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Magic wavelengths for the helium 2 3S1 → 2 1P1 forbidden transition
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A series of magic wavelengths for the forbidden transition of 2 3S1 → 2 1P1 in helium are determined by
performing large-scale full relativistic configuration interaction calculations based on Dirac-Coulomb-Breit
Hamiltonian with the mass shift operator included. QED corrections to magic wavelengths are taken into account
by using the perturbation theory in nonrelativistic configuration interaction calculations. The 1335.55(2)-nm
magic wavelength for the 2 3S1(M = ±1) → 2 1P1(M = 0) transition is found to be sensitive to the finite nuclear
mass, relativistic, and QED effects, and its measurement might provide a test of atomic structure theory.
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I. INTRODUCTION

Quantum electrodynamics (QED) theory has developed to
be one of the most successful theories in modern physics,
since the Lamb shift between the 2s1/2 and 2p1/2 energy levels
of hydrogen was discovered by Lamb and Retherford [1]. The
measurement of the magnetic moment of the electron bound in
hydrogenlike 12C5+ ion yields the atomic mass of the electron
with a relative precision of 3×10−11, which represents one of
the stringent tests of QED theory [2,3]. However, there are still
unknown factors and parameters, such as the proton radius
(rp) puzzle of the surprising discrepancy between results from
different methods for measuring the proton charge radius. In
particular, the latest electron-based measurement of rp agrees
with the muonic hydrogen measurement but disagrees with
the averaging of previous electron-based measurements [4],
which calls for an imperative to test QED with other systems.

The well-established field of precision spectroscopy in he-
lium (see Refs. [5–7] and references therein) has made many
foundational contributions to accurate tests of QED theory.
The increasingly improved measurements of the ground-state
Lamb shift provide rigorously tests of bound-state QED in
two-electron systems [8–10]. The presently most accurately
known transition frequencies between the 2 3PJ levels [11–13]
combined with the rigorous nonrelativistic QED (NRQED)
calculations [14] determine the fine structure constant with
an accuracy of several ppb. There are significant inconsis-
tencies for the nuclear charge radius attained from different
transitions of 2 3S → 2 3P [15–17] and 2 3S1 → 2 1S1 [18–20].
Recently, a significant theoretical advance in the Lamb shift of
helium has been achieved, which will allow comparison of the
nuclear radius determined from the electronic and muonic he-
lium and thus provides insight into the validity and limitations
of QED theory [21].

In addition, unlike the precision spectral measurements,
measurements of transition rates also can provide tests of
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QED theory. The Einstein A coefficient for the 2 3S1 → 3 3S1

in helium is newly measured, which is compared to the theo-
retical value [22], leading to tests of both QED contributions
and different QED frameworks. There are other means of
measuring transition rate information in helium in order to test
QED, such as static dipole polarizability in the ground state,
for which the current comparison between experiment and
theory has reached a level of ppm [23,24]. QED correction to
static dipole polarizability of the 2 3S1 state in helium reaches
22.5 ppm, which may enable a new QED test [25]. However,
measurements of atomic polarizabilities are somewhat rarer
than calculations, and it is difficult to further improve mea-
surement precision.

There is another nonenergy QED test that uses the tune-out
wavelength. Since the measurement of a tune-out wavelength
is a null experiment, and there is no need to know the intensity
and beam profile of the irradiating laser precisely, the mea-
surement of tune-out wavelengths can potential achieve high
precision. Using the 413-nm tune-out wavelength of the 2 3S1

state in helium to probe atomic structure theory was proposed
by Mitroy and Tang [26]. In followup works, high-accuracy
calculations [25,27] and precision measurement [28] of the
413-nm tune-out wavelength reach a consistency on the order
of ppm. The constantly advancing measurements and calcula-
tions are expected to determine this tune-out wavelength with
a relative uncertainty of less than ppm.

Similarly, the measurement of a magic wavelength, at
which the frequency-dependent polarizabilities of the initial
and final states of a transition are equal, can be also very
accurate. For example, the magic frequency for Sr optical
clock transition has recently been measured with a fractional
uncertainty of several ppb [29]. Magic wavelengths are widely
used in state-of-the-art optical transition atomic clocks [30].
Besides that, magic wavelengths of helium would be sensitive
to relativistic and QED effects. It would be worthwhile to
determine magic wavelengths that would be the best atomic
structure theory probes [26].

