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Enhanced decoherence for a neutral particle sliding on a metallic surface in vacuum
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Bodies in relative motion, spatially separated in vacuum, experience a tiny friction force known as quantum
friction. This force has eluded experimental detection so far due to its small magnitude and short range. Herein,
we give quantitative details so as to track traces of the quantum friction by measuring coherences in the atom. We
notice that the environmentally induced decoherence can be decomposed into contributions of different signature:
corrections induced by the electromagnetic vacuum in the presence of the dielectric sheet and those induced
by the motion of the particle. In this direction, we show that noncontact friction enhances the decoherence of
the moving atom. Further, its effect can be enlarged by a thorough selection of the two-level particle and the
Drude-Lorentz parameters of the material. In this context, we suggest that measuring decoherence times through
velocity dependence of coherences could indirectly demonstrate the existence of quantum friction.
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I. INTRODUCTION

Some outstanding features of modern quantum field theory
are the nontrivial structure exhibited by the vacuum state
and the consequent existence of vacuum fluctuations. These
quantum fluctuations induce macroscopic effects over which,
in many cases, experimental verification has been achieved
and thereafter improved. The most renewed example is the
Casimir static force between neutral bodies placed in vacuum
[1–8]. Another paradigmatic example is that of the phe-
nomenon known as the dynamical Casimir effect [9–12], in
which a mirror moving at time-dependent velocities produces
real photons through quantum vacuum fluctuations. How-
ever, while experimental observation of these effects has been
attained, another phenomenon has eluded experimental detec-
tion so far due to its short range and small magnitude. This
latter effect consists of the appearance of a dissipative force
between spatially separated objects in relative motion, known
as quantum friction (QF) [13–18]. This lack of experimental
verification favors the coexistence of different theoretical ap-
proaches which rely on a variety of assumptions and do not
converge to a single result [19]. Such a variety of methods
ranges from time-dependent perturbation theory [20,21] and
quantum master equations in the Markovian limit [22] to gen-
eralized nonequilibrium fluctuation-dissipation relations [23]
and thermodynamic principles [24]. There has also been a
great deal of theoretical effort devoted to finding favorable
conditions for experimental measurements of QF [25–30].

Due to the experimental challenges involved in the imple-
mentation of precision measurements for the detection of such
a small force on objects near a surface, several works have
followed a different approach consisting of tracking traces
of quantum friction through the study of velocity-dependent
quantum-vacuum effects which could more easily testable.
In Refs. [31,32] Volokitin and Persson investigated the van

der Waals friction between graphene and an amorphous SiO2

substrate. They found the electric current to saturate at a
high electric field due to this friction. The saturation current
depends weakly on the temperature, which they attributed to
the quantum friction between the graphene carriers and the
substrate optical phonons. They calculated the frictional drag
between two graphene sheets caused by van der Waals friction
and proved that this drag can induce a voltage high enough
to be measured experimentally by state-of-the-art noncontact
force microscopy. This work paved the way for the possible
mechanical detection of the Casimir friction. In [33] the level
shift and decay rate modification arising from the motion
of an atom in the presence of a medium were found in the
Markovian limit and their relation to the parallel component
of vacuum force was discussed. Considering other aspects of
the internal dynamics, a toy model for decoherence induced in
the state of a particle in motion relative to a material (modeled
as set of harmonic oscillators) was studied in [34]. Recently, in
[35] some of us examined the effect of the vacuum, dressed by
the presence of a more realistic Drude-Lorentz material in the
geometric phase acquired by an atom traversing at constant
velocity, and made a proposal for an experimental setup.

Following these ideas, in this article we focus on finding an
alternative indicator of the existence of quantum friction and
explore favorable experimental conditions under which the
quantum friction can be detected. Due to the technical issues
explained above, we will follow a different approach consist-
ing of tracking traces of quantum friction in the coherences
of a two-level system. We will pursue this goal by a thorough
study of the decoherence process suffered by a neutral particle
in nonrelativistic motion parallel to a metallic surface in an
electromagnetic vacuum. In particular, we will try to identify
environmentally induced behavior dependent exclusively on
the particle’s velocity since the mere presence of a velocity
contribution in the noise-induced corrections is evidence of
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FIG. 1. Scheme of the system under consideration, where the
two-level system moves at a fixed distance a from the dielectric plate.

the existence of frictional effect. Environmentally induced
decoherence can be decomposed into two contributions: cor-
rections induced by the solely electromagnetic vacuum in
the presence of the dielectric sheet and those induced by
the motion of the particle. In the end, we aim to prove that the
presence of velocity and hence noncontact friction enhances
the decoherence of the internal degrees of freedom of the mov-
ing atom, suggesting that measuring decoherence times could
be used to indirectly demonstrate the existence of quantum
friction.

