = 1

5

(
3

4π

)2

Z2e2R4
0β

2
2 . (33)

Numerical values of the nuclear deformation parameter β2 as
well as the reduced transition probability B(E2) with the cor-
responding error estimates may be found in, e.g., Ref. [34]. In
this reference, the values of the reduced transition probability
are calculated from known values of the lifetime of the excited
nuclear state. Lifetimes of the excited nuclear states may be
found, e.g., in Ref. [35].

According to an empirical rule [25], the energy of the first
excited 2+ nuclear rotational state is connected to its transition
probability from the ground state via

ErotB(E2) ≈ 25Z2A−1 e2 MeV fm4, (34)

which, along with Eq. (33), allows us to express the energy
Erot in terms of macroscopic nuclear parameters,

Erot ≈ 2π2

9AR4
0β

2
2

GeV fm4. (35)

It is worth noting that this formula is applicable to deformed
nuclei with 0.2 � β2 � 0.35.

Substituting Eqs. (33) and (35) into Eq. (32), one may
calculate numerically the atomic energy-level shifts due to
nuclear rotational transitions using a procedure analogous to
that for the giant electric-dipole resonance case. There is,
however, one important feature in the rotational case: The
reduced transition probability (33) depends explicitly on the
nuclear deformation parameter β2 which is, in general, a non-
monotonic function of Z and A. Moreover, experimental data
of B(E2) collected, e.g., in Ref. [34] have some deviation
from formula (33). As a result, we shall keep B(E2) as a
free parameter and calculate the quantity �εnl j/B(E2), i.e.,
the electronic matrix element only.

Another source of dependence on β2 is the rotational en-
ergy Erot in the denominator in Eq. (32). However, the energy
integrals in Eq. (32) vary slowly for different values of Erot

given by Eq. (35) because these integrals receive dominant
contributions from ε ≈ 50me whereas Erot � 1 MeV. Thus, in
our numerical calculation, we use an average value β2 = 0.27
to estimate the rotational energy Erot in the denominator in
Eq. (32).

We numerically calculate the quantity �εnl j/B(E2) for 1s,
2s, and 2p1/2 energy levels in hydrogen-like ions with nuclear
deformations 0.2 � β2 � 0.35. The results of these calcu-
lations are collected in Table IV. Comparison with known
results (see Table V) shows that our numerical methods allow
us to calculate the integrals of electronic matrix elements in
Eq. (32) with errors not exceeding 7%.
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TABLE IV. Nuclear rotational transition contributions to the energy shifts of the 1s, 2s, and 2p1/2 levels in hydrogen-like ions due to nuclear
polarization effects. The errors of numerical calculations of these quantities are estimated to be less than 7% for all atoms. The values in the
table need to be multiplied by the reduced nuclear transition probability B(E2) ≡ B(E2; 2 → 0) to give the actual energy shifts. The values of
B(E2) for different nuclei may be found, e.g., in Ref. [34]. The values of the coefficient δRε/B(E2) characterizing the linear dependence of
�ε/B(E2) on the nuclear radius variation �R are also presented. In the brackets, we present the deviations of the energy-level shifts obtained
via the fitting formula (36) from the results of numerical calculations. Note that the fitting function (36) is applicable for 26 � Z � 98.

Z A − �ε1s
B(E2) − �ε2s

B(E2) −�ε2p1/2

B(E2) − δRε1s
B(E2) − δRε2s

B(E2) − δRε2p1/2

B(E2)

( meV
103 fm4 ) ( meV

103 fm4 ) ( meV
103 fm4 ) ( meV

103 fm5 ) ( meV
103 fm5 ) ( meV

103 fm5 )

26 54 2.00 (0.39%) 0.259 (0.37%) 1.59 × 10−3 (0.33%) 0.680 8.80 × 10−2 5.70 × 10−4

26 56 1.96 (0.44%) 0.253 (0.42%) 1.56 × 10−3 (0.39%)
34 74 5.44 (1.3%) 0.721 (1.2%) 7.88 × 10−3 (1.2%) 1.86 0.245 2.78 × 10−3

34 76 5.37 (1.4%) 0.711 (1.4%) 7.76 × 10−3 (1.3%)
44 102 14.6 (0.82%) 2.01 (0.82%) 3.83 × 10−2 (0.88%) 4.88 0.671 1.32 × 10−2

44 104 14.4 (0.94%) 1.98 (0.93%) 3.77 × 10−2 (1.0%)
46 108 17.4 (0.86%) 2.41 (0.85%) 5.08 × 10−2 (0.90%) 5.48 0.761 1.64 × 10−2

