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Effect of angular momentum transfer on the angular distribution of Auger electrons following
atomic inner ns2-shell photoionization
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A mechanism of angular-momentum transfer between photoelectrons and Auger electrons is applied to Auger
electron emission in process of photoionization of deep inner atomic shells followed by Auger decay. This
mechanism proofs to be the leading contribution to distortion of angular distribution of the Auger electrons
and highlights important features of postcollision interaction effect in the inner shells photoionization. The
theory developed is applied to the photoionization of ns2 shells of noble gases. Calculations show the noticeable
influence of angular-momentum transfer on the Auger-electron angular distribution in a number of cases.
Photoionization processes suitable for experimental observation of the proposed effect are discussed.
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I. INTRODUCTION

Inner atomic shell photoionization leads to creation
of inner-shell vacancy and emission of photoelectron. A
radiationless decay of created vacancy occurs in the easi-
est case through Auger decay with an emission of Auger
electrons. In the final state of process under consideration,
three particles, the photoelectron, the Auger electron, and
the doubly charged ion, interact each with other by means
of Coulomb forces. Such kinds of interaction as well as
the interaction of the photoelectron with the singly charged
ion in the intermediate state is known as a postcollision in-
teraction (PCI). The PCI leads to distortion of the energy
distributions of the emitted photoelectron and Auger electron,
which has been widely investigated during the last fifty years
(see, e.g., reviews [1,2] and more recent works [3–10]). The
PCI distortion of the energy distributions being considered in
the near-threshold region implies that the slow photoelectron
loses the energy and the fast Auger electron gains the energy.
This effect has been described by different theoretical models
[11–18] and observed in measurements (see, e.g., Ref. [19]).

Apart from the energy exchange, the PCI can lead to an
exchange of the angular momentum between the emitted par-
ticles. This effect has not been taken into account by the
theoretical models mentioned above and manifests itself in the
variation of angular distribution of the emitted photoelectrons.
The distortion of the photoelectron angular distribution due
to the angular-momentum transfer (AMT) has recently been
predicted theoretically [20,21] and has been experimentally
verified [22] for the case of near-threshold Ar 1s2-shell pho-
toionization. It has been shown [20] for the case of inner
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ns2-subshell ionization that the main contribution to AMT
comes from the angular-momentum exchange between the
slow photoelectron and the fast Auger electron. An angular-
momentum exchange with the receded ion is negligible.

On the other hand, the angular-momentum exchange be-
tween the photoelectron and the Auger electron should affect
the angular distribution of the Auger electrons, too, which
has not been investigated earlier either theoretically or ex-
perimentally. To distinguish the AMT-related distortion of
the Auger-electron angular distribution we consider in this
paper the inner ns2-subshell photoionization. Without the PCI
between the photoelectron and the Auger electron, the angular
distribution of the Auger emission resulting from the ns-
vacancy decay will be isotropic. Hence, possible anisotropy
of the Auger emission should be solely ascribed to the
AMT effect.

The proposed mechanism of PCI distortion of the Auger-
electron angular distribution should be distinguished from the
widely investigated angular distribution of the Auger emis-
sion in the resonant Auger transitions [23]. In the latter case,
photoexcitation of the core electron occurs to some discrete
state while, in our case, the core electron is ionized by the
photon and leaves the atom. After resonant photoexcitation,
the inner-shell vacancy created decays via a single (SA) or
double (DA) Auger transition. The angular distribution of
the Auger electrons emitted in SA decay was first studied in
Refs. [24,25]. At the same time, an investigation of the angular
distributions of the Auger electrons emitted in DA resonant
processes has revealed an essential role of angular correlations
between the Auger electrons. Such a correlation has been
intensively investigated over last 20 years both theoretically
[26–29] and experimentally (see, for example, Refs. [30–33]).

Anisotropy of the Auger electrons following the resonant
photoexcitation is explained by the fact that the resonant
state excited by a linearly polarized light is aligned along the
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photon polarization vector. The alignment leads to an
anisotropy of the emitted resonant Auger electrons. Moreover,
in the cascade DA processes the alignment is partly trans-
ferred to the intermediate ionic state populated in the first
decay. Hence, the second-step Auger electrons show also an
anisotropic behavior. In both cases the anisotropy of Auger
emission is connected with anisotropy of the target atom
caused by the polarized light photoexcitation.