The article is organized as follows. In Sec. II we provide
a description of the composite system under investigation.
In Sec. III we solve the complete system’s dynamics in the
nonretarded regime and weak-coupling limit without mak-
ing either Markovian or low-dissipation approximations. In
Sec. IV we present a complete analysis of the environmentally
induced dynamics of the system so as to track evidence of
quantum-fluctuation-induced effects due to the velocity of the
particle, focusing on the conditions under which those effects
are enhanced. This research is mainly conducted by observing
the suppression of the coherences of the internal degree of
freedom of the particle, where this destruction is found to be
fastened by the movement of the particle. We further include
an analysis of different materials and particles and study how
these features impact on the magnitude of the effects under
study. In Sec. V we summarize our main conclusions. Two
Appendixes complement the work.

II. SYSTEM

Here we consider a neutral particle moving through a
medium-assisted electromagnetic field vacuum. As shown in
Fig. 1, the particle is modeled as a two-level system whose
center of mass follows a prescribed trajectory rs(t ) = vt x̌ +
až at a fixed distance a from a dielectric semi-infinite planar
medium. At this point it is worth noting that we have em-
ployed the inverted circumflex to denote unit vectors so as to
save the circumflex to denote operator nature. The dynamics
of the composite system can be described by a Hamilto-
nian consisting of atomic, field, and interaction contributions

defined by

Ĥ = h̄

2
�σ̂z ⊗ 1 + Ĥem + Ĥint, (1)

where � is energy gap of the two-level system and Ĥem is
the Hamiltonian of the electromagnetic field in the absence
of the particle, but in the presence of the dielectric half space
at z < 0. The interaction between the particle and the field
is given in the dipole (long-wavelength) approximation by
Ĥint = −d̂ ⊗ Ê(rs) and depends explicitly on time through
the position of the particle, which is treated as a classical
variable relying on its uncertainty to be unresolvable by the
characteristic wavelength of the electric field. We will re-
strict ourselves to the nonretarded (near-field) regime where
the particle-surface distance a is small enough to satisfy
a�/c � 1. In this regime, the finite time taken for a reflected
photon to reach the particle is negligible compared to its natu-
ral timescale and the interaction Hamiltonian can therefore be
written as Ĥint = d̂ ⊗ ∇�̂(rs), where the electric potential �̂,
expanded in a plane-wave basis corresponding to elementary
excitations, is [36,37]

�̂ =
∫

d2k
∫ ∞

0
dω[âk,ω, φ(k, ω)eik·r‖ + H.c.] (2)

and contains all the information of the electric field in the z >

0 region, dressed by the dielectric medium. The bosonic oper-
ators satisfy the commutation relation [âk,ω, â†

k′,ω′ ] = δ(k −
k′)δ(ω − ω′) and the single-excitation mode functions are
given by

φ(k, ω) =
√

ω�

ωs

√
h̄

2π2k
e−kz ωp

ω2 − ω2
s − iω�

, (3)

where the wave vector k = (kx, ky) is parallel to the medium
surface and k = |k|. The frequency ωs gives the surface
plasmon resonance and the material dissipation rate � its
broadening while in the Drude model for metals the plasma
frequency ωp satisfies ω2

p = 2ω2
s .

III. NONUNITARY EVOLUTION OF THE SYSTEM

In order to address the dynamics of the two-level system,
we will derive the master equation satisfied by the reduce den-
sity matrix representing its state. This is done by integrating
out the degrees of freedom corresponding to the composite
environment, as indicated by the formalism of open quan-
tum systems [38]. By assuming an initially factorized state
ρ(0) = ρs(0) ⊗ ρvac

em with the dressed electromagnetic field in
its vacuum state, the master equation in the interaction picture,
up to second order in the coupling constant, is given by [39]

ρ̇s(t ) = −1

h̄2

∫ t

0
dt ′Trem[V (t ), [V (t ′), ρs(t ) ⊗ ρem]]. (4)

An explicit computation of this expression leads to the equa-
tion ruling the temporal evolution of the reduced density
matrix [40,41]. In this work we have considered the equation
governing the two-level system dynamics that results from
performing the secular approximation, also referred to as the
post-trace rotating-wave approximation. This approximation
consists of neglecting those terms which are fast oscillating
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in the interaction picture and it can be performed based on
the assumption that dissipative corrections are weak enough
to expect to preserve accurate results in the timescales of the
phenomena [42,43]. Therefore, the equation we obtain is