In this work, we will identify magic wavelengths that might
be measured and provide a QED test. B-spline relativistic
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configuration interaction (RCI) calculations are carried out
to obtain the dynamic dipole polarizabilities for the 2 1P1

state of helium, which include the finite nuclear mass and
relativistic corrections. Combined with our previous dynamic
dipole polarizabilities of the 2 3S1 state [25], a series of magic
wavelengths for the 2 3S1 → 2 1P1 transition are determined.
QED effects on the static dipole polarizability for the 2 1P1

state, and on the 1335-nm magic wavelength for the 2 3S1 →
2 1P1 transition are evaluated as well by using the perturbation
theory in nonrelativistic configuration interaction (NRCI) cal-
culations. Atomic units (a.u.) are used throughout this paper
unless stated otherwise.

II. METHOD

The RCI calculations are performed to solve the eigenvalue
problem of the following Dirac-Coulomb-Breit (DCB) Hamil-
tonian with mass shift (MS) operator,

H =
2∑

i=1

[
cαi · pi + βmec2 − Z

ri

]
+ 1

r12
− 1

2r12
[α1 · α2

+ (α1 · r̂12)(α2 · r̂12)]

+ 1

2m0

2∑
i, j

pi · p j − 1

2m0

2∑
i, j

αZ

ri

[
αi + (αi · ri )ri

r2
i

]
· p j ,

(1)

where c = 137.035 999 074 is the speed of light [31], αi and
β are the 4 × 4 Dirac matrices, pi is the momentum operator
for the ith electron, me = 1 is the electron mass, Z is the
nuclear charge, ri represents the distance of the ith electron
from the nucleus, r̂12 is the unit vector of the electron-electron
distance r12, m0 = 7294.299 5361 me [31] is the nuclear mass
of 4He, α = 1/c is the fine-structure constant, the MS operator
includes the nonrelativistic and leading relativistic compo-
nents [25,32], and the leading relativistic correction to the
mass shift with Dirac wave functions has been formulated in
Refs. [33,34].

The eigenfunction ψi j (JM ) of an atomic state with angular
momentum (J, M ) is expanded as a linear combination of two-
electron configuration-state functions φi j (JM ),

|φi j (JM )〉 = ηi j

∑
mimj

〈 jimi; j jm j |JM〉a†
imi

a†
jm j

|0〉 , (2)

which are constructed by the single-electron wave functions,
i.e., a†

imi
|0〉 and a†

jm j
|0〉, with the orbital angular momentums

�i and � j less than the maximum number of partial wave �max.
ηi j is a normalization constant, 〈 jimi; j jm j |JM〉 represents the
Clebsch-Gordan coefficient of j j coupling, a†

imi
and a†

jm j
are

called creation operators, and |0〉 is the vacuum state. The ith
single-electron wave function a†

imi
|0〉 is acquired by solving

the single-electron Dirac equation using the Notre Dame basis
sets of N number of B-spline functions with order of k = 7
[35,36].

Magic wavelengths are located by calculating the
frequency-dependent polarizabilities of two states involved in
the atomic transition and finding their crossing points. The dy-
namic dipole polarizability of the magnetic sublevel |NgJgMg〉
under the linearly polarized light with laser frequency ω is
expressed as [37]

α1(ω) = αS
1 (ω) + 3M2

g − Jg(Jg + 1)

Jg(2Jg − 1)
αT

1 (ω), (3)

where αS
1 (ω) and αT

1 (ω) are the scalar and tensor dipole po-
larizabilities, which are respectively given by

αS
1 (ω) =

∑
n �=g

f (1)
gn

(	Egn)2 − ω2
(4)

and

αT
1 (ω) =

∑
n �=g

(−1)Jg+Jn

√
30(2Jg + 1)Jg(2Jg − 1)

(2Jg + 3)(Jg + 1)

×
{

1 1 2
Jg Jg Jn

}
f (1)
gn

(	Egn)2 − ω2
, (5)

with f (1)
gn being the dipole oscillator strength, and

f (1)
gn = 2|〈NgJg‖T1‖NnJn〉|2	Egn

3(2Jg + 1)
, (6)

where �Egn = En − Eg is the transition energy between initial
state |NgJg〉 and intermediate state |NnJn〉, and T1 is the dipole
transition operator.