On the contrary, in the process considered here of ns2-
shell photoionization by linear polarized light, the created
photoelectron takes away the photon angular momentum,
leaving the ion in spherically symmetric state. The anisotropy
of Auger emission is not caused by interaction with the
ion aligned along the photon polarization vector but results
from the PCI with the outgoing photoelectron. The angular-
momentum exchange between emitted electrons as a PCI
process takes place at larger distances from the target atom,
which also differs from the case of the resonant Auger tran-
sitions. Thus, the proposed mechanism of AMT is quite
different from what has been studied before. To highlight its
main features we consider the near-threshold photoionization
of the inner ns2 subshell of the atom. By doing that, we elim-
inate an alignment of the inner ns vacancy which is created
after the slow-photoelectron emission. Then the anisotropy of
the Auger electron which is created in the SA decay of the
ns vacancy occurs solely due to the PCI between the slow
photoelectron and the fast Auger electron. It gives rise to
the possibility of experimental observation of AMT effect by
means of Auger emission angular distribution measurements.

The paper is organized as follows: In Sec. II, we develop
our theory of AMT [20] for the description of the angular
distribution of the Auger emission. In Sec. III we use the
approach developed to calculate the asymmetry parameter of
Auger emission in 1s2 photoionization of Ne and Ar followed
by SA decay.

The atomic unit system |e| = me = h̄ = 1 is used
throughout.

II. ANGULAR-MOMENTUM TRANSFER BETWEEN
PHOTOELECTRONS AND AUGER ELECTRONS

Deep inner-shell photoionization followed by Auger decay
of the atomic inner-shell vacancy is a two-step process that
can be represented by the scheme

γ + A → eph(ε0 + i�/2) + A+∗ → eph(p1) + eA(p2) + A2+.

(1)
In the first step, the incident linear polarized photon ionizes
the ns2 shell of the target atom, resulting in the creation of a
long-living metastable autoionizing state of the A+∗ ion with
autoionization width � and slow photoelectron eph with com-
plex energy ε0 + i�/2 (ε0 is the excess photon energy above
the threshold) moving in the field of the singly charged ion.
In the second step, the long-living intermediate autoionizing
state of the A+∗ ion decays via the Auger process, resulting in
the emission of a fast Auger electron eA and the shake-off of
the photoelectron motion by a sudden change of the ion field
from the potential of the A+∗ ion to the field of the doubly
charged ion A2+. The amplitude A of the two-step process (1)
is given by the product of the photoabsorption amplitude M1

and the amplitude M2 of the Auger decay of the autoionizing
state A+∗ and subsequent PCI processes [20,34,35]:

A = M1〈�p1,p2
�A2+|M̂2|�ε0+i�/2�A+∗〉. (2)

The photoabsorption amplitude M1 depends slightly on the
photon energy, and below we consider it a constant factor.
In contrast, the second factor of amplitude A has a strong
resonant dependence on the energy of the outgoing photo-
electron and describes the energy and angular-momentum
transfer during the PCI. In Eq. (2), �A+∗ is the wave function
of the long-lived intermediate autoionizing state, and �ε0+i�/2

is the outgoing Coulomb partial wave of photoelectron eph in
the intermediate state of process (1). This function describes
the propagation of the photoelectron in the field of the A+∗
ion. It can be obtained as a solution of the inhomogeneous
Schrödinger equation with complex energy ε0 + i�/2 [34,36].
The real part of this energy ε0 is the excess of photon energy
above the inner-shell ionization threshold, while its imaginary
part is determined by the autoionization width � of the inner-
shell vacancy. We consider the case where a photoelectron is
emitted from the deep ns2 shell of target atom A and therefore
has the angular momentum l = 1. The operator of the Auger
decay is denoted here by M̂2. The wave function of the final
state is given by the product of doubly charged ion wave
function �A2+ and the two-body wave function �p1,p2

of the
photoelectron and the Auger electron moving in the field of
A2+ with momenta p1 and p2, respectively.

In our approach [20], the two-body wave function �p1,p2

is considered in the 3C approximation (the so-called BBK
function) [37]. This approximation takes into account the in-
teraction between the photoelectron and the Auger electron, as
well as their interaction with the ion field, and has the correct
asymptotical behavior. Such a two-body function has the form

�p1,p2
(r1, r2) = �p1

(r1)�p2
(r2)φ(r1 − r2). (3)

where �p1
(r1) and �p2

(r2) are the single-particle Coulomb
functions of photoelectron and Auger electron moving in the
field of the doubly charged ion, and the function φ(r1 − r2)
describes their relative motion.

The following approximations are based on the fact that,
typically, an Auger electron is very fast, p2 � 1. In this case,
the wave function of the relative electronic motion φ can be
written in the eikonal approximation [38]

φ(r) = exp

(
i
∫ ∞

0

dt

|r − vt |
)

, (4)

where r = r1 − r2 and v = v1 − v2 are the vectors of relative
position and velocity of the photoelectron and the Auger elec-
tron, respectively.