46 110 17.2 (0.87%) 2.38 (0.86%) 5.01 × 10−2 (0.92%)
62 152 68.3 (0.78%) 10.3 (0.80%) 0.43 (0.97%) 22.1 3.34 0.141
62 154 67.7 (0.86%) 10.2 (0.87%) 0.42 (1.0%)
66 162 91.2 (0.55%) 14.6 (0.57%) 0.71 (0.68%) 30.9 4.78 0.233
66 164 93.3 (0.55%) 14.5 (0.57%) 0.70 (0.68%)
70 172 129 (0.10%) 20.6 (0.10%) 1.14 (0.13%) 41.0 6.54 0.368
70 174 128 (0.06%) 20.4 (0.071%) 1.13 (0.097%)
74 184 175 (0.39%) 28.7 (0.40%) 1.83 (0.47%) 53.5 8.79 0.565
74 186 173 (0.40%) 28.5 (0.41%) 1.81 (0.48%)
90 228 607 (0.46%) 114 (0.51%) 12.3 (0.71%) 185 34.9 3.74
90 230 602 (0.44%) 114 (0.49%) 12.2 (0.69%)
92 234 710 (0.15%) 136 (0.18%) 15.6 (0.32%) 220 42.2 4.81
92 236 705 (0.14%) 135 (0.17%) 15.5 (0.31%)
98 250 1151 (0.38%) 235 (0.44%) 32.4 (0.67%) 360 73.4 10.1
98 252 1143 (0.36%) 234 (0.42%) 32.2 (0.65%)
106 272 2249 503 89.6 706 158 28.0
106 274 2234 500 89.0
114 294 2249 1147 268 1503 372 86.0
114 296 2234 1140 266
122 316 1.04 × 104 2885 913 3639 1009 315
122 318 1.03 × 104 2861 907
130 338 2.79 × 104 8761 4090 1.06 × 104 3328 1526
130 340 2.77 × 104 8701 4062
136 354 8.80 × 104 3.05 × 104 2.42 × 104 3.64 × 104 1.26 × 103 9756
136 356 8.74 × 104 3.03 × 104 2.40 × 104

For each ion, we consider several isotopes to determine the
isotopic dependence of the energy shift with respect to the
quantity �A as defined in Eq. (27). We find that these results

TABLE V. Comparison of our calculations for the nuclear ro-
tational transition contributions to the energy shifts due to nuclear
polarizability (32) with previously calculated values presented in
Refs. [7–10]. The difference between these results in within 7%. The
quantities �ε/B(E2) are given here in units of meV/fm4.

Z A �ε1s
B(E2)

�εref
1s

B(E2)
�ε2s
B(E2)

�εref
2s

B(E2)
�ε2p

B(E2)

�εref
2p

B(E2)

90 230 0.602 0.605 0.114 0.112 0.0122 0.0120
92 234 0.710 0.708 0.136 0.133 0.0156 0.0153
92 236 0.705 0.702 0.135 0.132 0.0155 0.0152
98 250 1.15 1.12 0.235 0.213 0.0324 0.0311
98 252 1.14 1.07 0.234 0.213 0.0322 0.0298

may be approximated with the exponential function,

�ε(Z,�A)

B(E2)
= [− exp(ã0 + ã1Z + ã2Z2)Zã3

+ exp(b̃0 + b̃1Z + b̃2Z2)Zb̃3�A]
meV

103 fm4 ,

(36)

where the values of the coefficients ã0, ã1, ã2, and ã3 and b̃0,
b̃1, b̃2, and b̃3 are collected in Table VI. The function (36) with
�A = 0 is plotted in Fig. 3 for 1s, 2s, and 2p1/2 energy-level
shifts.

Analogously to Eqs. (30) and (31), we find the corrections
due to the deviation of the actual nuclear radius (29) from the
approximate formula (4) in the form

δRε(Z )

B(E2)
= exp(c̃0 + c̃1Z + c̃2Z2)Zc̃3

meV

103 fm5 , (37)
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FIG. 3. Shifts of 1s, 2s, and 2p1/2 energy levels in heavy hydrogen-like ions (dots) due to nuclear polarization through rotational E2
transitions. Solid lines represent the best fit of these shifts with the function (36).

where the coefficients c̃0, c̃1, c̃2, and c̃3 are given in Table VI
for 1s, 2s, and 2p1/2 states.

We point out that the results of this section readily gener-
alize to superheavy elements. In Tables I and IV we present
estimates of energy shifts for such elements up to Z � 136.

IV. EFFECTIVE POTENTIAL FOR SCALAR NUCLEAR
POLARIZATION CORRECTIONS IN MEDIUM AND

HEAVY ATOMS

In Sec. III, we calculated shifts of lowest energy levels in
heavy hydrogen-like ions. This calculation may be performed
with high accuracy because it makes use of exact electron
wave functions in the discrete and continuous spectra. A gen-
eralization of these results to multielectron ions and neutral
heavy atoms is hindered by many-body effects which are usu-
ally taken into account within the many-body theory based on
the relativistic Hartree-Fock basis states. Precision calculation
of energy-level shifts in multielectron atoms and ions due to
electric polarization of the nucleus goes beyond the scope of
this paper because it requires special numerical methods and
computer codes which take into account many-body effects.