QED corrections to polarizability and magic wavelength
can be obtained by the perturbation theory using accurate
energies and wave functions from NRCI calculations [38].
The general approach allowing an approximate evaluation of
the QED corrections to the static dipole polarizability was
formulated by Pachucki and Sapirstein [39]. Similarly, the for-
mula of QED correction to the dynamic dipole polarizability
has been derived in Refs. [25,40] as

δα
QED
1 (ω) = 2

[ ∑
n

〈NgLg|T1|NnLn〉〈NnLn|T1|NgLg〉〈NgLg|δHQED|NgLg〉
(
	E2

gn + ω2
)

(
	E2

gn − ω2
)2

− 2
∑
nm

〈NgLg|T1|NnLn〉〈NnLn|T1|NmLm〉〈NmLm|δHQED|NgLg〉	Egn(
	E2

gn − ω2
)
	Egm

−
∑
nm

〈NgLg|T1|NnLn〉〈NnLn|δHQED|NmLm〉〈NmLm|T1|NgLg〉(	Egn	Egm + ω2)(
	E2

gn − ω2
)(

	E2
gm − ω2

)
]
, (7)

032810-2



MAGIC WAVELENGTHS FOR THE HELIUM … PHYSICAL REVIEW A 103, 032810 (2021)

TABLE I. Comparison of present transition energies and oscillator strengths (both in a.u.) for the 2 1P → n 1S/n 1D transitions of helium
with Hylleraas results obtained by Drake and Morton [45,46]. The numbers in parentheses are numerical convergence uncertainties. The
relativistic Hylleraas oscillator strengths of 4He listed in the third column are obtained by adding the finite nuclear mass effects [45] to the
relativistic oscillator strengths of ∞He [46]. The nonrelativistic Hylleraas oscillator strengths of 4He in the fifth column are obtained by
multiplying a factor of (m0 + Z )/m0 to the Hylleraas results of 4He [45].

Relativistic values of 4He Nonrelativistic values of 4He Nonrelativistic values of ∞He

RCI Hylleraas [45,46] NRCI Hylleraas [45] NRCI Hylleraas [45]

	E2 1P→n 1S/n 1D

2 1P → 1 1S −0.779 74(1) −0.779 754 214 −0.779 741(2) −0.779 758 897 −0.779 863(2) −0.779 881 290
2 1P → 2 1S −0.022 132 5(3) −0.022 132 621 −0.022 133 2(1) −0.022 132 934 −0.022 131 2(1) −0.022 130 959
2 1P → 3 1S 0.062 557 0(4) 0.062 558 064 0.062 555 5(1) 0.062 556 569 0.062 570 0(1) 0.062 571 096
2 1P → 4 1S 0.090 238 4(5) 0.090 239 679 0.090 236 6(1) 0.090 237 834 0.090 255 1(1) 0.090 256 369
2 1P → 3 1D 0.068 207 3(6) 0.068 208 662 0.068 205 3(1) 0.068 206 657 0.068 220 9(1) 0.068 222 353
2 1P → 4 1D 0.092 544 8(5) 0.092 546 277 0.092 542 8(1) 0.092 544 223 0.092 561 9(1) 0.092 563 240
2 1P → 5 1D 0.103 807(1) 0.103 808 782 0.103 805 3(1) 0.103 806 697 0.103 825 8(1) 0.103 827 250
2 1P → 6 1D 0.109 924(1) 0.109 925 574 0.109 922 1(1) 0.109 923 471 0.109 943 5(1) 0.109 944 859

f (1)
2 1P→n 1S/n 1D

2 1P → 1 1S −0.092 047(2) −0.092 050 −0.092 048(2) −0.092 051 3 −0.092 051(2) −0.092 054 9
2 1P → 2 1S −0.125 533(2) −0.125 53 −0.125 540(2) −0.125 536 1 −0.125 484(2) −0.125 480 1
2 1P → 3 1S 0.048 511(2) 0.048 512 0.048 514(2) 0.048 512 4 0.048 492(2) 0.048 490 1
2 1P → 4 1S 0.008 627(2) 0.008 626 8 0.008 627(2) 0.008 626 8 0.008 624(2) 0.008 623 4
2 1P → 3 1D 0.710 14(4) 0.710 17 0.710 347(2) 0.710 331 5 0.710 179(2) 0.710 164 1
2 1P → 4 1D 0.120 28(2) 0.120 27 0.120 281(2) 0.120 281 8 0.120 269(2) 0.120 270 4
2 1P → 5 1D 0.043 257(6) 0.043 256 0.043 259(2) 0.043 259 5 0.043 257(2) 0.043 257 6
2 1P → 6 1D 0.020 948(2) 0.020 947 0.020 948(4) 0.020 948 9 0.020 948(2) 0.020 948 5