It is important that the Auger decay operator M̂2 in Eq. (2)
acts on the atomic and Auger-electron coordinates and does
not effect directly the photoelectron coordinates. The former
ones have an atomic spatial scale, r2 ≈ 1, while the range
of photoelectron coordinates that contribute to the amplitude
A in Eq. (2) is much larger, r1 	 r = |r1 − r2| � 1. This
fact decouples the integrations over Auger and photoelectron
coordinates, and the amplitude A is reduced to the product of
M1 and M2 amplitudes and the overlap integral

A = M1M2(p2, L, M )〈�p1
(r)φ(r)|�ε0+i�/2(r)〉. (5)
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Amplitude M2(p2, L, M ) of the Auger decay depends on the
direction of the Auger emission, angular momentum L, and
its projection M of the doubly charged residual ion in the final
state. The overlap integral in the obtained amplitude A also
depends on on the direction of the Auger electron p2 due to
dependence of the function φ [Eq. (4)] on the relative electron
velocity v = v1 − v2.

However, the angular dependence of M2(p2, L, M ) does
not lead to the angular dependence of Auger-electron emis-
sion if the polarization of the resulting A2+ ion is not
fixed in the experiment. Indeed, evaluating the cross sec-
tion, one has to sum the squared amplitude |A|2 [Eq. (5)]
over all angular-momentum states M of the A2+ ion. The
intermediate ionic state A+∗ is spherically symmetric. Hence,
the Auger electron eA(p2) and the residual ion A2+ yield
the same angular momentum L with opposite projections
±M. The Auger amplitude depends on M and p2 as
M2(p2, L, M ) ∝ YLM (p2). Thus, the sum of |M2(p2, L, M )|2
over M eliminates its dependence on the direction of p2 since∑

M |YLM (p2)|2 = (2L + 1)/4π . It means that the possible
angular dependence of the Auger-electron emission can arise
only from the overlap integral, i.e., it is provided by the PCI
solely.

The relative velocity v between the fast Auger electron and
the slow photoelectron is close to v2 and large in magnitude,
v � 1. This fact allows us to expand the exponential function
in Eq. (4) in a power series with respect to small parameter
1/v and keep the first two terms. In the zeroth approximation
φ(r) = 1, and amplitude A (5) reduces to the well known
expression for the PCI amplitude [34,35]

A(0) = M1M2〈�p1
(r)|�ε0+i�/2(r)〉. (6)

This approximation neglects the interaction between the slow
photoelectron and the fast Auger electron. The PCI distor-
tion is caused by the shake-off process due to the Auger
decay, and this approximation does not take into account
the angular-momentum transfer. The outgoing photoelectron
eph(p1) carries the same angular momentum l = 1 as the
intermediate photoelectron eph(ε0 + i�/2). The overlap inte-
gral of the photoelectron wave functions �p1

and �ε0+i�/2 in
amplitude [Eq. (6)] does not depend on the direction of the
Auger electron and, consequently, in this approximation the
double-differential cross section integrated over final states
of the photoelectron and residual ion is isotropic with respect
to Auger-electron directions. As demonstrated above, the an-
gular dependence of the amplitudes, A(0) ∝ M2(p2, L, M ) ∝
YLM (p2), goes out in the cross section after the sum of squared
amplitude |A(0)|2 over the residual ion states. Then the evalu-
ation of the double-differential cross section leads to

d2σ (0)

dε2d
2
= M

4π

∫
|Y10(p1)Rε1,ε01|2d
1 = M

4π
|Rε1,ε01|2, (7)

where ε2 = p2
2/2 is the Auger-electron energy, M is the nu-

merical factor containing the product of |M1M2|2 that depends
smoothly on ε, Rεl,ε01 is the overlap integral between the
radial parts χ (r) of the photoelectron wave functions in the
intermediate and final states:

Rεl,ε01 =
∫ ∞

0
χε,l (r)χ (+)

ε0+i �
2 ,1

(r)dr. (8)

Functions χ are normalized to 2πδ(ε′ − ε) and have the
standing-wave asymptotic

χε,l (r) = 2√
p1

sin

(
p1r + 2

p1
ln (2p1r) − π l

2
+ δl

)
(9)

for an outgoing photoelectron with energy ε = p2
1/2 and

asymptotic of the outgoing partial wave

χ
(+)
ε0+i �

2 ,1
(r) = 1√

p0
exp

[
i

(
p0r + 1

p0
ln (2p0r) − π

2
+ δ1

)]
,

(10)

for the intermediate photoelectron with the energy ε0 +
i�/2 = p2

0/2.
Angular-momentum transfer can be taken into account

within the next approximation with respect to the Coulomb
interaction between the photoelectron and the Auger elec-
tron, which is equivalent to the first Born approximation.
The corresponding amplitude A(1) is obtained by keeping in
expression (5) the second term of the exponential function
expansion for φ:

