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Pseudo–Jahn-Teller interaction among electronic resonant states of H3
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We study the electronic resonant states of H3 with energies above the potential energy surface of the H +
3

ground state. These resonant states are important for the dissociative recombination of H +
3 at higher collision

energies, and previous studies have indicated that these resonant states exhibit a triple intersection. We introduce
a complex generalization of the pseudo–Jahn-Teller model to describe these resonant states. The potential
energies and the autoionization widths of the resonant states are computed with electron scattering calculations
using the complex Kohn variational method, and the complex model parameters are extracted by a least-square fit
to the results. This treatment results in a non-Hermitian pseudo–Jahn-Teller Hamiltonian describing the system.
The nonadiabatic coupling and geometric phase are further calculated and used to characterize the enriched
topology of the complex adiabatic potential energy surfaces.
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I. INTRODUCTION

The Jahn-Teller (JT) effect and the pseudo–Jahn-Teller
(PJT) effect are well known examples of vibronic coupling
phenomena manifesting conical intersections [1–4]. In the JT
effect, degenerate electronic states are coupled via nontotally
symmetric modes of vibrations. This interaction induces a
splitting of the electronic components leaving a symmetry
required conical intersection [5] in the high symmetric nuclear
configuration with a singular nonadiabatic coupling and a
nontrivial geometric phase [6,7]. The PJT effect is an ex-
tension of the JT effect, where one (or more) nondegenerate
electronic state is included, which in turn is coupled to the
degenerate JT states.

As the simplest neutral molecule exhibiting the JT in-
teraction, H3 attracts fundamental interest. The effects of
the JT conical intersection in the repulsive ground state of
H3 has been studied in the context of reactive scattering
of H + H2 [8]. The set of JT parameters for the series of
excited bound Rydberg states have been extracted and anal-
ysed using multichannel-quantum defect theory [9,10]. It has
further been shown that dissociative recombination of H +

3 at
low collision energies is driven by electron capture into these
bound Rydberg states via the vibronic JT interaction [11].
Hence, the vibronic JT coupling is playing a crucial role in
H +

3 dissociative recombination. It can further be mentioned
that a similar treatment of low energy dissociative recombi-
nation of linear polyatomic ions have shown an analogous
importance for the related Renner-Teller effect [12].

At higher energies, the electron may be captured by H +
3 ,

forming a doubly excited state of H3, which is energetically
embedded in the ionization continuum, i.e., an electronic
resonant state. Orel et al. [13] used the complex Kohn vari-
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ational method [14] to compute four repulsive resonant states
of H3 at energies around 4–16 eV above the ionic ground
state. Electron capture into these resonant states can explain
a high-energy peak observed in the measured dissociative
recombination cross-section [15]. It was also found that three
of these electronic resonant states were subject to a triple
intersection [16]. A corresponding intersection between the
bound state of Na3 has been identified as a PJT interaction
[17].

Both the JT and the PJT interactions are well studied in
the case of bound electronic states. In the alkali-metal trimers
Li3 [18], Na3 [19], and K3 [20], the low lying E states are well
described by a JT model. However, for higher excited E states,
a close lying state of A symmetry also couples and the inter-
action are described by a PJT model. The effects of rotation
have also been included in such systems with strong vibronic
coupling [21], and the implications of the PJT interaction in
Na3 was specifically studied in Ref. [22].

Vibronic interaction among electronic resonant states have
been studied before [23–25], and an explicit treatment of the
JT interaction was described in Ref. [26]. The basic feature
of these models are that the model parameters are allowed to
be complex, which in turn renders the interaction potential
non-Hermitian and complex symmetric.

In this study, we have performed electron scattering cal-
culations using the complex Kohn variational method [14]
to investigate the electronic resonant states of H3. We then
fit the extracted complex adiabatic potential energy surfaces
to a generalized (E + A) ⊗ e PJT Hamiltonian for electronic
resonant states. We also study the nonadiabatic coupling and
geometric phase to characterize the topology of the complex
adiabatic potential energy surfaces, generated from the non-
Hermitian interaction potential.

In previous study [27], the electronic resonant states of
H3 have been estimated using bound state calculations. Here
we provide a systematic investigation and application of a
generalized PJT model to describe electronic resonant states.
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The complex PJT model (with associated complex model
parameters) present here, allows for applications to nuclear
dynamics.

In the following section, the bound state PJT model is
summarized and a complex generalization describing the elec-
tronic resonant states is introduced. In Sec. III, the method
of extracting the complex model parameters is presented and
the electron scattering calculations are described. The results
are presented in Sec. IV, where the topology of the complex
adiabatic potential energy surfaces are analysed with the nona-
diabatic coupling and the geometric phase. This is followed by
a brief discussion on possible implications for dynamics and
scattering processes. In the Appendix, the analytical expres-
sion for the complex JT model is presented. Throughout this
paper, atomic units are used.