ρ̇s = − i�

2
[σ̂z, ρs] + iζ (v, t )[σx, {σy, ρs}]

− 1

2
D(v, t )([σx, [σx, ρs]] + [σy, [σy, ρs]])

− 1

2
f (v, t )([σx, [σy, ρs]] − [σy, [σx, ρs]]), (5)

where the nonunitary effects are modeled by the diffusion
coefficients D(v, t ) and f (v, t ), while dissipative effects are
present in ζ (v, t ). All three coefficients consist of real func-
tions of time, with parameters introduced by the particle and
the medium-assisted field. These coefficients are developed
in Appendix A, where an analytical solution is given for
sufficiently low velocities of the particle.

It is important to mention that the diagonal elements of the
reduced density matrix are exactly the same whether secular
approximation is performed or not, since for this system it
only implies disregarding a dynamical interaction between
ρ12 and ρ21. By resorting to a change of variables, say, ρ− =
ρ11 − ρ22 and ρ+ = Tr(ρs) = 1, a formal solution can easily
be found through direct computation,

ρ−(t ) = exp

(
−4

∫
dt D(v, t )

)
ρ−(0)

− 4 exp

(
−4

∫
dt D(v, t )

) ∫ t

0
dt ′ζ (v, t ′)

× exp

(
4

∫
dt ′D(v, t ′)

)
. (6)

The nondiagonal elements in this approximation are

ρSEC
12 (t ) = ρ12(0) exp

(
−

∫ t

0
dt ′[2D(v, t ′)

+ 2i f (v, t ′) + i�]

)
, (7)

ρ21(t ) = ρ∗
12(t ). (8)

Hence, after applying the secular approximation, the reduced
density matrix describing the state of the particle’s internal
degree of freedom can be written as ρs(t ) = ρdiag + ρnond,
with

ρdiag =
(

ρ11(t ) 0
0 1 − ρ11(t )

)
(9)

and

ρnond =
(

0 ρ12(0)e−iξ (t )

ρ∗
12(0)eiξ (t ) 0

)

× exp

(
− 2

ωs

∫ t

0
dt ′D(v, t ′)

)
, (10)

with

ξ (t ) = i�̃t + 2i
∫ t

0
dt ′ f (v, t ′)

ωs
, (11)

1�10�1

FIG. 2. Matrix elements and purity evolution in natural cycles
N = t

2π/�̃
. (a) The system can be seen to tend to its ground state

independently of the initial state for low velocities. (b) For high
enough velocity, the asymptotic state is a mixed state. The parameter
values are �̃ = 1, r0/ωs = 10−2, �̃ = 0.2, and (a) u = 0.003 and
(b) u = 0.3. The inset in (a) displays the behavior of the asymptotic
value of ρ11 with dimensionless velocity u.

where we have used the dimensionless parameters t =
ωstreal, u = v/(ωsa), �̃ = �/ωs, and �̃ = �/ωs as defined in
Appendix A.

The dynamics of the system can be seen to display two
qualitatively different behaviors depending on the velocity of
the particle. While for high enough velocities the evolution
leads to a mixed asymptotic state, if the velocity is low the
system evolves to its ground state. We present both behaviors
in Fig. 2. In Fig. 2(a) the particle is considered to move
with dimensionless velocity u = 0.003. In that case, both the
coherences and the ρ11 element of the state are indefinitely
suppressed and tend to vanish for long enough times, leading
the system to its ground state. The purity of the state de-
creases until reaching a minimal value, from which it starts
to recover and finally tends to unity as the system tends to its
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FIG. 3. Coherence evolution, in natural cycles N = t
2π/�̃

, for
different velocity values. The inset shows the difference in the co-
herence as cycles proceed for smaller velocity values. The parameter
values are �̃ = 1, r0/ωs = 10−2, and �̃ = 0.2.

pure ground state. On the other hand, while the coherences
are totally extinguished, for a dimensionless velocity u = 0.3
the ρ11 element of the reduced density matrix is only sup-
pressed up to an asymptotic value. This behavior, displayed
in Fig. 2(b), leads to a mixed asymptotic state whose purity
never recovers but lands at a constant value depending on ρ11

as p = ρ2
11 + (1 − ρ11)2.