A(1) = −iM1M2〈�p1 (r)|
∫ ∞

0

dt

|r − vt | |�ε0+i�/2(r)〉. (11)

To evaluate the amplitude (11) we use the partial-wave
expansion for the outgoing photoelectron wave function and
the multipole expansion for the Coulomb potential, as done in
Ref. [20]. Then, integration over all coordinates and time in
Eq. (11) results in

A(1) = −2π iM1M2

(
4π

v

) ∑
l,m,l ′>0,m′

e−i( π l
2 −δl )

√
p1

Ylm(p1)

× 〈Ylm|Yl ′m′ |Y1 0〉Y ∗
l ′m′ (v)

l ′(l ′ + 1)

∫ ∞

0
χε,l (r)χ (+)

ε0+i �
2 ,1

(r)dr,

(12)

where l, m are the photoelectron angular momentum and its
projection; l ′, m′ are the magnitude and projection of the
angular momentum transferred from the photoelectron to the
Auger electron. At the photoionization threshold where v1 
v2 	 v we can replace in Eq. (12) the relative velocity vector v

by the Auger-electron velocity v2. It will simplify the further
calculations. Note here that the amplitude A(1), contrary to
the amplitude A(0), has additional angular dependence on
the Auger-electron direction via spherical harmonics Y ∗

l ′m′ (v2),
where l ′ is the transferred angular momentum. As demon-
strated earlier, the squared Auger amplitude |M2(p2, L, M )|2
after averaging over the final states of the residual ion L, M
does not provide any angular dependence of the cross section
on the direction of Auger-electron emission. Thus, the cross-
section angular dependence is solely provided by the spherical
harmonics Y ∗

l ′m′ (v2) in the amplitude A(1). It means that
the cross-section angular dependence is not connected with
the angular momentum of the Auger electron L gained from
the ion A+∗ at the instant of Auger decay but originates from
the angular momentum l ′ transferred to the Auger electron
from the photoelectron in the process of their PCI.

The AMT amplitude A(1) given by Eq. (12) leads to
additional contribution to the cross section. The latter is de-
termined by the square of the modulus of the amplitudes
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summed: |A(0) + A(1)|2. Let us demonstrate that amplitudes
A(0) and A(1) do not interfere in the cross section inte-
grated over all directions of the photoelectron momentum p1,∫


1|A(0) + A(1)|2 = ∫

1|A(0)|2 + ∫


1|A(1)|2. The AMT
amplitude A(1) in represented by Eq. (12) as an expansion
over photoelectron partial waves. Zeroth-order amplitude A(0)

contains actually the single partial term with photoelectron
angular momentum l1 = 1 and its projection m1 = 0. The
terms with different values of l1 and m1 do not interfere in the
cross section because their products vanish under integration
over photoelectron directions. Hence we need to check the
interference of the two terms only: the amplitude A(0) and
the partial contribution A(1)

10 to A(1) with l1 = 1 and m1 = 0.
Comparing Eqs. (6), (7), (11), and (12), one can see that their
ratio is a pure imaginary number, Re{A(1)

10 /A(0)} = 0. Conse-

quently, |A(0) + A(1)
10 |2 = |A(0)|2 + |A(1)

10 |2. Thus, the zeroth-
and first-order amplitudes A(0) and A(1) do not interfere in
the cross section averaged over all directions of photoelectron
emission. Moreover, all partial cross-section contributions
corresponding to different values of the photoelectron angular
momentum l also do not interfere, but terms with differ-
ent values of the transferred angular momenta l ′ and l ′′ do
interfere.

Thus, the cross section is given by the sum of the zero-
order contribution σ (0) (7) and the second-order contribution
σ (2) of the AMT process. Evaluation of d2σ (2)/dε2d
2 is
similar to those in the Ref. [20], where it is described in detail.
Calculations of the angular parts are based on the properties of
the spherical harmonics and Clebsch-Gordan coefficients [39]
and lead eventually to

d2σ (2)

dε2d
2
= 3M

4π

(
1

v2

)2 ∑
k

Pk (cos (θ2))Ck0
10 10

∑
l,l ′>0,l ′′>0

(−1)l+l ′+l ′′ |Rε l,ε0 1|2

× (2l + 1)
√

(2l ′ + 1)(2l ′′ + 1)

l ′l ′′(l ′ + 1)(l ′′ + 1)

{
l l ′′ 1
k 1 l ′

}
Ck0

l ′0 l ′′0C
l ′0
l0 10C

l ′′0
l0 10. (13)

Here, the factor M has the same value as in Eq. (7), l ′ and
l ′′ denote the possible values of the transferred angular mo-
mentum for given values of the final photoelectron angular
momentum l and the angular momentum lint = 1 of the inter-
mediate photoelectron state. The overlap integrals Rε l,ε0 1 are
defined by the expression (8).