II. THEORETICAL MODEL

We study a nondegenerate electronic state of A symmetry
coupled to a doubly degenerate electronic state of E symme-
try. These are vibronically coupled via a doubly degenerate
vibrational mode of e symmetry, i.e., we have a (E + A) ⊗ e
pseudo–Jahn-Teller system. The pair of degenerate vibra-
tional modes that breaks the D3h symmetry are denoted by
the coordinates Qx and Qy, which reduces the symmetry to
C2v and Cs, respectively. These vibrational modes are con-
veniently represented in polar coordinates as Qx = ρ cos(φ)
and Qy = ρ sin(φ), collectively denoted Q. Dimensionless
mass scaled normal coordinates are used which are related
to the displacement coordinates �ri, i.e., the bond stretch-
ing coordinate relative the equilibrium configuration of r =
1.65 a0 of the H +

3 ion, where Qx = f√
3
(2�r1 − �r2 − �r3),

and Qy = f (�r2 − �r3) and f = 2.639255 a−1
0 is a constant

[28]. The additional totally symmetric vibrational mode, Qs is
kept frozen at Qs = 0. We are here interested in the conical
intersection induced by the symmetry breaking and since the
Qs mode preserves the D3h symmetry, it is excluded in this
study. The derived Hamiltonian can, however, be generalized
to also include the symmetric mode.

A. PJT for electronic bound states

The 3 × 3 matrix Hamiltonian describing the electronically
bound PJT system can be expressed, in a diabatic representa-
tion, as H = IT̂N + Vd , where T̂N is the nuclear kinetic energy
operator, I the identity matrix and Vd is the diabatic potential
energy matrix, with elements

V d
nm = 〈ψn|Hel |ψm〉 n, m = Ex, Ey, A. (1)

Here, |ψEx 〉, |ψEy〉 denotes the real valued, doubly degen-
erate electronic components transforming as the vibrational
coordinates and |ψA〉 denotes the totally symmetric real val-
ued electronic state. Hel is the electronic Hamiltonian of the
system.

The PJT diabatic Hamiltonian can be derived by a Taylor
expansion of (1) in the vibrational coordinates around the
symmetric D3h configuration and the nonzero expansion co-
efficients are determined by symmetry considerations [29].
In second-order JT and first-order PJT, the elements of the
3 × 3 diabatic potential governing the nuclear motion in real

representation are

V d
nm = (

εn + 1
2ωρ2

)
δnm + kJk

nm + gJg
nm + αJα

nm. (2)

The first term is diagonal and corresponds to a harmonic ap-
proximation of the uncoupled states, where ε = (εA, εE , εE )
denotes the energy of the electronic states in the D3h con-
figuration. The coupling constants k and g together with the
coupling matrices

Jk = ρ

⎛
⎝0 0 0

0 cos(φ) sin(φ)
0 sin(φ) − cos(φ)

⎞
⎠ (3)

and

Jg = ρ2

⎛
⎝0 0 0

0 cos(2φ) − sin(2φ)
0 − sin(2φ) − cos(2φ)

⎞
⎠ (4)

describe the JT interaction among the degenerate E com-
ponents, in first and second order, respectively. The PJT
interaction with the A state is described by the coupling con-
stant α and the coupling matrix

Jα = ρ

⎛
⎝ 0 cos(φ) − sin(φ)

cos(φ) 0 0
− sin(φ) 0 0

⎞
⎠. (5)

Often the bound state diabatic PJT (and JT) potential is ex-
pressed in a complex (Hermitian) representation to reveal
the symmetry of the system [29]. We will later introduce a
complex (non-Hermitian) generalization of the PJT potential
describing electronic resonant states. It is therefore convenient
at this stage to express the bound state potential in a real
representation.

Adiabatic potential energy surfaces are obtained by diag-
onalising (2), and will be denoted Vn(Q) in rising energy
order. In the direction of the C2v preserving coordinate Qx

(corresponding to φ = 0, π or Qy = 0), the adiabatic potential
energy surfaces attain a simple form,

V1/3(Qx ) = 1
2 (εE + εA) + 1

2ωQ2
x + 1

2

(
kQx + gQ2

x

)
±

√
1
4

(
εA − εE − kQx − gQ2

x

)2 + (αQx )2, (6)

V2(Qx ) = εE + 1
2ωQ2

x − kQx − gQ2
x (7)

convenient for fitting to ab initio treatments. Expansion of V1/3

shows that in linear order only k is present, while ω, g and α

comes in second order in Qx. A second-order coupling to the A
state can be included in the diabatic potential, but it appears in
third order in the adiabatic potentials. Therefore the expansion
(2) is referred to as the second-order PJT model.