The inset in Fig. 2(a) shows the velocity dependence of the
asymptotic value of ρ11. The dimensionless velocity u = �̃/2
at which the dynamics of the system acquires a completely
different behavior coincides with the lower bound on the ve-
locity, which allows the atom to become excited at the expense
of its kinetic energy [44–46]. A few remarks can be made
from a more detailed observation of the coherence behaviors.
Figure 3 shows off-diagonal elements of the density matrix to
be suppressed by the environment. This destruction is seen not
only to be fastened by the relative motion between the particle
and the material, but also to happen sooner as the velocity is
increased; for example, the absolute value of the coherence
for a particle in relative motion with u = 0.3 becomes extinct
sooner than that with u = 0.15. The same monotonic behavior
is displayed in the inset, in which the difference between ab-
solute values |ρ12(t )| − |ρu=0

12 (t )| grows faster as the velocity
is increased.

However, as the difference between the value of |ρ12(t )|
for finite velocity and that for null velocity attains a max-
imum value and tends to vanish afterward, explorations of
the coherences at too late times would not allow any identi-
fication of the velocity-induced effects. As shown in Fig. 2,
the same observation would apply to the behavior of both
the populations and purity measurements for low velocities
as all these converge to a given value for long enough times,
independently of the velocity. For high velocities, however,
the velocity effect could be observed at late times on the
populations or purity measurements, while the coherences
will always be completely destroyed if one waits too long.

In the following, we will use the results obtained herein for
the reduced density matrix so as to define a scale in which
coherences in the internal degree of freedom of the atom are
destroyed by the influence of the electromagnetic field dressed
by the metallic material.

IV. ENVIRONMENTALLY INDUCED DESTRUCTION
OF COHERENCES

In this section we focus on the environmentally induced
destruction of the particle’s quantum coherences and define
a characteristic time in which the process takes place. The
density matrix defined by Eqs. (9) and (10) allows us to define
a decoherence timescale τD from the decoherence function
D(t ) = exp[− 2

ωs

∫ t
0 dt ′D(v, t ′)] as D(τD) = e−2.

For low velocities, up to second order in the dimensionless
velocity u, this decoherence timescale behaves as

τD = τMarkov
D +

[
−1√

4 − �̃
2

g(�̃, �̃)

h(�̃, �̃)
+ 2

π�̃

]

+ 3

8

d (a)

d (i)
u2

{[
g(�̃, �̃)

∂2
�̃

h(�̃, �̃)

h2(�̃, �̃)
− ∂2

�̃
g(�̃, �̃)

h(�̃, �̃)

]

+ 2

πh(�̃, �̃)

[
∂2
�̃

h(�̃, �̃)

�̃
− ∂2

�̃
h(�̃, �̃)

�̃

]}
, (12)

where the term corresponding to the Markovian approxima-
tion can be expressed as

τMarkov
D = h̄ω2

s a3

d2ω2
p

32

d (i)

(
1

h(�̃, �̃)
− 3

8

d (a)

d (i)
u2

∂2
�̃

h(�̃, �̃)

h2(�̃, �̃)

)
.

(13)
The functions h(�̃, �̃) and g(�̃, �̃) appearing in these expres-
sions are defined by

h(�̃, �̃) = �̃�̃

(�̃2 − 1)2 + �̃�̃
,

g(�̃, �̃) = Re

[(
1 + 2i

π
ln(ω̃r/�̃)

)

×
(

1

(ω̃r + �̃)2
+ 1

(ω̃r − �̃)2

)]
, (14)

with ω̃r as defined in Eq. (A8) and the dependence on the
polarization orientation encoded in d (i) and d (a) as defined
after Eq. (A11). The dependence of the dynamics on the ve-
locity of the particle (which is already evident in the behavior
displayed in Figs. 2 and 3) can therefore be studied by the
use of the decoherence time τD, which happens to scale as
u2 for low velocities, as seen from Eqs. (12) and (13). This
quadratic behavior of the internal dynamics is in agreement
with the results found in [33], where among other aspects
of the internal dynamics of an atom the decay rate, which
is proportional to the Markovian limit of D(v, t ), is found to
scale as u2. A similar dependence on u was found in [35] for
the corrections induced by the noncontact friction force on the
accumulated geometric phase.

