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In free-space quantum key distribution (QKD) in turbulent conditions, scattering and beam wandering cause
intensity fluctuations which decrease the detected signal-to-noise ratio. This effect can be mitigated by rejecting
received bits when the channel’s transmittance is below a threshold. Thus, the overall error rate is reduced
and the secure key rate increases despite the deletion of bits. In this work, we implement recently proposed
selection methods focusing on the prefixed-threshold real-time selection (P-RTS) where a cutoff can be chosen
prior to data collection and independently of the transmittance distribution. We perform finite-size decoy-state
Bennett-Brassard 1984 QKD in a laboratory setting where we simulate the atmospheric turbulence using an
acousto-optical modulator. We show that P-RTS can yield considerably higher secure key rates for a wide range
of the atmospheric channel parameters. In addition, we evaluate the performance of the P-RTS method for a
realistically finite sample size. We demonstrate that a near-optimal selection threshold can be predetermined
even with imperfect knowledge of the channel transmittance distribution parameters.
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I. INTRODUCTION

As quantum communication grows from proof-of-principle
laboratory demonstrations towards large-scale commercial
deployment, a lot of attention is focused on the optical
medium on which such networks can be realized.

Today, quantum communication through fiber-optical net-
works is possible at metropolitan scales [1,2], but limited in
distance due to transmission losses, typically ∼0.2 dB/km at
1550 nm wavelength [3]. While classical optical signals can
be enhanced by intermediate amplifiers and reach far larger
distances, such techniques cannot be employed to amplify
quantum signals due to the no-cloning theorem [4]. Quan-
tum repeaters [5] are a possible solution, but much progress
needs to be made before they become available for practi-
cal quantum communication. Free-space channels offer an
attractive alternative at intermediate distances for mobile com-
munication, remote communicating parties, or as part of a
ground-to-satellite network. So far, experimental demonstra-
tions in free space include ground-to-airplane [6,7], hot-air
balloon [8], and drones [9], as well as multiple studies on
the feasibility of ground-to-satellite quantum communication
[8,10–13] and the launch of a quantum key distribution (QKD)
dedicated satellite [14–16].

Signals traveling in free space experience losses due to
turbulence, atmospheric absorption, and scattering, and con-
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sequentially experience consistent degradation of the signal
intensity. Caused by fluctuations in the air temperature and
pressure, turbulent eddies of various sizes produce random
variations in the atmospheric refractive index, which cause
beam wandering and deformation of the beam front [17,18].

The description of light propagation in a turbulent medium
is a very difficult problem, but the channel can be described
statistically. It is commonly accepted that the transmission
coefficient can be approximated by a log-normal probability
distribution at moderate turbulence [19–21], and by a gamma-
gamma distribution at higher turbulence [22,23]. However,
most work to date treats the effect of turbulence on the trans-
mittance as an average loss, without considering the details of
the distribution of the transmission coefficient.

Taking the channel statistics into account, various selection
methods that reject or discard recorded bits when the channel
transmittance is low have been recently proposed. Evren et al.
[24] developed a signal-to-noise-ratio (SNR) filter where the
detected quantum signals are grouped into bins during post-
processing. Any bins with a detection rate below a certain
threshold are discarded. To maximize the secure key rate, a
searching algorithm was developed to find the optimal bin size
and cutoff threshold.

Vallone et al. [25] employed an auxiliary classical laser
beam to probe the channel statistics and observed good cor-
relation between the classical and quantum transmittance
data. They developed the adaptive real-time selection (ARTS)
method, where the probed channel statistics are used to
postselect bits recorded during high transmittance periods,
above a certain transmittance threshold. Higher cutoff thresh-
olds improve the SNR at the cost of reducing the number
of available signals so the optimal threshold is determined
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by numerically maximizing the extracted secure key in
postselection.

Wang et al. [26] proposed the prefixed-threshold real-time
selection (P-RTS) method and showed that the optimal selec-
tion threshold is insensitive to the channel statistics. Rather,
it depends primarily on the receiver’s detection setup charac-
teristics (i.e., the detection efficiency and background noise)
and less strongly on the intensity of the quantum signals.
Thus, the threshold can be predetermined without knowledge
of the channel statistics, and the rejection of the recorded
bits can be accomplished in real time without the need to
store unnecessary bits or perform additional postprocessing.
The P-RTS method was extended to the measurement-device-
independent QKD (MDI QKD) [27] protocol in recent studies
[28,29]. In particular, Ref. [29] highlights the importance of
applying a selection method in MDI QKD as the turbulence
impacts the protocol’s efficiency, not only through the SNR
but also through the asymmetry between the channels that the
communicating parties (Alice and Bob) each use to access the
middleman (Charles).

In this study, the P-RTS method is employed experimen-
tally on the finite-size decoy-state Bennett-Brassard 1984
(BB84) [30,31] QKD protocol and compared to the optimal
key rate found through ARTS. The random transmittance fluc-
tuations caused by the atmospheric turbulence are simulated
using an acousto-optical modulator (AOM). We demonstrate
that the P-RTS method significantly increases the secure key
rate compared to the case of not using postselection, for a
wide range of the channel’s parameters. Performing the ex-
periments in a laboratory environment allows the study of
different atmospheric conditions in a controllable and repro-
ducible manner and this work extends the array of studies that
explore aspects of turbulent quantum communication chan-
nels with in-laboratory or simulated methods [32–35].