For a nonzero linear coupling k, a conical intersection is
present among the degenerate E states when V1 = V2 at ρ = 0.
The geometric phase associated with the conical intersection
is π , which for the nuclear dynamics give rise to half-odd inte-
ger rotational quantum numbers [6]. Three additional conical
intersections can be found when V1 = V2 at a critical radius
ρc. For a path encircling all four intersections, i.e., for a fixed
ρ > ρc, the total geometric phase sum to an even multiple of
π , with a cancellation of the geometric phase effects. Such
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suppression of the geometric phase has been found and anal-
ysed in systems like Na3 [17,30] with strong PJT coupling
relative linear JT coupling.

B. PJT for electronic resonant states

The electronic resonant states are modelled as discrete
bound states interacting with a continuum of scattering states
[23]. In the Feshbach projection operator formalism [31], two
complementary projection operators Q and P are introduced,
which partition the Hamiltonian H and the wave function � =
Q� + P� into the discrete states and continuum states. The
Q-space portion we associate with the PJT system introduced
above and define the operator

Q = |ψEx 〉〈ψEx | + |ψEy〉〈ψEy | + |ψA〉〈ψA|, (8)

which projects onto the three discrete diabatic PJT electronic
states. Its complementary operator projects onto a set of con-
tinuum states,

P =
∫

dε |ψε〉〈ψε|, (9)

where ε = εω̂ denotes the energy ε and direction ω̂ of the
ejected electron. Imposing purely outgoing boundary condi-
tions on P�, an effective Hamiltonian governing the Q-space
portion can be expressed as [23]

Heff = QHQ + QHPG+
P PHQ. (10)

Here, G+
P is the outgoing Green’s function analytically contin-

ued to the complex energy plane,

G+
P = 1

E − PHP + iη
. (11)

Heff is an effective, energy dependent Hamiltonian describing
the Q-space portion of the system.

The local complex model (or the Boomerang model)
[32,33] is a well established treatment of the effective Hamil-
tonian Heff (10), where a number of simplifying assumptions
are made, such that the potential term can be expressed sorely
in terms of the nuclear vibrational modes Q. In this ap-
proximation, the energies of the resonant states are assumed
to be high enough such that the open vibrational states of
the target forms a complete set [34]. The coupling elements
between the discrete states and the continuum are assumed
to be independent of the ejected electron energy. Expressed
in the basis of the diabatic electronic states, the effective
diabatic Hamiltonian in the local complex model can be
written [23]

Hd
nm = T̂Nδnm + V d

nm(Q) + �nm(Q) − i

2
�nm(Q), (12)

where V d
nm(Q) is the bound state potential matrix given by

(2), which includes the direct vibronic interactions. The terms
�nm(Q) and �nm(Q) in (12) manifests the continuum interac-
tion and includes both the decay (autoionization) mechanism
and an indirect coupling mechanism [35], allowing the elec-
tron to hop from one discrete state to the other via the
continuum. �nm(Q) is called the potential energy shift and
is often incorporated into V d

nm(Q) and �nm(Q) is referred to as
the diabatic width. If the three resonant state were uncoupled

the real part and the imaginary part of (12) would correspond
to the resonance parameters (energy and width) entering the
Breit-Wigner formula, i.e., equations (15) and (16) below. In
this case of coupled resonant states the Breit-Wigner parame-
ters are associated with the complex eigenvalues of (12), i.e.,
the complex adiabatic potential energy surfaces.

Since the potential energy shift, �nm(Q) can be expressed
in terms of �nm(Q) [23], it possesses the same symmetry. The
diabatic width, �nm(Q) can in turn be expressed as

�nm(Q) = 2π

∫
dω̂ 〈ψn|Hel |ψε〉 〈ψε|Hel |ψm〉, (13)

where the coupling elements between the discrete states and
the continuum are evaluated at the coordinate dependent res-
onance energy [23] and integrated over the solid angle of the
ejected electron with energy ε.

Both the electronic Hamiltonian Hel and the projection
operator onto the continuum states

∫
dω |ψε〉〈ψε| in (13) are

invariant under symmetry transformations in D3h, i.e., they be-
long to the A irreducible representation. This implies that the
matrix elements �nm(Q) and �nm(Q) follow the same sym-
metry transformations as the bound state potential elements
V d

nm(Q). An expansion of �nm(Q) and �nm(Q) around ρ = 0
will therefore attain the same functional form as Vnm(Q),
but with other values of the expansion parameters. Thus, we
allow for the set of PJT parameters {εE , εA, ω, k, g, α} to be
complex, where the real parts correspond to the expansion
coefficients for the energy potential Vnm(Q) + �nm(Q), while
the imaginary parts act as expansion coefficients for the width
�nm(Q), i.e., the expansion of �nm(Q) around the D3h config-
uration can be expressed as

− 1
2�nm(Q) = (

Im(εn) + 1
2 Im(ω)ρ

)
δnm

+ Im(k)Jk
nm + Im(g)Jg

nm + Im(α)Jα
nm (14)

with the coupling matrices given by (3), (4), and (5).
The PJT Hamiltonian (12) governing the electronic res-

onant states is now complex, symmetric and non-Hermitian
[26]. In the vicinity of ρ = 0, it is fully characterized by the
complex parameters {εE , εA, ω, k, g, α}, which implies that
the expressions for the potential energy surfaces (6) and (7)
still apply, but now with complex parameters. This is in com-
plete analogy with the treatment of the JT interaction among
electronic resonant states developed by Feuerbacher et al.
[24,26].