Note that, according to the properties of the Clebsch-
Gordan coefficient Ck0

10 10, index k runs only through two
values, k = 0, 2. Consequently, the total differential cross
section can be written as the sum of the two first Legendre
polynomials Pk (cos θ2), k = 0, 2:

d2σ

dε2d
2
= d2σ (0)

dε2d
2
+ d2σ (2)

dε2d
2

= 1

4π

dσ

dε2
[1 + β(ε2)P2(cos θ2)], (14)

where σ is the total photoionization cross section and θ2 is the
angle between the direction of Auger emission and the photon
polarization vector. The coefficient before P2(cos θ2) is known
as the anisotropy parameter and is denoted β [40,41]. In our
zeroth-order approximation β = 0. A nonzero value of β ap-
pears in the next approximation which takes into account the
AMT effect. Note that the cross-section angular dependence
(14) results from averaging over all residual ion states and
photoelectron emission directions p1. Since we fix neither the
direction of the photoelectron emission nor the polarization of
the residual ion, the only predominant direction is the photon
polarization vector, so the Auger emission angular distribution
is characterized by a single parameter β. Its deviation from
zero value β = 0 indicates the presence of AMT and therefore
gives rise to the possibility of its experimental observation.

The differential photoionization cross sections dσ (0)/dε2

and dσ (2)/dε2 show the resonance behavior that results

from the properties of the overlap integrals Rε l, ε0 1 (8). The
overlapping between the radial wave functions of the final,
χε,l (r) and the intermediate χ

(+)
ε0+i �

2 ,1
(r) photoelectron states is

maximal if their momenta coincide. Consequently, the pho-
toelectron resonance energy is close to the energy of the
photoelectron intermediate state, ε1 	 ε0. It is slightly red-
shifted by the PCI of photoelectron with residual ion and
blueshifted due to the AMT [20]. Correspondingly, the energy
distribution of the Auger electron has a resonance peak at
ε2 	 E (A+∗) − E (A2+).

If we are interested in the angular distribution of the
Auger emission averaged over its linewidth, the double-
differential cross section (14) should be integrated over the
resonance peak:

dσ

d
2
= dσ (0)

d
2
+ dσ (2)

d
2
= σ

4π
[1 + β̄P2(cos θ2)], (15)

where β̄ is the averaged asymmetry parameter. Overlap in-
tegrals Rε l,ε0 1 in the double-differential cross sections (7)
and (14) have a similar energy dependence. The substantial
deviations occur only at high values of transferred angular
momentum [20], whose contributions to the cross section
are negligible. It allows us to evaluate the single differential
cross section (15) assuming that all integrals

∫ |Rε l,ε0 1|2dε are
equal. Within this approximation, we get the following closed
analytical expressions for the cross section and asymmetry
parameter:

σ = σ (0) + σ (2),

σ (0) = M
∫

|Rε l,ε0 1|2dε ≡ σ0,

σ (2) = σ0

(
1

v2

)2 ∑
l>0

(2l + 1)

l2(l + 1)2 = σ0

(
1

v2

)2

, (16)
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β̄ = 3

v2
2

∑
l,l ′>0,l ′′>0

(−1)l+l ′+l ′′ (2l + 1)
√

(2l ′ + 1)(2l ′′ + 1)

l ′l ′′(l ′ + 1)(l ′′ + 1)

×
{

l l ′′ 1
2 1 l ′

}
C20

10 10C
20
l ′0 l ′′0C

l ′0
l0 10C

l ′′0
l0 10, (17)

where the Auger-electron velocity is determined by the
Auger transition energy v2

2 = 2EA = 2[E (A+∗) − E (A2+)]. In
Eq. (16), l denotes transferred angular momentum, i.e., the
total second-order AMT cross section σ (2) is given by the sum
of partial contributions of all transferred momenta l > 0. In
Eq. (17), l , l ′, l ′′ denote the photoelectron angular momentum
and all possible values of transferred angular momentum,
respectively, like in Eq. (14). Note that the above expressions
(16) and (17) represent the first terms of the expansion with
respect to the parameter 1/v2. In particular, the expression
(17) for β̄ is given by the single lowest-order term of the
expansion. In this approximation, β̄ depends inversely on the
Auger transition energy EA. Numerically, it reads in atomic
units β̄ 	 0.6/EA.