In this section, however, we demonstrate that the effect of
nuclear polarization may be taken into account by an effective
potential which, when added to the unperturbed Hamiltonian,
gives the same atomic energy-level shifts as have been found

TABLE VI. Numerical values of the fitting coefficients in
Eqs. (36) and (37) describing 1s, 2s, and 2p1/2 energy-level shifts
in hydrogen-like ions due to nuclear E2 rotational transitions in
deformed nuclei.

1s 2s 2p1/2

ã0 −5.78 −10.3 −24.8
ã1 −8.74 × 10−3 −1.10 × 10−2 −1.92 × 10−2

ã2 2.74 × 10−4 3.36 × 10−4 4.18 × 10−4

ã3 3.41 3.46 5.70
b̃0 −8.27 −12.7 −26.9
b̃1 −1.59 × 10−2 −1.80 × 10−2 −2.33 × 10−2

b̃2 3.02 × 10−4 3.64 × 10−4 4.33 × 10−4

b̃3 2.81 2.85 4.96
c̃0 −7.06 −11.5 −25.8
c̃1 −1.54 × 10−2 −1.78 × 10−2 −2.51 × 10−2

c̃2 3.00 × 10−4 3.64 × 10−4 4.41 × 10−4

c̃3 3.52 3.57 5.75

in the previous section.2 Given that this potential is local and
has a simple form, it may be added to the nuclear Coulomb
potential and incorporated into numerical calculations of the
spectra of multielectron ions and atoms including calculations
of the isotope shifts. Such numerical computation will be
given elsewhere.

A. General properties of the effective potential

Recall that the effect of nuclear polarization due to the
electron-nucleon interaction is well described by QED quan-
tum corrections corresponding to the Feynman graphs in
Fig. 1. In this process, the electron-nucleus interaction is
essentially nonlocal because it is based on one-loop quantum
effects with virtual electronic states having arbitrarily high
energy. At large distance, however, this interaction should
reduce to a local four-point vertex. This dictates the large-
distance asymptotic behavior of the effective potential for
this interaction, VL(r)|r→∞ ∼ r−2L−2, where L = 1 for E1
and L = 2 for E2 nuclear transitions, respectively. The co-
efficient of proportionality in this relation may be deduced
from Eq. (20). Indeed, at large distance from the nucleus,
where the electron energy is small compared with the energy
of nuclear transitions, the energy shift should be proportional
to the nuclear polarizability, �ε ∝ αEL

0 , where

αEL
0 = 8π

2L + 1

B(EL; L → 0)

EL
(38)

is the scalar nuclear polarizability due to the EL nuclear
transition with energy EL. Therefore, we fix the asymptotic
behavior of the effective potential in the form

VL(r)|r→∞ → −e2

2

αEL
0

r2L+2
. (39)

Let b be a characteristic distance at which the effective
electron-nucleus interaction becomes nonlocal such that it
cannot be described by the asymptotic formula (39). Although
there may be different ways to extend the effective potential to

2Rigorously, the energy shift may be presented as expectation value
of a nonlocal (integration) self-energy operator �(r, r′, E ), which
at large distances becomes an ordinary local polarization potential
V (r) = −ᾱE1

0 e2/(2r4). Such approach with the operator �(r, r′, E )
added to the Hartree-Fock Hamiltonian has been developed to cal-
culate correlation corrections due to interaction between valence and
core electrons [36].
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the region r < b which would have the same asymptotic be-
havior (39), we find it suitable to define the effective potential
as

VL(r) = −e2

2

αEL
0

r2L+2 + b2L+2
. (40)

In this case, the parameter b may be thought of as a cut-off pa-
rameter below which the effective potential is nearly constant.

We stress that b is the only free parameter in the effective
potential (40). This parameter is, however, not universal in
the sense that it should take into account specific nuclear
properties such as nuclear charge Z , mass number A, nuclear
radius R0, and nuclear deformation β2,

b = b(Z, A, R0, β2). (41)

Moreover, this parameter may be different for s and p1/2 states
as well as for E1 and E2 nuclear transitions. Below, we de-
scribe the procedure that will allow us to find the dependence
(41) and will apply it to E1 and E2 nuclear transitions.

Let �ε
(L)
� be an energy-level shift in an atom or ion in a

state � due to nuclear polarization induced by EL nuclear
transition. In particular, for hydrogen-like ions, the values of
such shifts are calculated in the previous section and presented
in Tables I and IV. Given the value of this energy-level shift,
we require that the effective potential (40) should yield the
same value,

�ε
(L)
� = 〈�|VL|�〉. (42)

This equation allows us to find the value of the free parameter
b in the effective potential (40) for a given atom or ion in the
state �. The variety of values of this parameter for different Z ,
A, R0, and β2 sets up the function (41). It is natural to expect
that this function should vary in the range R0 < b � aB/Z .