III. EXTRACTING MODEL PARAMETERS FOR H3

In this section, we describe how the complex model param-
eters entering the diabatic potential are extracted by fitting the
complex adiabatic potential energy surfaces to results from
fixed nuclei electron scattering calculations on the H +

3 + e
system.

A. Electron scattering calculations

The H +
3 molecular system has D3h symmetry and dom-

inant configuration 1a2
1. The lowest bound states of H3

responsible for the JT-effect have the configuration 1a2
11e1,

where the 1e-molecular orbital corresponds to the 2pπ orbital
in the united atom limit [36]. The lowest electronic resonant
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states of H3 have doubly excited configurations 1a1
11e2 [16].

When the molecule distorts to C2v symmetry, the components
of the 1e orbital split into 2a1 and 1b2. Different electronic
resonant states are formed with dominant configurations cor-
responding to 1a1

12a2
1, 1a1

11b2
2, or 1a1

12a1
11b1

2. The spins of the
two electrons in two different components of the 1e orbital
may be singlet- or triplet coupled. As described by Orel et al.
[16], there is a conical intersection between the lower pairs
of 2A1 and 2B2 states as well as a strong avoided crossing be-
tween the two states of 2A1 symmetry. These are the electronic
resonant states that are studied here.

In order to describe the electronic resonant states, we
have performed electron scattering calculations on the H +

3+ e system using the complex Kohn variational method
[14]. These calculations explicitly includes the scattering
wave functions in the trial wave function as well as terms
containing square-integrable configuration state functions of
the H3 system. The parameters of the trial wave function
are optimized for a given scattering energy of the electron
using the complex Kohn functional. Then, from the scatter-
ing matrix, the energy positions and autoionization widths
of the resonant states can be determined at fixed nuclear
geometries.

The target H +
3 wave function is described using a hydrogen

basis set of (10s, 5p) contracted to [7s, 5p]. Natural orbitals
of the target are determined using a full configuration inter-
action calculation. This is followed by an augmentation with
(3s, 3p) at the center of mass. Using the natural orbitals, the
target wave function is constructed from a multi-reference
configuration interaction calculation, where excitations of the
two electrons among six orbitals are included. The electron
scattering calculations are carried out by including partial
waves with angular momentum l � 4 and |m| � 4.

The eigenphase sum δ(E ), which is directly related to
the scattering matrix, is convenient to analyze the scattering
resonances [37]. Both the energy and width of the resonant
state can be extracted by fitting the eigenphase sum to the
Breit-Wigner formula. However, for overlapping resonances
like the ones in H3, extracting parameters using the time delay
is preferable [38,39]. The time delay can be obtained from the
derivative of the eigenphase sum

dδ

dE
=

∑
n

γn/2

(E − εn)2 + (γn/2)2
+ dδbg

dE
, (15)

where the resonance parameters εn and γn denote the energy
position and the width of resonance n for a fixed nuclear
geometry Q. The resonance parameters are extracted by fitting
the time delay to the formula above, where the derivative of
the background phase shift is taken as a constant. An adiabatic
potential describing the resonant state n can in turn be ex-
pressed in terms of the resonance parameters in the following
complex form [32,40]

Vn(Q) = Vion(Q) + εn(Q) − i

2
γn(Q), (16)

where Vion is the energy of the target H +
3 ion. The results from

the electron scattering calculations, i.e., the real and imaginary
parts of Vn for a number of nuclear geometries are displayed
with dots in Figs. 1–3 below.

FIG. 1. The results from the electron scattering calculations
(dots) and the fitted complex adiabatic potentials (solid lines) along
the Qx coordinate when Qy = 0. The coordinates are presented in
dimensionless units and the potential energy in Hartree. The left
panel shows the real part of the potentials associated with the en-
ergies and the right panel shows the imaginary part associated with
the autoionization widths. Along the C2v preserving coordinate Qx

the state V2 transform as B2 while the states V1/3 transform as A1.