III. RESULTS AND DISCUSSION

First we apply the developed theory to the experimentally
studied photoionization of the Ne 1s2 shell followed by the
single Auger decay:

γ + Ne → eph + Ne+∗(1s−1)

→ eph(p1) + eA(p2) + Ne2+(2p−2). (18)

The measurements of the β parameter of the angular distri-
bution of the KLL Auger electrons emitted in this process
were done [42] for the photon energies both below and above
the 1s2 photoionization threshold. To the best of our knowl-
edge, this is the only case of the β parameter measurements
for the Auger electrons following the inner ns2 shell photoion-
ization.

The energy of the emitted Auger electrons in the process
(18) is equal to 800 eV. Our calculations in this case give the
anisotropy parameter β̄ = 0.02. This rather low value of β̄ is
caused by large velocity of the emitted Auger electrons (v2 	
7.67 a.u.). That is why experimental resolution of anisotropy
parameter measurements in this reaction [42] did not allow us
to detect the AMT effect. The reported experimental values of
β are close to zero [42], in accord to our calculations.

The Auger decays where the AMT effects could reveal it-
self occur at smaller velocities of the Auger electrons. Hence,
as a second example of an application of the developed theory,
we consider the photoionization of the Ar 1s2 shell. A direct
Auger decay of the 1s−1 vacancy (1s−1 → 3p−2 + eAuger) oc-
curs with an emission of the Auger electron of large energy
(EA 	 3150 eV). Akin to the Ne 1s−1 case, the AMT effect in
this decay is also small. Fortunately, this channel of the 1s−1

vacancy decay has a low probability [43]. The main channel
of the decay which leads to the Ar2+ ionic state includes the
intermediate emission of the 2960 eV photon. So the dominat-
ing process of the 1s2 photoionization followed by a decay of
created vacancy can be presented by the scheme [43]

γ + Ar → eph + Ar+∗(1s−1) → eph + γ ′ + Ar+∗(2p−1)

→ eph + eA + Ar2+(3p−2). (19)

The AMT-related distortion of the angular distribution of
photoelectrons emitted in this process had been predicted in
Ref. [20] and recently confirmed experimentally [22]. Here
we apply our theory to the Auger-electron angular distribu-
tion. The energy of the emitted Auger electron is close to
EA 	 200 eV.

Note that decay of the 1s−1 vacancy in Eq. (19) is a cascade
process instead of a simpler direct Auger decay considered in
our theory. Nevertheless, we demonstrate that the developed
theory can be well applied to the process (19), too. If one does
not fix the polarization and direction of the emitted photon
the Auger emission remains isotropic without PCI between
the photoelectron and the Auger electron. Indeed, the angular
dependence of the Auger-electron direction goes out from
the zero-order cross section of the cascade process after the
averaging over the directions and polarization of the emitted
photon and over the final states of the residual ion in the same
way as it does in Eq. (7). The angular dependence originates
from AMT between the photoelectron and the Auger electron
in the process of their PCI. For this process the cascade
decay just changes the delay time between the creation of
the 1s vacancy and the Auger-electron emission. It can be
described by introduction of the effective decay time τeff =
τ1s + τ2p and the corresponding effective autoionization width
�eff = �1s�2p/(�1s + �2p) [7]. In the case of Eq. (19), it gives
�eff = 101 meV.

Calculation of the averaged asymmetry parameter accord-
ing to Eq. (17) gives the process (19), β̄ = 0.08. It is four
times larger than in the case of Ne ionization (18) be-
cause the Auger-electron energy in Ar ionization (19) is
four times smaller than in Eq. (18). It gives rise to the
expectations that AMT-related asymmetry of the Auger emis-
sion in the Ar 1s2 shell ionization could be experimentally
detected.

But the even better candidate for the observation of pro-
nounced AMT-related angular asymmetry of Auger emission
is the photoionization of 2s2 shell of Ar. The 2s−1 vacancy can
decay by means of the Auger decay 2s−1 → 2p−13p−1 + eA

with an emission of the Auger electron of ≈47 eV energy
[44]. For this Auger-electron energy, the averaged asymme-
try parameter is close to β̄ 	 0.3. So an anisotropy of the
Auger electrons in this case prooves to be rather promi-
nent. An experimental observation of predicted effect is very
desirable.