Decoherence time being approximated by τD ∼ a − bu2

reveals that the effect of the environment on the particle
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�

FIG. 4. Decoherence time rate as a function of the adimensional
velocity u. The parameter values are �̃ = 1, �̃NV = 0.2, �̃Rb = 8,
and r0/ωs = 10−2.

contains two contributions of different nature: (i) a contribu-
tion induced by solely vacuum fluctuations (dressed by the
presence of the dielectric) and (ii) a contribution induced
by the motion of the particle in quantum vacuum. Then it
is instructive to study the factor b/a as it constitutes a rate
between these two contributions. We define τD as the net
effect of the environment on the particle, while τD|u=0 is the
decoherence time when the particle is static. If velocity effects
are insignificant, τD/τD|u=0 ∼ 1. Hence, by inspecting the rate
(τD/τD|u=0 − 1) we gain access to b/a. In Fig. 4 this rate is
plotted as a function of velocity for two different �̃ values
where a quadratic behavior can be easily noted. This behavior
is also confirmed by comparing the rate computed by Eq. (12)
and the one numerically obtained from the proper definition
of τD.

The difference in the scale factor on each curve reflects
how both the net effect of the environment on the particle
internal degree of freedom and the contribution derived from
the finite velocity are strongly dependent on the parameters of
the problem, which are introduced by the material of the half
space and the level spacing of the particle and its velocity. For
example, the relation b/a takes a numerical value b/a ∼ 6.417
for a nitrogen-vacancy (NV) center moving over an n-doped
silicon (n-Si) surface, while it takes a value b/a ∼ 0.216 for a
rubidium atom moving over the same surface.

The timescale defined in this way inherits also a depen-
dence on the orientation of the polarization of the system d =
d ( sin(θ ) cos(ϕ)x̂ + sin(θ ) sin(ϕ)ŷ + cos(θ )ẑ) (where ϕ and θ

are the spherical azimuthal and polar angles, respectively)
from the coefficients governing the dynamics. Figure 5 shows
the ϕ dependence for different fixed θ values, where it can be
seen that the decoherence time is at its smallest value when
the polarization is perpendicular to the dielectric surface. If
tilted, the coherences fall sooner when the polarization is in
the direction of the velocity. This behavior is in accordance
with that shown by Intravaia et al. in the inset of Fig. 5 in
[44], where they have shown the frictional force (computed up
to second order in the coupling constant) dependence on the

FIG. 5. Decoherence time as a function of the polarization di-
rection of the system. The parameter values are �̃ = 1, �̃ = 0.2,
u = 0.3, and r0/ωs = 10−2.

polarization direction. Herein, we find that for the same dipole
orientation the force increases and τD decreases, implying that
decoherence effects are stronger in that case. This permits a
direct link between decoherence and quantum friction since
they exhibit a qualitative inverse proportionality: The stronger
the decoherence effect, the stronger the frictional force.

Seeing in Fig. 4 that those variations introduced by the
different parameters concerning the material and particle seem
to be relevant for the magnitude of the effect, we complete
this section by examining some possibilities. For the dielectric
material we consider a dielectric to be a gold surface (Au) or
an n-doped silicon material (n-Si), gold having the parame-
ters of the Drude-Lorentz model ωAu

s ∼ 9.7 × 1015 rad/s and
�/ωs ∼ 0.003, while the n-Si parameters are �/ωs ∼ 1 and
ωn-Si

s ∼ 2.47 × 1014 rad/s. As for the particles (atoms), we
consider a Rb atom or a single NV center in diamond as an
effective two-level system. In Fig. 6 we show the behavior of
τD/τD|u=0 − 1 in the polarization direction for different sets
of frequencies. Therein, we include all four combinations:
Dotted lines represent the decoherence time Rb atom and Au,
dashed lines correspond to a Rb atom and n-Si, dot-dashed
lines correspond to the NV center and Au, and solid lines
correspond to the NV center and n-Si. In this way, we can get
insight into the importance of the velocity-dependent effects
since the bigger the magnitude of the quantity displayed is,
the more important the u2 contribution becomes. The results
obtained enhance the idea that the velocity effects induced on
the atom depend considerably on the material and particle.
The rate between the decoherence timescale at finite velocity
and that at null velocity is increased by a factor 102 when
comparing an NV center moving over an n-Si–coated surface
with a Rb atom moving over a gold-coated surface.

We conclude from our analysis that the election of n-Si as
the material and an NV center as our system would enhance
the effect the most. The NV center consists of a vacancy,
or missing carbon atom, in the diamond lattice lying next to
a nitrogen atom, which has been substituted for one of the
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�

FIG. 6. Decoherence time as a function of the polarization direc-
tion of the system, which has polarization d = d ( sin(θ ) cos(φ)x̂ +
sin(θ ) sin(φ)ŷ + cos(θ )ẑ) for both different systems and different
materials. Different line styles represent different system-material
combinations in this correspondence: Dotted lines correspond to a
Rb atom and Au, dashed lines to a Rb atom and n-Si, dot-dashed
lines to an NV center and Au, and solid lines to an NV center and
n-Si.

carbon atoms. The electron spin is the canonical quantum
system and the NV center offers a system in which a single
spin can be initialized, coherently controlled, and measured.
It is also possible to mechanically move the NV center. For
a deeper discussion on the dependence of the effect with the
natural level spacing of the system we refer to Appendix B.