In Sec. II, we review the features of the P-RTS method [26]
and discuss how atmospheric effects might alter a free-space
communication channel. In Sec. III, we describe our exper-
imental setup and procedure. We outline the key generation
analysis and present our results in Sec. IV. Finally, in Sec. V,
we offer concluding remarks.

II. THEORY

In this section, we review the main results of the P-RTS
method [26] and discuss the atmospheric conditions which
might produce our simulated effects.

A. Modeling a turbulent atmosphere

It is accepted that weak to moderate turbulence causes the
transmittance coefficient of light propagating in air, η, to fluc-
tuate following a log-normal distribution [36]. The probability
density of the transmittance coefficient (PDTC) is given by

pη0,σ (η) = 1√
2πση

exp

⎧⎨
⎩−

[
ln

(
η

η0

) + σ 2

2

]2

2σ 2

⎫⎬
⎭, (1)

where η0 is the average transmittance and σ 2 is the logarith-
mic irradiance variance, which characterizes the severity of
the turbulence. A larger σ 2 indicates a greater transmittance

fluctuation. If the length L of the channel is known and the
height is constant, σ 2 for a plane wave can be calculated
through the relation σ 2 = 1.23C2

n k7/6L11/6, where k is the
wave number and C2

n is the refractive index structure constant,
which could be measured using a scintillometer. Because we
are treating the height as a constant, we can assume C2

n is
constant over the channel [37]. Typical values for C2

n generally
range from 10−17 to 10−12 m2/3 (going from weak to strong
turbulence), with a typical value being ∼10−15 m2/3 [38].
For example, when C2

n = 5 × 10−15 m−2/3, i.e., a value which
corresponds to moderate turbulence, we arrive at σ = 0.9 in
a 3 km channel given our 1550 nm wavelength. This choice
of σ is consistent with prior work (see, e.g., [25]). A similar
distribution would be produced if one were to choose a longer
channel, albeit with less turbulence. Indeed, in [25], σ = .991
was measured for a 143 km channel.

It should be pointed out that in the case of strong turbulence
(σ 2 � 1.2), the log-normal distribution breaks down [23,36].
Because we argue that P-RTS can predict a cutoff which is
largely independent of the PDTC, our findings are also valid
in a higher-turbulence scenario.

In addition to turbulence, the beam will be attenuated by
the atmosphere. Different software packages such as FASCODE

[39] and MODTRAN [40] have been developed to model the
atmospheric transmittance as a function of wavelength. In this
work, we use MODTRAN to inform our choice of atmospheric
loss because it takes into account a number of different tran-
sition lines for many airborne compounds and simulates the
effects of a plethora of different aerosols, such as oceanic mist
and even volcanic debris [41]. In our case, a 3 km channel
with 13–19 dB of loss can be produced using a Navy Mar-
itime aerosol model, where visibility ranges from about 1.8
to 2.5 km, a range which corresponds to light fog or hazy
conditions. For comparison, 30 dB of loss was obtained for
the much longer channel (143 km) between the Tenerife and
La Palma islands in [21].

B. Key generation in a turbulent channel

Our experimental setup implements a process in which two
users, Alice and Bob, are generating a shared secure key to
use for their secret communication. Alice is sending phase-
randomized weak coherent (laser) pulses where her bits are
encoded as the polarization state. Bob receives and detects the
pulses using single-photon avalanche detectors (SPADs). Note
that in both the theoretical calculation and the experimental
demonstration, while the average channel loss is assumed to
be a constant, the channel loss itself fluctuates according to
Eq. (1). This channel model has been widely adopted in free-
space QKD.

1. Asymptotic case

Following the discussion of [26], to describe the depen-
dence of the secure key generation rate R on the transmittance
η of the atmospheric channel, we fix all of Alice’s decoy-
state parameters as well as all of Bob’s detection parameters
(i.e., his detectors’ efficiencies, background noise, and optical
misalignment). Details on the optimization process are given
in Appendix A. Then the key rate can be written as a single
function of the transmittance, R(η).
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The maximum key rate Rmax that can be extracted using the
channel’s statistics is given by the convolution of the PDTC,
pη0,σ (η), in Eq. (1) with the rate R(η),

Rmax =
∫ 1

0
R(η)pη0,σ (η)dη. (2)

While evaluating this integral is challenging in practical ap-
plications, we can set a transmittance threshold ηTH below
which recorded bits are discarded and keep only a fraction∫ 1
ηTH

pη0,σ (η)dη of the sent signals. We treat the remaining
recordings as having passed through a static channel of aver-
age transmittance 〈η〉, computed only from the transmittances
above the threshold,

〈η〉 =
∫ 1
ηTH

ηpη0,σ (η)dη∫ 1
ηTH

pη0,σ (η)dη
. (3)