where |NgLg〉 represents the nonrelativistic wave function of
the initial state, |NnLn〉 and |NmLm〉 represent nonrelativistic
wave functions of intermediate states, and the expansion for
the QED operator, δHQED, on the order α3 is [41,42]

δH (3)
QED = 4Zα3

3

{
19

30
+ ln[(Zα)−2] − ln

(
k0

Z2

)}

× [δ3(r1) + δ3(r2)] + O (r12), (8)

where ln k0 is the Bethe logarithm and O (r12) represents the
remaining term connected with r12. In the present calcula-
tions, we use Bethe logarithms from Ref. [43] for the 2 3S1

and 2 1P1 states of 4He.

III. STATIC POLARIZABILITIES

We use a complete set of configuration wave functions
on an exponential grid [44] generated using B-splines con-
strained to a spherical cavity. A cavity radius of 200 a.u. is
chosen to accommodate the initial state and the corresponding
intermediate states and is suitable for obtaining the frequency-
dependent polarizabilities for the 2 3S1 and 2 1P1 states in the
range above 389 nm, which is the second resonance wave-
length of the 2 3S1 state. The basis set consists of 40, 45,
and 50 B splines for each value of the partial wave less than
�max = 10.

The values of some selected transition energies and oscil-
lator strengths are listed in Table I, and a detailed comparison
between present B-spline calculations and Drake and Mor-
ton’s Hylleraas calculations [45,46] is also made in Table I.
The numerical convergence uncertainties of the present val-
ues are evaluated as the difference between our extrapolated

value and the result under the largest basis set. For transition
energies, the nonrelativistic Hylleraas energies of 4He are
obtained by adding the finite nuclear mass shifts to the ∞He
energies [45], and the relativistic Hylleraas energies of 4He
are converted from the ionization energies in MHz [45]. It is
seen that our RCI and NRCI results of transition energies are
all in general agreement with Hylleraas values [45].

For oscillator strengths, the relativistic Hylleraas oscillator
strengths of 4He are obtained by adding the finite nuclear mass
effects [45] to the relativistic oscillator strengths of ∞He [46],
and the nonrelativistic Hylleraas oscillator strengths of 4He
listed in the fifth column of Table I are obtained by multiply-
ing a factor of (m0 + Z )/m0 to the Hylleraas results of 4He
[45]. The oscillator strengths of our NRCI results are in good
agreement with those obtained from Hylleraas calculations
[45] except for the 2 1P → 1 1S, 2 1P → 2 1S, and 2 1P → 3 1D
transitions. Those due to electron-electron correlations for
these low-lying singlet states are not well accounted for in the
CI method. Therefore, in the subsequent calculations, in order
to take fully into account electron-electron correlation effect,
we replace our transition energies and oscillator strengths for
the 2 1P → (1, 2, 3) 1S and 2 1P → (3, 4) 1D transitions with
Hylleraas transition energies and oscillator strengths, and then
the computational uncertainties of our polarizabilities and
magic wavelengths include two parts: One is from the numer-
ical convergence error and the other is from the insufficient
consideration of correlation effect.

The α3 QED contributions to energies of 2 3S1 and 2 1P1

states omitting the O (r12) term of Eq. (8) are calculated to
be 0.000 016 713 and 0.000 016 115 a.u., which are slightly
larger by 0.018% and 0.043% comparing with Yerokhin and
Pachucki’s values of 0.000 016 710 and 0.000 016 108 a.u.
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TABLE II. The static dipole polarizabilities (in a.u.) for the 2 1P1 state of helium. The numbers in parentheses are computational uncertainties.