B. PJT parameters

The complex model parameters are extracted by fitting the
adiabatic potentials given by Eqs. (6) and (7) to the resonance
parameters obtained from the electron scattering calculations
given by Eq. (16) along the C2v preserving coordinate Qx

(i.e., keeping Qy = 0). In C2v symmetry, the degenerate E
component splits into components of A1 and B2 symmetries.
By performing the electron scattering calculations separately
in A1 and B2 symmetries we circumvent the difficulty of fitting

FIG. 2. A detailed figure of the lower potential energy surfaces
V1(Qx, Qy = 0) and V2(Qx, Qy = 0), for the complex PJT model
(solid lines) and the complex JT model (dashed lines). The dots are
the results from the electron scattering calculations. The coordinates
are presented in dimensionless units and the potential energy in
Hartree. Notice that the real parts of the potential energy surfaces
crosses at two points.
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FIG. 3. The results (dots) from the electron scattering calcu-
lations in Cs symmetry compared to the model behavior for the
extracted parameters from the C2v fits. Here, ρ = 0.5 is fixed while
the angle φ is varied. The solid lines show the results from the PJT
model, while the dashed lines are the ones from the JT model. The
angle φ is presented in degrees and the potential energy in Hartree.

overlapping resonances lying very close in energy, i.e., in the
vicinity of the conical intersection.

The model parameters are extracted by the least-square fit
method over the range Qx = ±0.5 and the results are shown
in Fig. 1, where the dots are the results from the electron
scattering calculations and the lines are the fitted potentials.
The extracted complex PJT parameters are presented in the
first column of Table I.

In Fig. 2, the degenerate components subject to the conical
intersections are shown in more detail and the PJT model
(solid line) is compared to a fit of a pure JT model (dashed
line) (see Appendix). The fitted parameters from the pure JT
model are presented in the third column of Table I. These
are obtained by setting α = 0 in the potentials (6) and (7)
and excluding the A state from the fit. Further, in C2v sym-
metry, the JT potentials can be written as V1/2(Qx ) = εE +
ω
2 Q2

x ± (kQx + gQ2
x ) such that the real and imaginary parts

are separable and fits can be done separately for Re(V1/2) and

Im(V1/2) [26]. In contrast, for the PJT model both the real
and the imaginary parts of the parameters need to be fitted
simultaneously.

The slices of the potential energy surfaces are well de-
scribed by the complex PJT model, with a strong PJT coupling
α and small linear JT coupling k. In addition to the crossing
at ρ = 0 where V1 = V2 and both the real and imaginary parts
of the complex adiabatic potentials intersects, the real part of
the energy surfaces also crosses at Qx ≈ −0.1, as indicated by
the electron scattering calculations. This is captured by both
the complex PJT and the complex JT models.

For comparison, we also fit the results to a higher-order PJT
model [29] and these parameters are presented in the second
column of Table I. This fit includes a second-order coupling
to the symmetric A state described by the parameter β, and
a third-order coupling between the E states described by the
parameter μ. Also, a third-order term νQ3

x is included in the
diagonal term in (2). This model is refered to as third-order
PJT since the parameters {β, ν, μ} comes in third order in the
adiabatic potentials. The inclusion of these terms only gives
a minor shift for the parameters obtained from the second-
order PJT model fit, which indicates that the second-order
complex PJT model is sufficient within this range of Qx.
It should be mentioned that the uncertanties in the param-
eters also stems from the fitting of the time delay and the
uncertanties in the ab initio electron scattering calculations
[41]. We have not done a systematic investigation of these
uncertanties.

In order to investigate the behavior of the models for
Qy �= 0, we have performed electron scattering calculation in
Cs symmetry. The parameters obtained from the fit of the po-
tentials along the C2v slice, are inserted in the expressions for
the complex adiabatic potential energy surfaces and compared
to the results from the Cs calculations. A comparison for a
fixed ρ = 0.5 and varied angles φ is shown in Fig. 3, where it
shows that the angle dependence is well captured by the PJT
model. The scattering calculation for the higher lying A state
show only a minor variation in φ, which is captured by the
PJT model, but is not displayed in the figure. However, in Cs

symmetry, we cannot extract accurate resonance parameters
for nuclear coordinates closer to the conical intersection, since
the resonant states that now have the same symmetry are
highly overlapping.

TABLE I. The fitted parameters for the complex PJT model in second order and third order are presented in the first and second columns,
respectively. The fitted parameters for the complex JT model in second order are presented in the third column. Since dimensionless coordinates
are used in this study, the fitted parameters have units of Hartree.