V. CONCLUSION

In this article, we have studied the complete dynamics
of a two-level system in relative motion with a semi-infinite
dielectric material in the electromagnetic vacuum field, with
the purpose of characterizing the effects of motion in the dy-
namics as an alternative to the explicit computation of QF. We
have derived the perturbative master equation and obtained
the reduced density matrix for all times; we have done this
in the near-field regime but otherwise without referring to the
Markov approximation. Further, we have obtained an analyt-
ical expression in the low-velocity limit when computing the
environmental kernels for the vacuum fluctuations.

By a direct inspection of the density matrix evolution,
completely different behavior has been found depending on
the particle’s velocity relative to the dielectric surface. While
for low velocities both ρ11 and ρ12 elements are completely
suppressed and the system finally tends to its ground state,
when the velocity increases the environmental effect pro-
duces mixed asymptotic states, as the element ρ11 does not
completely vanish but lands at a finite constant value. This
divergence on the asymptotic states leads to a completely
different behavior of the state purity, which is initially reduced
but afterward recovers to unity when the asymptotic state is
a pure ground state but is permanently reduced to a lower
value when the velocity is high enough as to allow for mix

asymptotic states. We conclude this inspection of the state of
the two-level system by mentioning that, although for slow
enough relative motion there is a preferred time interval in
which the effect of velocity can be drawn out from the net
vacuum-induced effect, as the velocity is increased and its ef-
fect is reflected in the mix asymptotic state, long time studies
could supply evidence of the velocity-induced phenomena as
well.

From the obtained reduced density matrix, we have esti-
mated the decoherence timescale at which the coherences are
strongly suppressed. We have also provided a low-velocity
expression for this timescale, which has been shown to scale
as u2 in accordance with previous results, and we have further
analyzed its dependence on a variety of parameters involved
in the dynamics. Through analytic considerations, we have
shown how both the net effect of the composite environment
on the particle and the velocity-dependent effect are strongly
dependent on the material parameters and the system level
spacing, allowing us to amplify or weaken the magnitude by
a sensible choice.

Finally, as for the dependence upon the polarization di-
rection, we have found results for the decoherence time in
agreement with those existing in the literature for quantum
friction, showing a qualitative inverse proportionality among
them and the frictional force. This means that a link between
the decoherence time and the quantum frictional force can be
established since noncontact friction seems to enhance the de-
coherence of the moving atom. This suggests that measuring
decoherence times could be used to indirectly demonstrate the
existence of quantum friction. Furthermore, we have analyzed
the different compositions of the material and effective two-
level system that can be useful in experimental setups with
the purpose of enhancing the effect of the finite velocity on
the internal degree of the particle. In particular, we found
the rate between the decoherence timescale at finite velocity
and that at null velocity to be bigger by a factor 102 when
comparing an NV center moving over an n-Si surface with a
Rb atom moving over a gold surface. We are confident that
our work can spark renewed optimism in the design of new
experimental setups for the detection of noncontact friction
with the hope that this nonequilibrium phenomenon can be
viewed in measurable reality soon.
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APPENDIX A: MASTER-EQUATION COEFFICIENTS

The polarization vector of the particle can be split into
a module and direction as d = d (nxx̌ + nyy̌ + nzž), with∑

n2
i = 1. Then the coefficients D(v, t ), f (v, t ), and ζ (v, t )

appearing in the master equation are given, in polar coordi-
nates for the parallel wave vector k, by expressions of the form

N (v, t ) = d2

4π2h̄

∫ t

0
dt ′

∫ 2π

0
dθk

∫ ∞

0
k2dk dω e−2ak

× {
[nx cos(θk ) + ny sin(θk )]2 + n2

z

}
032809-6
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× �ω2
p ω(

ω2 − ω2
s

)2 + �2ω2

× trig[�(t − t ′)]trig[(ω − ikv cos θk )(t − t ′)],

where we are referring to any of the coefficient functions as
N (v, t ) and either function sin(x) or cos(x) as trig.