It is important to note that the effective potential (40)
should be applied to multielectron atoms and ions. In this
case, the parameter b must be found from Eq. (42) in which
the energy shift on the left-hand side is calculated with a
valence-electron wave function �. In heavy atoms, this wave
function (and the corresponding energy shift) may be quite
different from the exact 1s, 2s, and 2p1/2 Dirac wave functions
employed in Sec. III for hydrogen-like ions. We apply these
functions only in the region r � aB/Z1/3 where the effects of
the nuclear polarization are significant. In this region, calcu-
lation with the approximate radial wave functions (16) would
have a good accuracy.

One has to keep in mind that the approximate wave func-
tions (16) correspond to the model of point-like nucleus. In
heavy atoms, however, finite nuclear size corrections are sig-
nificant. To take such effects into account to leading order
we use the wave functions (16) only outside the nucleus, i.e.,
for R0 < r < aB/Z1/3, while inside the nucleus, 0 � r � R0,
these functions may be extended as

fs(r) = cns
(−1 + γ )J2γ (x0) − x0

2 J2γ−1(x0)

R0
,

gs(r) = cns
r

R2
0

ZαJ2γ (x0), (43)

where cns is the normalization constant and x0 ≡ √
8ZR0/aB.

Note also that, in atoms it is sufficient to consider only
s-electron wave functions since higher waves give minor cor-
rections due to nuclear polarization. Indeed, as is seen from
Tables I and IV, the contribution from the 2p1/2 wave is from
one to two orders of magnitude smaller than that from the
2s wave. Therefore, we restrict ourselves to specifying the
effective potential for s waves only. From the comparison of
the potentials for 2p1/2 and 2s1/2 electrons we see that the
difference between the 2p1/2 and 2s1/2 is not significant, so for
the approximate calculation of a relatively small contribution
of the p1/2 potential one may use the s-wave potential.

B. On the effective potential for light atoms

Although in this paper we study nuclear polarization cor-
rections to the spectra of medium and heavy atoms, in this
section we briefly consider the effective potential in light
atoms. We present this result only for a demonstration of the
procedure of derivation of the effective potential which will be
applied to medium and heavy atoms in subsequent sections.
In the case of light atoms, the corrections due to nuclear
polarization were found analytically in Ref. [30]. Therefore,
the procedure of constructing the effective potential is consid-
erably simpler and more transparent in this case.

We restrict ourselves only to E1 nuclear transitions, which
are taken into account by the potential (40) with L = 1,

V1 = −1

2

e2αE1
0

r4 + b4
. (44)

In this potential, we have to determine the cutoff parameter b
as a function of nuclear parameters.

Light atoms may be well described by nonrelativistic wave
functions. Let φ(r) be a wave function of valence s electron in
a light atom. In this state, the expectation value of the operator
(44) may be found analytically,

〈s|V1|s〉 ≈ −2πe2ᾱE1
0 |φ(0)|2

∫ ∞

0

r2dr

r4 + b4

= −π2e2ᾱE1
0 |φ(0)|2√

2b
. (45)

Here we have taken into account that the s wave function
varies slowly inside the nucleus, so that |φ(r)|2 may be ap-
proximated by the electron density at the nucleus |φ(0)|2. The
expectation value (45) should be matched with the atomic
energy s-level shift due to nuclear polarizability calculated in
Ref. [30]:

�ε = −mee2|φ(0)|2ᾱE1
0

[
19

6
+ 5 ln

(
2

ω̄

me

)]
. (46)

Here ω̄ is an average nuclear excitation energy in E1 transi-
tions which varies from 5 MeV in deuterium to ω̄ given by
Eq. (6) in 4He and heavier nuclei. Equation �ε = 〈s|V1|s〉
yields the value of the cutoff parameter b in light elements:

b ≈ π2

√
2[19/6 + 5 ln (2ω̄/me)]me

. (47)

Equation (47) allows us to estimate the value of the cutoff
parameter for light elements. In particular, for He and Li, b ≈
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TABLE VII. Energy-level shifts �εns in neutral atoms with ns valence electrons and values of the cutoff parameter bns in the effective
potential Eq. (48). For comparison, we present also values of this parameter b for 1s, 2s, and 2p1/2 states of hydrogen-like ions.

Z A −�εns/c2
ns

10−7 bns b1s b2s b2p1/2 δRbs δRbp1/2

(fm) (fm) (fm) (fm)