PJT model (second order) PJT model (third order) JT model (second order)

εE 0.3339 − i0.0121 0.3339 − i0.0121 0.3339 − i0.0121
εA 0.3760 − i0.0027 0.3760 − i0.0027 − − −
ω −0.0031 + i0.0019 −0.0033 + i0.0020 −0.0741 + i0.0089
k −0.0037 − i0.0012 −0.0036 − i0.0011 −0.0034 − i0.0011
g 0.0085 − i0.0021 0.0086 − i0.0021 0.0268 + i0.0014
α 0.0627 + i0.0018 0.0627 + i0.0018 − − −
β − − − 0.0011 + i0.0000 − − −
ν − − − −0.0005 − i0.0003 − − −
μ − − − −0.0006 − i0.0004 − − −
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FIG. 4. The real part of the two lower complex adiabatic po-
tential energy surfaces Re(V1) and Re(V2). The complex conical
intersection and the exceptional points are marked by dots and the
solid line marks the seams where Re(V1) = Re(V2). The coordinates
are presented in dimensionless units and the potential energy in
Hartree.

IV. TOPOLOGY OF THE RESONANT STATES

In this section, we study the topology associated with the
two lowest complex adiabatic potential energy surfaces in the
complex PJT model, i.e., the interaction among the degenerate
E components. To complement the analysis, some proper-
ties of the complex JT model, where analytic expressions
are available, are given in the Appendix. Even though the
JT model gives a poor quantitative description of the states,
it captures (qualitatively) the characteristic features of the
topology. For the complex PJT model, we resort to numerical
evaluation.

The transformation between diabatic and adiabatic repre-
sentation is achieved with the eigenvector matrix T, which
diagonalizes V d

nm + �nm − i�nm/2. Even though such trans-
formation does not exist in a strict sense for polyatomic
molecules [42], it is a well studied approximation. As a
consequence of the nonhermiticity of the potential, the dual
eigenvector matrix T̃ must also be considered, corresponding
to biorthogonal eigenvectors [43]. Since we originally choose
a real representation the dual eigenvector matrix is simply de-
fined T̃ = TT , as transpose only and not Hermitian conjugate.
Transforming the diabatic Hamiltonian (12) to an adiabatic
representation, we obtain

Ha = TTHdT = IT̂N + Va + �̂, (17)

where Va is a diagonal matrix with the complex adiabatic
potential energy surfaces Vn(Q) as elements, which reduces
to equations (6) and (7) with complex parameters for Qy = 0.

The complex adiabatic potential energy surfaces Vn(Q),
are presented in Figs. 4 and 5. The black dots indicates
point of intersections where both the real and imaginary
parts of the lower two adiabatic surfaces intersect. In addi-
tion to the central intersection at ρ = 0, there are six outer
intersections at ρc = 0.107, laying pairwise symmetric at
angles φ1 = 60 ± 8.68◦, φ2 = 180 ± 8.68◦, and φ3 = 300 ±

FIG. 5. The imaginary part of the two lower complex adiabatic
potential energy surfaces Im(V1) and Im(V2), which are related to
the autoionization widths. The complex conical intersection and the
exceptional points are marked by dots and the solid line marks the
seams where Im(V1) = Im(V2). The coordinates are presented in
dimensionless units and the potential energy in Hartree.

8.68◦. The solid black line shows seams where either
Re(V1) = Re(V2) or Im(V1) = Im(V2).

The complex nonadiabatic coupling operator �̂nm carries
both the conventional bound state nonadiabatic coupling and
the second-order interaction through the continuum. It can be
expressed as [4]

�nm =
∑

k

FnkFkm + ∇Q · Fnm + 2Fnm · ∇Q, (18)

completely characterized by the first derivative nonadiabatic
coupling elements

Fnm =
∑

k

T T
nk∇QTkm, (19)

which is a matrix with vector valued elements. The nonadia-
batic coupling is one of the more important quantities in the
theory of nonadiabatic reactions. It measures the validity of
the Born-Oppenheimer approximation, meeting its extreme at
conical intersections where it may diverge, marking a total
break down of the Born-Oppenheimer approximation. The
circulation of the nonadiabatic coupling in the space of the
nuclear coordinates provides an identification of the intersec-
tion [5], i.e., via the geometric phase (Berry phase) [6,7]. For
a closed curve C in the coordinate space, the geometric phase
can be evaluated

τ = i
∮

C
Fs

nn dQ, (20)

where Fs
nn refers to the single valued version of (19) (see

Appendix).
Since analytical expressions of the eigenstates are not

available for the PJT model, we evaluate the nonadiabatic
coupling and the geometric phase numerically [44]. This in-
volves a gauge smoothing to generate continuous and single
valued biorthogonal eigenstates over the coordinate space.
In Figs. 6 and 7, the real and imaginary parts of the off-
diagonal elements of the first derivative nonadiabatic coupling
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FIG. 6. The real part of the first derivative nonadiabatic coupling
in φ direction between the two lower electronic resonant states.
At the geometries of the complex conical intersection and the ex-
ceptional points, the real part diverges. The coordinates and the
nonadiabatic coupling are presented in dimensionless units.

in φ direction are shown. At ρ = 0 the real part Re(F12)
diverges, while the imaginary part does not. The geometric
phase associated with the central intersection evaluates to
τ = π , similarly as in the bound state situation with a JT
or PJT conical intersection. Thus, we can conclude that the
central intersection is indeed a conical intersection with the
conventional geometric phase of π .