IV. CONCLUSION

The AMT-related distortion of angular distribution of
Auger electrons emitted in the inner-shell photoionization
has been investigated. In the framework of the quantum-
mechanical approach we have demonstrated that the angular-
momentum exchange between the Auger electron and the
photoelectron leads to the anisotropy of Auger emission. This
effect reveals itself in the PCI phenomenon at the photon
energies above the inner ns2-photoionization threshold. The
proposed mechanism of Auger emission anisotropy differs
substantively from those in the resonant Auger transition be-
low the photoionization threshold. The anisotropy parameter
β of Auger emission has been calculated by using the the-
ory developed for several inner ns2-shell ionization processes
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accompanied by a single Auger decay. In the case of the Ar
ns2 photoionization, we report the pronounced anisotropy of

Auger emission, which opens an opportunity for experimental
observation of the AMT effect.

[1] M. Yu. Kuchiev and S. A. Sheinerman, Sov. Phys. Usp. 32, 569
(1989).

[2] V. Schmidt, Rep. Prog. Phys. 55, 1483 (1992).
[3] A. K. Kazansky and N. M. Kabachnik, Phys. Rev. A 72, 052714

(2005).
[4] A. K. Kazansky and N. M. Kabachnik, J. Phys. B: At., Mol.

Opt. Phys. 39, L53 (2006).
[5] F. Penent, S. Sheinerman, L. Andric et al., J. Phys. B: At., Mol.

Opt. Phys. 41, 045002 (2008).
[6] L. Gerchikov and S. Sheinerman, Phys. Rev. A 84, 022503

(2011).
[7] R. Guillemin, S. Sheinerman, C. Bomme et al., Phys. Rev. Lett.

109, 013001 (2012).
[8] S. Sheinerman, P. Linusson, J. H. D. Eland, L. Hedin, E.

Andersson, J. E. Rubensson, L. Karlsson, and R. Feifel, Phys.
Rev. A 86, 022515 (2012).

[9] J. Palaudoux, S. Sheinerman, J. Soronen et al., Phys. Rev. A 92,
012510 (2015).

[10] R. Guillemin, S. Sheinerman, R. Puttner, T. Marchenko, G.
Goldsztejn, L. Journel, R. K. Kushawaha, D. Ceolin, M. N.
Piancastelli, and M. Simon, Phys. Rev. A 92, 012503 (2015).

[11] G. C. King, F. H. Read, and R. C. Bradford, J. Phys. B: At. Mol.
Phys. 8, 2210 (1975).

[12] A. Niehaus, J. Phys. B: At. Mol. Phys. 10, 1845 (1977).
[13] K. Helenelund, S. Hedman, L. Asplund, U. Gelius, and K.

Siegbahn, Phys. Scr. 27, 245 (1983).
[14] G. B. Armen, T. Aberg, J. C. Levin, B. Crasemann, M. H. Chen,

G. E. Ice, and G. S. Brown, Phys. Rev. Lett. 54, 1142 (1985).
[15] S. Hedman, K. Helenelund, L. Asplund, U. Gelius, and K.

Siegbahn, J. Phys. B: At. Mol. Phys. 15, L799 (1982).
[16] M. Yu. Kuchiev and S. A. Sheinerman, Sov. Phys. JETP 63, 986

(1986).
[17] M. Yu. Kuchiev and S. A. Sheinerman, J. Phys. B: At., Mol.

Opt. Phys. 21, 2027 (1988).
[18] P. van der Straten, R. Morgenstern, and A. Niehaus, Z. Phys. D:

At., Mol. Clusters 8, 35 (1988).
[19] S. Sheinerman, P. Lablanquie, F. Penent et al., J. Phys. B: At.,

Mol. Opt. Phys. 43, 115001 (2010).
[20] L. Gerchikov, R. Guillemin, M. Simon, and S. Sheinerman,

Phys. Rev. A 95, 063425 (2017).
[21] L. Gerchikov and S. Sheinerman, J. Phys. B: At., Mol. Opt.

Phys. 51, 065201 (2018).
[22] R. Guillemin et al., Phys. Rev. A 99, 063409 (2019).

[23] G. B. Armen, H. Aksela, T. Åberg, and S. Aksela, J. Phys. B:
At., Mol. Opt. Phys. 33, R49 (2000).

[24] N. M. Kabachnik and I. P. Sazhina, J. Phys. B: At. Mol. Phys.
17, 1335 (1984).

[25] V. V. Balashov, A. N. Grum-Grzhimailo, and N. M. Kabachnik,
Polarization and Correlation Phenomena in Atomic Collisions.
A Practical Theory Course (Kluwer Plenum, New York, 2000).

[26] N. M. Kabachnik, I. P. Sazhina, and K. Ueda, J. Phys. B: At.,
Mol. Opt. Phys. 32, 1769 (1999).

[27] M. Ya. Amusia, I. S. Lee, and V. A. Kilin, Phys. Rev. A 45, 4576
(1992).