Expressing the trigonometric function trig[(ω −
ikv cos θk )(t − t ′)] in terms of exponential functions, the
integral over k can be performed directly∫ ∞

0
k2e−2ake±ikv cos(θ )(t−t ′ )dk = 2

[2a ∓ iv cos(θ )(t − t ′)]3
,

as well as the nonzero integrals over θk ,∫ 2π

0
dθ

cos2 θ

[2a ± iv cos(θ )(t − t ′)]3
= 2π [2a2 − v2(t − t ′)2]

[4a2 + v2(t − t ′)2]5/2

×
∫ 2π

0
dθ

sin2 θ

[2a ± iv cos(θ )(t − t ′)]3
= π

[4a2 + v2(t − t ′)2]3/2

×
∫ 2π

0
dθ

1

[2a ± iv cos(θ )(t − t ′)]3
= π [8a2 − v2(t − t ′)2]

[4a2 + v2(t − t ′)2]5/2
.

Then, if we define dimensionless parameters

u = v

ωs × a
, �̃ = �

ωs
, �̃ = �

ωs
, (A1)

the dimensional coefficient r0 = d2ω2
p/h̄ω2

s a3, and change to
dimensionless variables

ω

ωs
→ ω,

�

ωs
→ t, (A2)

the functions can be written as

D(v, t ) = r0

2π

∫ t

0
dt ′

∫ ∞

0
dω

�̃ω

(ω2 − 1)2 + �̃2ω2
cos(�̃t ′) cos(ωt ′)P(ut ′), (A3)

f (v, t ) = r0

2π

∫ t

0
dt ′

∫ ∞

0
dω

�̃ω

(ω2 − 1)2 + �̃2ω2
sin(�̃t ′) cos(ωt ′)P(ut ′), (A4)

ζ (v, t ) = r0

2π

∫ t

0
dt ′

∫ ∞

0
dω

�̃ω

(ω2 − 1)2 + �̃2ω2
sin(�̃t ′) sin(ωt ′)P(ut ′), (A5)

where P(ut ′) is an algebraic function given by

P(ut ′) = 2n2
x

2 − u2t ′2

(4 + u2t ′2)5/2

+ n2
y

(4 + u2t ′2)3/2
+ n2

z

(8 − u2t ′2)

(4 + u2t ′2)5/2 . (A6)

In the following, we will consider only D(v, t ), since the
other coefficients can be treated in a very similar manner. The
expression to be integrated over ω,

1

2

∫ ∞

0
dω

�̃ω

(ω2 − 1)2 + �̃2ω2
(eiωt ′ + e−iωt ′

), (A7)

is holomorphic everywhere but on the poles given by the roots
of the denominator {ω̃r,−ω̃r, c.c.}, with

ω̃r = 1√
2

√
2 − �̃ + i

√
4 − �̃. (A8)

For �̃ values satisfying �̃ < 2 these are complex poles with
both real and imaginary nonvanishing parts, while for �̃ > 2,
ω̃r is purely imaginary. The integral in (A7) can be expressed
in terms of exponential integral functions as

1

4
√

4 − �̃2
[πeiωrt − ieiωrt E1(iωrt ) − ie−iωrt E1(−iωrt ) + c.c.],

(A9)

where the terms containing the functions E1 are negligible
when compared to the exponential term as long as �̃ � 1 but
cease to be negligible for �̃ ∼ 1.

First, we will focus on the approximated result obtained
for low �̃ values (i.e., disregarding all terms containing E1

functions) to explain how we have considered the correction

introduced by them at the end of this Appendix. At this point,
we are only left with the time integral to be addressed. In order
to do so, we will extend t ′ to the complex plane and modify
the integration path conveniently (Fig. 7). By observing that
for nonrelativistic velocities of the particle, oscillations in

D(v, t ) = r0

4π

π√
4 − �̃2

×
∫ t

0
dt ′(ei(ω̃r+�̃)t ′ + ei(ω̃r−�̃)t ′ + c.c.)P(ut ′)

(A10)

occur on a much faster timescale than P(ut ′) variation, we can
adopt the steepest-descent method to replace the integrals over

FIG. 7. Constant phase contours for an integral over the variable
t ′ which was extended to the complex plane.
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FIG. 8. Coefficient D(v, t ) evolution in natural cycles N = t
2π/�̃

,
comparing the analytical expression, the numerical result, and the
value obtained when performing a Markov approximation. The pa-
rameter values are a = 5 nm, �̃ = 1, �̃ = 0.2, u = 0.003, and d =
d (1, 0, 0).

the real axis intervals by integrals along a constant phase path
for each exponential.