20 40 5.35 × 10−4 62.0 62.3 62.1 141 4.91 22.8
20 44 5.95 × 10−4 62.9 63.3 63.1 145
26 54 1.62 × 10−3 54.9 55.3 55.0 94.8 4.52 12.4
26 60 1.81 × 10−3 56.0 56.4 59.5 97.7
34 74 5.34 × 10−3 47.9 48.4 48.1 70.2 4.02 8.10
34 76 5.49 × 10−3 48.2 48.7 48.3 70.7
42 96 1.48 × 10−2 42.6 43.1 42.7 57.0 3.32 5.58
42 98 1.51 × 10−2 42.8 43.3 42.9 57.4
50 118 3.61 × 10−2 38.2 38.7 38.3 48.2 3.15 4.75
50 120 3.66 × 10−2 38.4 38.9 38.5 48.5
58 140 8.17 × 10−2 34.6 35.1 34.7 41.8 2.83 3.94
58 142 8.22 × 10−2 34.7 35.3 34.8 42.0
66 162 0.174 31.5 32.0 31.6 36.9 2.55 3.35
66 164 0.176 31.6 32.1 31.7 37.0
74 184 0.363 28.9 29.4 29.0 33.0 2.37 2.98
74 186 0.366 29.0 29.5 29.1 33.1
82 206 0.746 26.7 27.2 26.8 29.8 2.17 2.62
82 208 0.752 26.7 27.3 26.9 29.9
90 228 1.53 24.7 25.3 24.9 27.2 2.04 2.38
90 230 1.54 24.8 25.3 24.9 27.2
98 250 3.17 23.1 23.6 23.2 25.0 1.96 2.24
98 252 3.19 23.1 23.6 23.3 25.0
106 272 6.69 21.7 22.2 21.8 23.2 1.87 2.08
106 274 6.72 21.7 22.2 21.9 23.3
114 294 14.7 20.4 20.9 20.6 21.6 1.75 1.91
114 296 14.7 20.5 21.0 20.6 21.7
122 316 34.1 19.4 19.8 19.5 20.3 1.68 1.80
122 318 34.2 19.4 19.9 19.5 20.3
130 338 88.9 18.3 18.8 18.5 19.1 1.61 1.70
130 340 89.1 18.4 18.8 18.5 19.1
136 354 227 17.5 18.0 17.7 18.2 1.54 1.60
136 356 227 17.6 18.1 17.7 18.2

105 fm. As we show below, in heavy atoms the value of the
cutoff parameter is smaller but of the same order.

C. Effective potential due to giant electric-dipole resonance

In Sec. III B, we calculated shifts of 1s, 2s, and 2p1/2

energy levels in medium and heavy hydrogen-like ions. These
data, however, do not apply to neutral heavy atoms in which
energy-level shifts come from ns electronic orbitals with n >

2. The energy-level shifts in neutral atoms with ns valence
electrons will be denoted �εns in this section. In Table VII
we present the results of calculations of �εns in medium and
heavy atoms with 20 � Z � 98. This calculation is performed
according to Eq. (23), making use of the ns electron wave
functions (16) extended to the inside of the nucleus as in
Eq. (43). Note that we do not specify the normalization co-
efficients cns in these functions since our final result for the
effective potential will be independent of these values.3 There-

3Explicit values of these coefficients are presented, e.g., in
Ref. [29].

fore, in Table VII we present the values of the dimensionless
quantity �εns/c2

ns.
In this section we consider the effects of nuclear polariza-

tion due to giant electric-dipole resonance nuclear transition in
medium and heavy atoms. In this case, the effective potential
(40) reads

V1 = −1

2

e2αE1
0

r4 + b4
, αE1

0 = 8πB(E1)

3EGR
, (48)

where B(E1) is the reduced transition probability (25) and
EGR is the energy of giant electric-dipole resonance transition
(24). The expectation value of the operator (48) in the ns state
reads

〈ns|V1|ns〉 = −1

2
e2αE1

0

∫
f 2
ns(r) + g2

ns(r)

r4 + b4
ns

r2dr, (49)

where fns and gns are radial wave functions (16) extended to
the inside of the nucleus as in Eqs. (43).

Recall that the value of the parameter b in the effective
potential (48) (denoted by bns in what follows) should be
found from Eq. (42). In the case of giant dipole resonance
nuclear transitions, the energy on the left-hand side in Eq. (42)

032811-11



FLAMBAUM, SAMSONOV, TAN, AND VIATKINA PHYSICAL REVIEW A 103, 032811 (2021)

TABLE VIII. Numerical values of the fitting coefficients in
Eq. (51) describing the cutoff parameter b for s and p1/2 effective
potentials in multielectron atoms due to nuclear E1 electric-dipole
giant resonance.

s p1/2

λ0 4.88 9.03
λ1 −1.23 × 10−2 1.32 × 10−2

λ2 2.89 × 10−5 4.05 × 10−5

λ3 −0.178 −1.46
ν0 2.05 4.28
ν1 −9.69 × 10−3 −2.08 × 10−2

ν2 2.02 × 10−4 7.87 × 10−5

ν3 −1.07 −1.42
τ0 1.94 10.6
τ1 −1.90 × 10−2 3.99 × 10−2

τ2 5.90 × 10−5 −1.07 × 10−4

τ3 −0.198 −2.77

is given by εns presented in Table VII while the right-hand side
is given by Eq. (49). As a result, we have

1

c2
ns

∫
f 2
ns(r) + g2

ns(r)

r4 + b4
ns

r2dr = − 3EGR

4πe2B(E1)

�εns

c2
ns

. (50)

Equation (50) defines the parameter bns for each value of the
energy shift �εns/c2

ns. We solve this equation numerically and
present the values of the parameter bns in Table VII. As is seen
from this table, the parameter bns is a monotonic function of Z ,
bns = b0(Z ). It is convenient to approximate this function by
the exponent, b0(Z ) = exp(λ0 + λ1Z + λ2Z2)Zλ3 , where the
best fit for the parameters λ0, λ1, λ2, and λ3 is presented in
Table VIII.