Term (RCI, 4He) (NRCI, 4He) (NRCI, ∞He) α3 QED

αS
1 (0) −59.619(6) −59.959(6) −60.022(7) −0.006 02(2)

αT
1 (0) 223.59(2) 223.554(2) 223.511(2) 0.006 11(2)

α1(0)(M = 0) −506.80(2) −507.067(6) −507.043(4) −0.018 2(2)
α1(0)(M = ±1) 163.97(2) 163.60(2) 163.49(2) 0.000 098(2)

[41], respectively. This indicates that contribution from the
O (r12) term is at least three orders of magnitude smaller than
the first term in Eq. (8). So, in the subsequent calculations,
QED corrections from O (r12) term will be neglected.

Static dipole polarizabilities for the 2 1P1 state of helium
are given in Table II. For the scalar component of the 2 1P1

state of ∞He, there are four figures consistent between the
present NRCI result and Hylleraas value of −60.028 5140(2)
a.u. [47]. Comparing the RCI and NRCI static polarizabilities
of 4He, we find that the relativistic correction is positive for
the 2 1P1 state, which is different from the ground state [39,42]
and the 2 3S1 metastable state [25].

Table II also shows the α3 QED corrections to the static
dipole polarizabilities for the 2 1P1 state. The fractional un-
certainties are larger than the differences between QED
corrections from the first term of Eq. (8) and the total α3

corrections [41] to energies, which guarantees the reliability
of present QED corrections to polarizabilities. When an atom
is in the external electric field ε, the electric-field derivative
of Bethe logarithm of ∂2

ε lnk0 introduces about 0.6% of the α3

QED correction (without ∂2
ε lnk0) to the ground-state polariz-

ability [24,48]. In previous calculations, the correction from
∂2
ε lnk0 was evaluated by indicating 1% of the α3 QED cor-

rection to the polarizability [25]. However, this correction can
be neglected under the present computational uncertainties for
polarizabilities.

IV. MAGIC WAVELENGTHS

The total dynamic polarizabilities for the 2 3S1 and 2 1P1

states depend upon their magnetic quantum numbers of M.
Therefore, the magic wavelengths need to be determined sep-
arately for the cases with M = 0 and M = ±1 for the 2 3S1 →
2 1P1 transitions, owing to the presence of the tensor contribu-
tion to the total polarizabilites of the 2 3S1 and 2 1P1 states. The
transitions of 2 3S1(M = 0) → 2 1P1(M = ±1) and 2 3S1(M =
±1) → 2 1P1(M = ±1) have the same number of magic
wavelengths in the range above 389 nm, and magic wave-
lengths for these two transitions are the same under present
computational accuracy. We plot the frequency-dependent po-
larizabilities in the range 390–540 nm for the 2 3S1(M = ±1)
and 2 1P1(M = ±1) magnetic substates in Fig. 1. The positions
of the resonances are indicated by vertical dashed lines with
small arrows on top of the graph. There are five resonances
(2 1P1 → n 1D2, n = 4–8) in this wavelength region, and five
magic wavelengths for the 2 3S1(M = ±1) → 2 1P1(M = ±1)
transition which are all marked with arrows. In addition, there
is no magic wavelength above 540 nm since there is no con-
tribution from the 2 1P1 − 2 1S0 and 2 1P1 − 3 1S0 resonances,
because n 1S0 contributions to the scalar and tensor polariz-
abilities of the 2 1P1(M = ±1) state cancel each other out.

The other transitions of 2 3S1(M = 0) → 2 1P1(M = 0) and
2 3S1(M = ±1) → 2 1P1(M = 0) have the same number of
magic wavelengths as well. Magic wavelengths and the cor-
responding polarizabilities for the transition final state of
2 1P1(M = 0) are given in Table III. In the present RCI cal-
culations, except for the first magic wavelength at 1335 nm,
magic wavelengths for the 2 3S1(M = 0) → 2 1P1(M = 0)
and 2 3S1(M = ±1) → 2 1P1(M = 0) transitions are the same
within the listed uncertainties, so only one set of magic wave-
lengths data is listed. While the dynamic polarizabilities at
the corresponding magic wavelengths for these two transitions
are slightly different, we list both sets of polarizability data
to illustrate the differences from different magnetic substates.
NRCI results of magic wavelengths and the corresponding
dynamic polarizabilities for 4He and ∞He are given in the last
four columns of Table III. By comparing the NRCI results
of 4He and ∞He, we will extract the finite nuclear mass
corrections to magic wavelengths and polarizabilities. The
relativistic effects are extracted from the RCI results and the
NRCI results of 4He.