Over these paths, the integral is dominated by the contribu-
tions at those points where the exponent is a local maximum,
allowing for an expansion of the algebraic function in the
parameter of the curve. Following this method, we get, up to
second order in the adimensional velocity u, the approximated
expression

D(v, t ) ∼ r0

8

1√
4 − �̃2

×
[
−d (i)

8
Im

1

ω̃r + �̃
− 3

32
d (a)u2Im

1

(ω̃r + �̃)3

+ P(ut ′)Im
ei(ω̃r+�̃)t ′

ω̃r + �̃
+ 12R(ut )u2Im

ei(ω̃r+�̃)t ′

(ω̃r + �̃)3

−3Q(ut )tu2Re
ei(ω̃r+�̃)t ′

(ω̃r + �̃)2

]
+ (�̃ ↔ −�̃),

(A11)

where d (i) = 1 + n2
z and d (a) = 3n2

x + n2
y + 4n2

z . The ad-
ditional algebraic functions Q and R appearing in this
expression for D(v, t ) are given by

Q = 2
6 − u2t2

(4 + u2t2)7/2 n2
x + n2

y

(4 + u2t2)5/2 + 16 − u2t2

(4 + u2t2)7/2 n2
z ,

R = 2
(6 − u2t2)2 − 30

(4 + u2t2)9/2 n2
x + (1 − u2t2)

(4 + u2t2)7/2 n2
y

+ 16 − 27u2t2 + u4t4

(4 + u2t2)9/2 n2
z ,

while approximate solutions can be found for f (v, t ) and
ζ (v, t ), following an analogous procedure.

In order to incorporate a correction that allows us to inves-
tigate greater �̃ values, we expand P(ut ) up to second order in

�

�

�

frequency

frequency

FIG. 9. Decoherence time as a function of the dimensionless
level spacing �̃ of the system, normalized with the null velocity
value, considering an n-Si (up) and a gold (down) dielectric. The pa-
rameter values are �̃ = 1 and u = 0.003 for n-Si and �̃ = 3 × 10−3,
u = 1.5 × 10−4, and d = d (1, 0, 0) for Au.

u in the integrand so that

P(ut ′) ∼ d (i)

8
− 3

64
d (a)u2t ′2. (A12)

This allows us to write the remaining part of the integral as

�D(v, t ) = r0

16π

1√
4 − �̃2

[
d (i)

8
+ 3

64
d (a) u2∂2

�̃

]

×
∫ t

0
dt ′ {(−i)(ei(ωr+�̃)t E1(iωrt )

+ e−i(ωr+�̃)t E1(−iωrt )) + c.c.} + (�̃ ↔ −�̃).

(A13)
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This integral can be formally solved to

�D(v, t ) = r0

16π

1√
4 − �̃2

[
d (i)

8
+ 3

64
d (a) u2∂2

�̃

]

×
{ −2π i

ω̃r + �̃
+

[
[E1(−i�̃t ) − E1(i�̃t )]

1

ω̃r + �̃

− ei(ωr+�̃)t

ω̃r + �̃
E1(iωrt ) + e−i(ωr+�̃)t

ω̃r + �̃
E1(−iωrt )

+ (�̃ ↔ −�̃)

]
+ c.c.

}
. (A14)

These expressions have been tested against the numerical
results. It is easy to obtain a comparison from Fig. 8, where
the evolution of D(v, t ) is plotted for �̃ = 1. The dashed
line representing the numerical result is not distinguishable
from the red solid line representing the analytical expres-
sion. Both the numerical and the analytical results tend to
their Markovian approximation values for a few cycles for
these parameter values, but a difference between the val-

ues obtained when computing
∫

D(v, t ) and DMarkovt can be
suspected.

APPENDIX B: DEPENDENCE ON LEVEL SPACING

As suggested in Sec. IV, the strength of the velocity-
dependent effect can be studied from the relation between
the decoherence time defined by Eq. (12) for finite and zero
velocities. Exploring the dependence of this relation on the
level spacing of the atom, it can be seen in Fig. 9 that an ap-
propriate choice of the particle to be considered can enhance
(or diminished) considerably the effect of velocity. Rigorously
speaking, the dependence is not on the level spacing alone but
on the relation between the Drude-Lorentz parameters of the
material and the level spacing. It can be seen that, moving
away from the prohibited near-resonance range, the differ-
ence between the vacuum and velocity effects is maximum
for certain values of natural level spacing �̃, approaching
zero sufficiently far from resonance. In order to maximize the
effect to be studied, we consider the system to be an NV center
of natural frequency �̃ = 0.2 moving over an n-doped silicon
surface or an NV center of natural frequency �̃ = 0.9 moving
over a gold surface unless explicitly indicated.
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