The dependence of the parameter bns on the mass number
A and nuclear radius R may by taken into account in the same
way as in Sec. III B: For each Z we fix A0(Z ) as in Eq. (26)
and consider �A deviations from A0(Z ) (27). Then, for each
isotope we fix the nuclear radius by Eq. (4) and consider
small deviation from this value, Eq. (29). The parameter b
is now considered up to linear terms in �A and δR, bns ≡
b(Z, A, R) = b0(Z ) + b1(Z )�A + b2(Z )δR. It is convenient to
approximate the functions b0(Z ), b1(Z ), and b2(Z ) by expo-
nents as follows:

b(Z, A, R) = [exp(λ0 + λ1Z + λ2Z2)Zλ3

+ exp(ν0 + ν1Z + ν2Z2)Zν3�A] fm

+ exp(τ0 + τ1Z + τ2Z2)Zτ3δR. (51)

Here λ0, λ1, λ2, λ3, ν0, ν1, ν2, ν3, τ0, τ1, τ2, and τ3 are
fitting parameters with numerical values given in Table VIII.
In this table, we present also the values for these coefficients
which give the best fit of the parameters b1s, b2s, and b2p1/2

given in Table VII. These values are given for comparison.
In particular, it is seen that the functions bns and b2s are very
close, while the 1s and 2p1/2 states are described by slightly
different functions.

To summarize, the function (51) with the parameters λ0,
λ1, λ2, λ3, ν0, ν1, ν2, ν3, τ0, τ1, τ2, and τ3 given in Table VIII
specifies the effective potential (48). This effective potential

allows one to calculate the energy-level shifts with error under
1% as compared with the results presented in Table VII.

D. Effective potential due to electric-quadrupole nuclear
polarization

In the derivation of the effective potential which takes into
account electric-quadrupole nuclear polarization corrections
in the atomic spectra we will follow the same procedure as in
Sec. IV C. Namely, we start with the calculation of the energy
shifts �ε̃ns using the ns valence electron wave functions (16)
as the initial and final electronic states in Eq. (32). The results
of these calculations are presented in Table IX.

In the case of nuclear polarization due to the rotational
nuclear transitions the effective potential (40) reads

V2 = −1

2

e2ᾱE2
0

r6 + b̃6
, (52)

where b̃ is the effective cutoff parameter and

ᾱE2
0 = 8π

5

B(E2)

Ērot
, Ērot = 50 keV (53)

is the modified E2 nuclear polarizability. In contrast with the
conventional nuclear polarizability (38), it has fixed energy
Ērot = 50 keV which corresponds to typical energy of the low-
est rotational state in deformed heavy nuclei. Using this fixed
energy in Eq. (53) appears more convenient in the effective
potential (52) because the physical energy (35) depends on the
deformation parameter β2 which changes nonmonotonically
with Z . Indeed, the potential (52) defined via the modified
nuclear polarizability (53) is a monotonic function of Z and,
thus, it is suitable for modeling atomic energy-level shifts due
to the nuclear rotational transitions given in Table IX.

The expectation value of the effective potential in the ns
state is

〈ns|V2|ns〉 = −4πB(E2)e2

5Ērot

∫
f 2
ns + g2

ns

r6 + b̃6
r2dr, (54)

where the integral is calculated with the use of the wave
functions (16) extended to the inside of the nucleus as in
Eq. (43). The cutoff parameter b̃ should now be found upon
matching the expectation value of the effective operator (54)
with the energy shifts �ε̃ns given in Table IX,

1

c2
ns

∫
f 2
ns + g2

ns

r6 + b̃6
r2dr = − 5Ērot

4πe2

�ε̃ns

c2
nsB(E2)

. (55)

The value of the parameter b̃ may be found by solving this
equation numerically for each given isotope. We present these
values in Table IX. In the same table we give also the values of
this parameter corresponding to the 1s, 2s, and 2p1/2 energy-
level shifts in hydrogen-like ions from Table IV. We point
out that the values of the parameter bns are very close to the
corresponding values of b1s and especially b2s that confirms
the consistency of the definition of the effective potential (52).

The numerical values of the parameter b̃ns in Table IX
define the function b̃ns = b̃(Z, A, R). This function may be
approximated by

b̃(Z, A, R) = [λ̃0 + λ̃1Z + exp(ν̃0 + ν̃1Z + ν̃2Z2)�A] fm

+ exp(τ̃0 + τ̃1Z + τ̃2Z2)Zτ3δR , (56)
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TABLE IX. Energy-level shifts in neutral atoms calculated with ns valence electron wave function and values of cutoff parameter b which
determine the effective potential (52).