The first two longer magic wavelengths for the 2 3S1(M =
±1) → 2 1P1(M = 0) transition are displayed in Fig. 2. Com-
parisons of the percentages of finite nuclear mass and
relativistic contributions to magic wavelengths are shown
graphically in Fig. 3. It is found that the line shape of the
dynamic polarizabilities curve of 2 1P(M = 0) near 1335-nm

FIG. 1. The frequency-dependent polarizabilities for the
2 3S1(M = ±1) and 2 1P1(M = ±1) states of 4He. The magic
wavelengths are marked with arrows. The positions of the
resonances are indicated by vertical dashed lines with small arrows
on top of the graph.
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TABLE III. Magic wavelengths (in nm) and the corresponding dynamic dipole polarizabilities (in a.u.) for the 2 3S1 → 2 1P1(M = 0)
transition of helium. The numbers in parentheses are computational uncertainties.

(RCI, 4He) (NRCI, 4He) (NRCI, ∞He)
2 3S1(M = 0/ ± 1) → 2 1P1 2 3S → 2 1P 2 3S → 2 1P

No. λm α1(λm ) λm α1(λm ) λm α1(λm )

1 1335.486(4)/1335.523(5) 902.54(2)/902.59(2) 1335.85(2) 902.82(3) 1335.54(2) 901.81(3)
2 720.54(2) −228.08(2)/−228.05(2) 720.56(1) −227.93(2) 720.39(1) −227.93(2)
3 527.90(2) −76.527(4)/−76.518(4) 527.867(2) −76.457(2) 527.765(2) −76.467(2)
4 502.44(2) −63.417(2)/−63.409(4) 502.448(2) −63.371(2) 502.346(2) −63.381(2)
5 449.28(2) −35.265(4)/−35.258(4) 449.271(2) −35.208(2) 449.184(2) −35.229(2)
6 442.665(4) −31.027(4)/−31.020(4) 442.672(2) −30.976(2) 442.585(2) −30.998(2)
7 418.872(4) −9.280(6/−9.270(6) 418.873(2) −9.192(2) 418.792(2) −9.228(2)
8 416.273(4) −5.498(8)/−5.49(2) 416.279(2) −5.411(2) 416.199(2) −5.448(2)
9 403.172(4) 29.73(2)/29.75(2) 403.176(2) 29.942(2) 403.098(2) 29.894(4)
10 401.958(4) 36.15(2)/36.17(2) 401.964(2) 36.378(2) 401.886(2) 36.330(2)
11 393.863(4) 155.3(2)/155.4(2) 393.868(2) 156.50(2) 393.792(2) 156.61(2)
12 393.138(4) 188.0(2)/188.1(2) 393.142(2) 189.69(4) 393.067(2) 189.90(4)

magic wavelength is different from that near other magic
wavelengths shown in Figs. 1 and 2. Moreover, it indicates
that the percentages of finite nuclear mass and relativistic
corrections to the 1335-nm magic wavelength are larger than
those of other magic wavelengths from Fig. 3.

We discuss the finite nuclear mass, relativistic, and QED
effects on the 1335-nm magic wavelength for the 2 3S1(M =
±1) → 2 1P1(M = 0) transition of 4He (the 2 3S1 state with
the M=1 magnetic substate is the magnetically trapped state
[49]) in detail. Table IV gives the breakdown of different
contributions to the 1335-nm magic wavelength and to the
corresponding dynamic dipole polarizability. The finite nu-
clear mass corrections are obtained by comparing the NRCI
results of 4He and ∞He, and the relativistic effects are ex-
tracted from the RCI results and the NRCI results of 4He,

FIG. 2. The frequency-dependent polarizabilities for the
2 3S1(M = ±1) and 2 1P1(M = 0) states of 4He. The magic
wavelengths are marked with arrows. The positions of the
resonances are indicated by vertical dashed lines with small arrows
on top of the graph.

which are all listed in the third line of Table III. The leading
QED corrections given in Table IV are obtained by the per-
turbation method. The QED contributions of 0.028(2) nm and
0.009 6(2) a.u. are added to the RCI values of 1335.523(5) nm
and 902.59(2) a.u., which give 1335.55(2) nm for the magic
wavelength and 902.60(2) a.u. for the dynamic polarizability,
respectively. The α4 order QED effects on the 1335-nm magic
wavelength and the corresponding dynamic polarizability are
estimated as we have done for the 413-nm tune-out wave-
length [25], they are respectively 0.000 49 nm and 0.000 17
a.u., which can be neglected in the present computational
uncertainties.