[28] J. Tulkki, N. M. Kabachnik, and H. Aksela, Phys. Rev. A 48,
1277 (1993).

[29] A. N. Grum-Grzhimailo and N. M. Kabachnik, J. Phys. B: At.,
Mol. Opt. Phys. 37, 1879 (2004).

[30] K. Ueda et al., J. Phys. B: At., Mol. Opt. Phys. 32, L291 (1999).
[31] H. Yoshida et al., J. Phys. B: At., Mol. Opt. Phys. 33, 4343

(2000).
[32] Y. Shimizu et al., J. Phys. B: At., Mol. Opt. Phys. 33, L685

(2000).
[33] H. Yoshida et al., J. Phys. B: At., Mol. Opt. Phys. 38, 465

(2005).
[34] M. Yu. Kuchiev and S. A. Sheinerman, J. Phys. B: At. Mol.

Phys. 18, L551 (1985).
[35] S. A. Sheinerman, J. Phys. B: At., Mol. Opt. Phys. 36, 4435

(2003).
[36] M. Yu. Kuchiev and S. A. Sheinerman, Comput. Phys.

Commun. 39, 155 (1986).
[37] M. Brauner, J. S. Briggs, and H. Klar, J. Phys. B: At., Mol. Opt.

Phys. 22, 2265 (1989).
[38] L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 3rd ed.

(Butterworth-Heinemann, Amsterdam, 1977), Chap. VI.
[39] D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii,

Quantum Theory of Angular Momentum (World Scientific,
Singapore, 1988).

[40] D. Dill, A. F. Starace, and S. T. Manson, Phys. Rev. A 11, 1596
(1975).

[41] S. T. Manson and A. F. Starace, Rev. Mod. Phys. 54, 389 (1982).
[42] P. H. Kobrin, S. Southworth, C. M. Truesdale, D. W. Lindle, U.

Becker, and D. A. Shirley, Phys. Rev. A 29, 194 (1984).
[43] U. Alkemper, J. Doppelfeld, and F. von Busch, Phys. Rev. A 56,

2741 (1997).
[44] P. Lablanquie et al., Phys. Rev. Lett. 84, 47 (2000).

032807-6

https://doi.org/10.1070/PU1989v032n07ABEH002731
https://doi.org/10.1088/0034-4885/55/9/003
https://doi.org/10.1103/PhysRevA.72.052714
https://doi.org/10.1088/0953-4075/39/4/L01
https://doi.org/10.1088/0953-4075/41/4/045002
https://doi.org/10.1103/PhysRevA.84.022503
https://doi.org/10.1103/PhysRevLett.109.013001
https://doi.org/10.1103/PhysRevA.86.022515
https://doi.org/10.1103/PhysRevA.92.012510
https://doi.org/10.1103/PhysRevA.92.012503
https://doi.org/10.1088/0022-3700/8/13/013
https://doi.org/10.1088/0022-3700/10/10/014
https://doi.org/10.1088/0031-8949/27/4/004
https://doi.org/10.1103/PhysRevLett.54.1142
https://doi.org/10.1088/0022-3700/15/22/004
https://doi.org/10.1088/0953-4075/21/11/017
https://doi.org/10.1007/BF01384521
https://doi.org/10.1088/0953-4075/43/11/115001
https://doi.org/10.1103/PhysRevA.95.063425
https://doi.org/10.1088/1361-6455/aaaa37
https://doi.org/10.1103/PhysRevA.99.063409
https://doi.org/10.1088/0953-4075/33/2/201
https://doi.org/10.1088/0022-3700/17/7/017
https://doi.org/10.1088/0953-4075/32/8/301
https://doi.org/10.1103/PhysRevA.45.4576
https://doi.org/10.1103/PhysRevA.48.1277
https://doi.org/10.1088/0953-4075/37/9/009
https://doi.org/10.1088/0953-4075/32/13/102
https://doi.org/10.1088/0953-4075/33/20/311
https://doi.org/10.1088/0953-4075/33/20/105
https://doi.org/10.1088/0953-4075/38/5/001
https://doi.org/10.1088/0022-3700/18/16/003
https://doi.org/10.1088/0953-4075/36/22/006
https://doi.org/10.1016/0010-4655(86)90126-8
https://doi.org/10.1088/0953-4075/22/14/010
https://doi.org/10.1103/PhysRevA.11.1596
https://doi.org/10.1103/RevModPhys.54.389
https://doi.org/10.1103/PhysRevA.29.194
https://doi.org/10.1103/PhysRevA.56.2741
https://doi.org/10.1103/PhysRevLett.84.47