Z A β2 − �ε̃ns
B(E2)c2

ns
b̃ns b̃1s b̃2s b̃2p1/2 δRb̃s δRb̃p1/2

(10−9 fm−4) (fm) (fm) (fm) (fm)

26 54 0.195 0.0214 120 120 120 132 13.6 17.0
26 56 0.239 0.0207 121 121 121 133
34 74 0.302 0.0448 114 114 114 124 12.8 15.8
34 76 0.309 0.0442 114 115 114 125
44 102 0.244 0.0952 108 109 108 118 11.8 14.3
44 104 0.257 0.0939 109 109 109 118
46 108 0.243 0.109 107 108 107 117 10.8 13.0
46 110 0.257 0.108 108 108 108 117
62 152 0.306 0.338 96.9 97.6 96.9 105 9.68 11.5
62 154 0.341 0.335 97.2 97.9 97.2 105
66 162 0.341 0.445 94.4 95.2 94.4 102 9.52 11.2
66 164 0.348 0.441 94.7 95.4 94.7 102
70 172 0.330 0.586 92.0 92.8 92.0 99.2 8.94 10.5
70 174 0.325 0.580 92.2 93.0 92.2 99.5
74 184 0.235 0.764 89.8 90.7 89.8 96.7 8.25 9.65
74 186 0.224 0.757 90.0 90.9 90.0 97.0
90 228 0.230 2.36 80.3 81.5 80.3 86.0 6.99 8.00
90 230 0.244 2.35 80.4 81.6 80.5 86.2
92 234 0.272 2.73 79.1 80.4 79.2 84.7 6.90 7.90
92 236 0.282 2.71 79.3 80.5 79.4 84.9
98 250 0.299 4.29 75.7 77.0 75.8 80.9 6.54 7.47
98 252 0.304 4.26 75.8 77.1 75.9 81.0
106 234 0.272 2.73 79.1 80.4 79.2 84.7 5.97 6.75
106 236 0.282 2.71 79.3 80.5 79.4 84.9
114 234 0.272 2.73 79.1 80.4 79.2 84.7 5.58 6.24
114 236 0.282 2.71 79.3 80.5 79.4 84.9
122 234 0.272 2.73 79.1 80.4 79.2 84.7 5.38 5.95
122 236 0.282 2.71 79.3 80.5 79.4 84.9
130 234 0.272 2.73 79.1 80.4 79.2 84.7 5.08 5.56
130 236 0.282 2.71 79.3 80.5 79.4 84.9
136 234 0.272 2.73 79.1 80.4 79.2 84.7 4.65 5.04
136 236 0.282 2.71 79.3 80.5 79.4 84.9

where the best fit for the parameters λ̃0, λ̃1, λ̃2, ν̃0, ν̃1, ν̃02, τ̃0,
τ̃1, and τ̃2 are given in Table X.

To summarize, in this section we found the effective poten-
tial (52) with the parameter b̃ given by Eq. (56). For medium
and heavy elements, this effective potential reproduces the

TABLE X. Numerical values of the coefficients λ̃0, λ̃1, ν̃0, ν̃1, ν̃2,
τ̃0, τ̃1, τ̃2, and τ̃3 which specify the cutoff parameter (56) as a function
of Z , A, and R.

s p1/2

λ̃0 135 148
λ̃1 −0.600 −0.682
ν̃0 −0.172 7.27 × 10−2

ν̃1 −3.51 × 10−2 −3.59 × 10−2

ν̃2 9.47 × 10−5 8.79 × 10−5

τ̃0 1.93 2.28
τ̃1 −2.36 × 10−2 −2.33 × 10−2

τ̃2 5.06 × 10−5 4.54 × 10−5

τ̃3 0.386 0.344

atomic energy-level shifts presented in Table IX with error
under 1%. For superheavy elements, the error is within 5%.

V. CONCLUSIONS

In this paper, we studied the effects of electric nuclear po-
larization in the spectra of medium and heavy atoms and ions.
These effects manifest themselves in electron energy-level
shifts and isotope shifts or in contributions to the hyperfine
structure. Although in neutral atoms such effects are small,
they are strongly enhanced in heavy hydrogen-like ions. In-
deed, the s1/2 and p1/2 electron wave functions are known to
be significantly enhanced near a heavy nucleus [29], so that
corrections due to nuclear polarization are observable.