For the 1335-nm magic wavelength, from Table IV, we
obtain that the finite nuclear mass, relativistic, and QED
effects on the 1335.55(2)-nm magic wavelength are respec-
tively 232, 247, and 21 ppm. Moreover, the finite nuclear
mass, relativistic, and QED corrections calculated here can-
cel out almost completely under the present computational

FIG. 3. Comparisons of the finite nuclear mass (FNM) and
relativistic (Rel.) contributions to each magic wavelength for the
2 3S1(M = ±1) → 2 1P1(M = 0) transition of 4He.
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TABLE IV. Contributions to the 1335-nm magic wavelength
(in nm) for the 2 3S1(M = ±1) → 2 1P1(M = 0) transition and the
dynamic dipole polarizability (in a.u.) at the 1335-nm magic wave-
length of 4He. FNM and Rel. represent the finite nuclear mass and
relativistic corrections, the present RCI results include the FNM and
Rel. corrections, and the leading QED corrections are obtained by
perturbation calculations. The numbers in parentheses are computa-
tional uncertainties.

Contributions λm α1(λm )

FNM 0.31(2) 1.01(3)
Rel. −0.33(2) −0.23(3)
RCI 1335.523(5) 902.59(2)
QED 0.028(2) 0.009 6(2)
Total 1335.55(2) 902.60(2)

uncertainties. Thus, the final result of 1335.55(2) nm of 4He
is slightly discrepant from the NRCI result of 1335.545(2) nm
for ∞He.

QED contribution to the 1335-nm magic wavelength is
comparable to the ground and the 2 3S1 metastable state static
polarizabilities (≈22 ppm) [24,25], but high-precision mea-
surement of magic wavelength is more feasible than that of
polarizability. Moreover, while magic wavelengths and tune-
out wavelengths both permit measurements of high precision,
QED sensitivity of the 1335-nm magic wavelength is almost
twice that of the 413-nm tune-out wavelength (≈10 ppm) [25].
It is concluded that measurement of the 1335.55(2)-nm magic
wavelength for the 2 3S1(M = ±1) → 2 1P1(M = 0) transition
of 4He would provide another nonenergy test of fundamental
atomic structure theory, which might be comparable to or
better than measurement of the 413-nm tune-out wavelength
[25,27,28].

The magic wavelength for the 2 3S1(M = ±1) →
2 1P1(M = 0) transition of 4He, present computed value
of 1335.55(2) nm is equivalent to 224 471(4) GHz, which
indicates that, if measured, a magic frequency with an
accuracy of better than GHz will reflect the leading
QED correction. As mentioned in the introduction, magic
wavelengths measured in most of current experiments have

been at the level of MHz, so we reasonably inferred that
higher order QED effects may be tested provided that
the 224 471-GHz magic frequency can be measured with a
precision of MHz and higher accuracy theoretical calculations
can be achieved as well.

V. CONCLUSION

We have calculated the frequency-dependent dipole po-
larizabilities for the 2 1P1 state and determined a series of
magic wavelengths for the 2 3S1 → 2 1P1 forbidden transition
of helium. Using a perturbation method, the leading QED cor-
rections to polarizabilities and magic wavelengths are taken
into account. In the present RCI calculations, we obtain the
static scalar and tensor dipole polarizabilities of −59.619(6)
and 223.59(2) a.u. for the 2 1P1 state, and the corresponding
leading QED corrections are −0.006 02(2) and 0.006 11(2)
a.u.. The finite nuclear mass, relativistic, and QED corrections
to the 1335.55(2)-nm magic wavelength for the 2 3S1(M =
±1) → 2 1P1(M = 0) transition are respectively 232, 247, and
21 ppm, and a precision of better than 0.01 nm in the magic
wavelength would reflect the atomic structure information
related to QED effects. Since the 1335-nm magic wavelength
is sensitive to the finite nuclear mass, relativistic, and QED
effects, and moreover the measurement of magic wavelengths
with high precision is feasible, we suggest that the 1335-nm
magic wavelength would probably serve as one of atomic
structure theory probes.
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