Encircling one of the outer intersections, the states are
interchanged and the geometric phase evaluates to π/2. Thus,
two loops around the intersection are needed to attain the
conventional sign change. This is a consequence of the non-
hermiticity of the system, and these outer intersections are
further identified as exceptional points [45]. Encircling all
seven intersections, the total geometric phase evaluates to τ =
2π and similarly to the bound state situation the geometric
phase effect is canceled out.

V. DISCUSSION

The complex adiabatic potential energy surfaces associated
with the electronic resonant states of H3 are well described
by the complex PJT model. The enriched topology of the
intersecting surfaces includes complex conical intersections,
exceptional points and seams of intersections. In the present
study, the symmetric mode Qs is excluded. If however it is
included, the points of conical intersections becomes seams of
conical intersections with the possibility of more topological
features. In example, the seams of bound state conical inter-
section in Li3 has crossing points, so called heptafurcations,
when following the symmetric mode [46]. Similar character-
istics is possible for the resonant states when following Qs.

At the critical radius ρc, the exceptional points are found,
which also marks a border where the geometric phase is
canceled out. For the complex JT model (see Ref. [26] and
Appendix), this critical radius is relatively large, such that the
JT expansion probably breaks down. The exceptional points
are therefore considered as unphysical for the JT model. The

FIG. 7. The imaginary part of the first derivative nonadiabatic
coupling in φ direction between the two lower electronic resonant
states. The imaginary part diverges at the point of the exceptional
point, but not at the central complex conical intersection. The coor-
dinates and the nonadiabatic coupling are presented in dimensionless
units.

opposite feature is found in the complex PJT model, where
the exceptional points are found at a relatively small radius
when there is a strong PJT coupling. The physicality of these
exceptional points can therefore not be excluded based on the
expansion argument.

In the present study, the three lowest electronic resonant
states above the potential of the H +

3 ion potential are consid-
ered. There exist however higher excited resonant states, i.e.,
a Rydberg series of resonant states converging to the excited
ion limits. These are expected to have similar behavior to the
states studied here and for a complete picture these should be
included.

In a theoretical study on ion-pair formation in electron
recombination with H +

3 (H3 +e → H +
2 + H−), the wave

packet dynamics on the three resonant states of H3 were
investigated [27]. The lowest electronic resonant state (the A1

state in C2v symmetry) of H3 is diabatically correlated with the
ion pair limit at infinity. The electronic couplings involved in
the triple intersection were estimated from the coefficients in
the configuration interaction calculation (i.e., the bound state
calculation) and with no regards to the JT or the PJT effects.
Possible effects originating from the complex PJT model is
however complicated to reveal in the case of a process such
as ion-pair formation. The resonant states cross and interact
with the series of bound Rydberg states with potentials below
the ground state of the ion. This will cause many avoided
crossings that will influence the quantum molecular dynamics.
Previous wave-packet dynamics study with a simplifed model
excluding the Rydberg series shows a pronounced effect of
the second-order continuum interaction among the resonant
states in the regions where the nonadiabatic coupling is strong
[47]. To investigate the potential importance of the PJT effect
among the resonant states, we propose to study a process such
as resonant vibrational excitation H +

3 + e− → H∗
3 → H+∗

3 +
e−. In this process, the electron is temporally captured into the
electronic resonant states in the vicinity of the central conical
intersection before the system autoionizes leaving the ion in a
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different ro-vibrational state. The system will here not probe
the region where the resonant states cross the potential of the
ion and interact with the bound Rydberg states. Additionally,
by projecting onto different vibrational states of the ion, the
effect of the symmetry distortion can be investigated.

APPENDIX

The features present in the topology for the two lowest
states of the complex PJT model is also present in the 2 × 2
complex JT model. Even though a quantitative fit cannot be
obtained, as seen in Figs. 2 and 3, the JT model captures
the topological features and analytic expressions are avail-
able. These analytical expressions are given in this Appendix.
Excluding the A state from the analysis, i.e., setting α = 0,
the limit of a pure JT interaction is obtained. The interaction
among the degenerate E components is described by the 2 × 2
potential

V d
nm = (

εE + 1
2ωρ2

)
δnm + kJk

nm + gJg
nm, (A1)

where Jk
nm and Jg

nm denotes the nonzero elements of the ma-
trices in (3) and (4). The complex adiabatic potential energy
surfaces are

V1/2 = εE + ω

2
ρ2 ∓ ρ

√
k2 + g2ρ2 + 2kgρ cos(3φ). (A2)

These complex adiabatic potential energy surfaces were stud-
ied in detail in Ref. [26], but we provide further characteristics
of the topology via the nonadiabatic coupling and the geomet-
ric phase. By introducing the complex parameter