Recall that the tensor nuclear polarizability is responsi-
ble for contributions to the hyperfine structure. We observe
that the effective operator describing the contributions from
the tensor polarizability has the same tensor structure as
the quadrupole nuclear moment. Therefore, it is natural
to compare the contributions from these operators to the
atomic hyperfine structure. We show that the effect from the
tensor nuclear polarizability is nearly three orders of magni-

032811-13



FLAMBAUM, SAMSONOV, TAN, AND VIATKINA PHYSICAL REVIEW A 103, 032811 (2021)

tude weaker than that from the electric-quadrupole nuclear
moment. Although in neutral atoms this effect is rather un-
observable, it may be noticeable in heavy hydrogen-like ions
where the hyperfine energy splitting is on order of 1 eV. In
this paper, we estimated the order of magnitude of this effect
while accurate calculations of contributions from the tensor
polarizability in particular atoms are left for further studies.

The scalar nuclear polarizability is responsible for atomic
energy-level shifts. The method of calculating these shifts was
developed in a series of papers [6–10] where these shifts were
found for a limited number of hydrogen-like ions. We employ
this method and extend the results to include hydrogen-like
ions with 20 � Z � 98 and find an interpolating formula
which reproduces these shifts as a function of Z , A, and
the nuclear radius. The errors in the calculations of integrals
of atomic matrix elements are under 5% while the error of
nuclear transition strength for the giant dipole resonance tran-
sition is within 10%. Thus, we estimate that the total errors
of energy shifts presented in Table I is under 12% for all
considered atoms.

Energy-level shifts in some superheavy hydrogen-like ions
(Z = 106, 114, 122, 130, 136) are also calculated. The results
for other superheavy elements may be estimated by using a
two-point interpolation formula based on the considered ions.
The energy shift grows with Z approximately exponentially.
Therefore, this functions may be taken in the form ε(Z ) =
ε0eaZ , with parameters ε0 and a chosen to reproduce exactly
values of ε(Z ) for two nearby ions where we have performed
the calculations.

We consider separately contributions from nuclear giant
electric-dipole resonance transitions (E1) and rotational tran-
sitions (E2). In the latter case, the energy shifts depend also
on the nuclear quadrupole deformation parameter β2. By
comparing our results with the earlier calculations in some
heavy hydrogen-like ions [7–10] we find that the obtained
formulas provide energy shifts in heavy elements with error
of atomic calculations under 7%. The accuracy in the nuclear
parameters, which we use, is given separately for each isotope
in Ref. [34]. In particular, the typical error of the transition
strength of the rotational E2 nuclear transitions is 1%–2%.
Therefore, the energy shifts due to nuclear rotational transi-
tions may be found with errors about 7% for all considered
elements.

We also study the dependence of the energy shifts on the
variation of nuclear radius �R. Indeed, certain isotopes may
have deviations of the nuclear radius from the general rule
(4), and the energy shifts are sensitive to such deviations. This
may lead to nonlinearity in King’s plot for isotope shifts and
imitate effects of new interactions. Note that such nonlinearity
was observed recently in Yb isotopes [21] and interpreted in
terms of new interaction beyond the Standard Model. Our

calculation opens the way for systematic study of this effect
in a wide range of atoms and ions.

We point out that the calculation of corrections due to nu-
clear polarizability in the spectra of hydrogen-like ions may be
performed with a good accuracy because, in this calculation,
one can use exact Dirac wave function in discrete and continu-
ous spectra. A generalization of these results to multielectron
ions and neutral atoms is hindered by many-body effects
which are usually taken into account by using many-body
theory based on the relativistic Hartree-Fock basis states. To
facilitate such calculations in future works, in this paper we
develop an effective potential which models the corrections
due to the nuclear polarizability. This potential has a simple
local form (40) with one parameter b which is approximated
by the functions (51) and (56) such that the expectation value
of this potential gives correct energy-level shifts for hydrogen-
like ions and for s electrons in a many-electron atoms. As
a result, to calculate the nuclear polarization effect in many-
electron atoms and ions, one simply has to add this potential
to the nuclear Coulomb interaction and then solve for the
self-consistent Hartree-Fock equations. Incorporation into the
calculation of the correlation corrections is straightforward
with the use of Hartree-Fock basis states.

The effect is dominated by the nuclear polarization poten-
tial for s electrons, with a much smaller contribution from the
slightly different potential for p1/2 electrons. The difference
between 2s and ns potentials is very small; therefore, one
can use 2p1/2 potential for all p1/2 electrons. Moreover, the
difference between the p1/2 and s potentials is not significant.
Potentials in all waves have the same long-distance asymp-
totic but have different cutoff parameters b. We have checked
that, in heavy atoms, the difference between parameters b in
2s and 2p1/2 potentials is small. Also, there is no significant
dependence on the principal quantum number n, parameters
b for 1s, 2s, and high-ns electrons are practically the same.
For simplicity, one may use the ns-wave potential for all
waves. Indeed, direct contributions of this potential in p3/2

and higher waves may be neglected since they do not come
close to the nucleus, but the shift of their energies appears
due to the so-called core-polarization effect: the change of
the s-wave electron wave functions leads to the change of the
self-consistent Hartree-Fock potential affecting all electrons.
Such calculations will be done elsewhere.
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