θ = arctan

(
k sin(φ) − gρ sin(2φ)

k cos(φ) + gρ cos(2φ)

)
, (A3)

the right eigenvector matrix can be expressed as

T(θ ) =
(

cos(θ/2) sin(θ/2)
sin(θ/2) − cos(θ/2)

)
(A4)

with left eigenvector matrix TT . Since only the real part of
the angle θ in (A3) is multivalued, the complex generalization
does not introduce issues concerning the single valuedness
of the eigenvector matrices. Single valued biorthogonal states
can be constructed by adding a phase, as Ts = e−iRe(θ )/2T with
dual eigenvector matrix defined as T̃s = eiRe(θ )/2TT . Similarly
as in the bound state situation this induces a gauge transforma-
tion [48] on the complex nonadiabatic coupling. The (single
valued) first derivative nonadiabatic coupling reads

Fs = 1

2

(−i∇QRe(θ ) ∇Qθ

−∇Qθ −i∇QRe(θ )

)
. (A5)

The geometric phase can be evaluated by integrating the di-
agonal elements of the nonadiabatic couplings around a close
loop around the conical intersection [49,50],

τ = 1

2
Re

(∮
C

∇Qθ dQ
)

. (A6)

The geometric phase is obviously real. The gradient of the
complex adiabatic-diabatic transformation angle θ in φ and ρ

direction evaluates like in the case for bound states [50]

∇Qθ = − g
k sin(3φ)

1 + ( g
k

)2
ρ2 + 2 g

k ρ cos(3φ)
ρ̂

+ 1

ρ

1 − 2
( g

k

)2
ρ2 − g

k ρ cos(3φ)

1 + ( g
k

)2
ρ2 + 2 g

k ρ cos(3φ)
φ̂ (A7)

but with k and g being complex valued.
To unfold the topology and the points of intersections it is

convenient to rewrite the JT potential as

V =
(

εE + 1

2
ωρ2

)
I + kρ

(
cos(φ) + g

k
ρ cos(2φ)

)(1 λ

λ −1

)
(A8)

in terms of the complex parameter

λ = k sin(φ) − gρ sin(2φ)

k cos(φ) + gρ cos(2φ)
. (A9)

Diagonalising V gives V1/2 = εE + 1
2ωρ2 ∓ u, with

u = ρk
(

cos(φ) + g

k
ρ cos(2φ)

)√
1 + λ2. (A10)

Intersections are to be found when u = 0, and can be analysed
for three scenarios. Obviously u = 0 at ρ = 0 and the two
complex potential energy surfaces intersects for both the real
and imaginary parts. In the very near vicinity of ρ = 0, the
linear JT model (g = 0) applies. In this region, θ = φ and
the geometric phase evaluates to τ = π , corresponding to a
conventional sign change as in the bound state situation. Rein-
state g �= 0, and expanding the nonadiabatic coupling around
ρ = 0, the angular part reads

∇φθ = 1

ρ
− 3

g

k
cos(3φ) + O(ρ). (A11)

The diverging term 1/ρ is only carried in the real part, and the
imaginary part of the nonadiabatic coupling is not singular at
ρ = 0.

Outer intersection where u = 0 can be found at radius
ρc = |k|/|g|, where two cases can be distinguished. For real
valued k/g, three point of intersections are possible when
cos(φ) + g/kρ cos(2φ) = 0. The bound state situation with
Im(k) = Im(g) = 0 is a special case and the associated geo-
metric phase for these intersections are τ = π , analogous to
the bound state JT case [50].

The resonance situation allows for the possibility that g/k
is complex manifesting non-Hermitian effects. The matrix in
(A8) is a well known non-Hermitian matrix exhibiting excep-
tional point (or non-Hermitian degeneracies) at λ = ±i [45].
At an exceptional point, not only the complex eigenvalues
intersects, but also the eigenstates coalesce into one, which
implies that the eigenvector matrix T is singular and both
the real and imaginary parts of the nonadiabatic coupling
diverges. The geometric phase evaluates to τ = π/2. The
exceptional points are further connected by seams, where
Re(V1) = Re(V2) or Im(V1) = Im(V2) intersects. These are
situated at angles given by [26]

cos 3φ = − 1

ρ

Re(k)Im(k) + Re(g)Im(g)ρ2

Re(k)Im(g) − Re(g)Im(k)
, (A12)
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which meets at ρc = |k|/|g| in the six exceptional points cor-
responding to λ = ±i. Encircling the central intersection for
a fixed radius the geometric phase evaluates like the bound
state case [50] with τ = π for ρ < |k|/|g| while τ = 2π for

ρ > |k|/|g|. The topological features found in the complex
PJT model between the two lower electronic resonant states
are analogous the features presented in this Appendix for the
complex JT model.
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