Then the postselected bits produce a key rate [26],

R(ηTH) = R(〈η〉) ×
∫ 1

ηTH

pη0,σ (η)dη. (4)

Equation (4) presents an optimization problem: higher cutoffs
ηT improve the SNR for the postselected bits and, hence,
the rate R(〈η〉) at the cost of reducing the available signals∫ 1
ηTH

pη0,σ (η)dη. The authors of Ref. [26] showed that an
optimal threshold ηT can be predetermined and the resulting
key generation rate (4) can closely approach the ideal rate of
Eq. (2) by making two key observations. First, there exists
a critical transmittance ηCR such that R(η) = 0, for η < ηCR.
Thus, we have

Rmax =
∫ 1

0
R(η)pη0,σ (η)dη =

∫ 1

ηCR

R(η)pη0,σ (η)dη. (5)

Second, the rate R(η), although convex in general, approaches
linearity very well. Approximating the rate R(η) as linear,
R(η) ≈ αη + β, we have

Rmax =
∫ 1

ηCR

R(η)pη0,σ (η)dη

≈
∫ 1

ηCR

αηpη0,σ (η)dη +
∫ 1

ηCR

βpη0,σ (η)dη

= R(〈η〉) ×
∫ 1

ηCR

pη0,σ (η)dη. (6)

This implies that by setting our threshold to the critical value,
ηTH = ηCR, in Eq. (4), we achieve a very good approximation
of Rmax. Importantly, the optimal transmittance cutoff does not
depend on the channel’s transmittance parameters, {η0, σ }.

2. Finite-size effects

Taking the finite-size effects into consideration, the ex-
tracted secure key rate Rfinite-size also depends on the number
of pulses N sent by Alice. Discarding low-transmittance
events reduces the available postselected pulses to Npost =
N × ∫ 1

ηTH
pη0,σ (η)dη, so the distilled secure key rate is mod-

FIG. 1. Simulations. (a) The optimal transmittance threshold, for
different number of sent pulses N and for different mean channel
losses. Here, σ = 0.9 for all simulation points. (b) The optimum
threshold in terms of the mean channel loss for different σ values.
Here, N = 3 × 1010 for all simulation points.

ified to [26]

R = Rfinite-size(〈η〉, Npost ) ×
∫ 1

ηTH

pη0,σ (η)dη. (7)

The rate Rfinite-size is calculated as

Rfinite-size = �

N
, (8)

where � is the number of distilled secure bits. The latter is
found from

� = sX,0 + sX,1 − sPA(φX ) − sEC(eobs), (9)

where sX,0 and sX,1 are the contributions from zero and single
photon pulses, respectively, and sEC and sPA are the bits con-
sumed to perform error correction and privacy amplification.
The contributions sX,0 and sX,1, as well as the phase error φX ,
are estimated using the two-decoy-state method [42] adapted
to include finite-size effects, according to Lim et al. [31]. The
observed error eobs is measured directly. Details of the secure
key rate calculation are presented in Sec. IV.

The dependence of the rate Rfinite-size given by Eq. (8) on the
number of sent pulses, N , raises the question of whether the
main conclusion of the P-RTS method, i.e., that the optimum
transmittance threshold can be predetermined independently
of the channel statistics, still holds for the case of a finite
number of sent pulses. Although the form of the distilled
bits, � [Eqs. (9) above and (10) in Sec. IV], does not allow
us to easily examine it analytically, we were able to draw
conclusions from numerical simulations.

The simulation results are presented in Fig. 1 for the
parameters presented in Tables I and II. The examined
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TABLE I. Background-noise parameters for each detector. The
input states have the same average photon number as the optimized
states given in Table III. The background-click probability is given
by Pbg(η) = Y0 + bη.

Y0 b

Detector H (7.6 ± 0.6) × 10−6 (2.6 ± 0.4) × 10−4

Detector V (3.1 ± 0.2) × 10−5 (1.8 ± 0.4) × 10−4

Detector D (6.7 ± 0.3) × 10−5 (2.7 ± 0.4) × 10−4

Detector A (6.7 ± 0.3) × 10−5 (1.8 ± 0.4) × 10−4

channel-loss range (10–20 dB) is the range of most signifi-
cance for the selection method given our detection parameters.
For losses below this range, the selection method offers no
significant improvement, while at greater losses, the extracted
key rate is still insignificant or zero. The examined σ range
(0.5–1.1) corresponds to typical values found in the literature
[20,21,25].

Considering that for a realistic application of communica-
tion time of a few minutes at frequency 1 GHz, we can send
∼1011–1012 pulses, we observe that the optimum threshold at
a low number of sent pulses, N , may differ from its asymptotic
value. We also observe a similar variation on the optimum
threshold for different values of the channel’s parameters η0

and σ . Moreover, this variation does not affect the secure key
generation significantly. Given these observations, we con-
clude that even with an imperfect knowledge of the channel

TABLE II. Experiment parameters.

Bob’s optical efficiency 0.42 ± 0.02

Optical misalignment 0.003 ± 0.002
Quantum efficiency (all detectors) 0.1 ± 0.05
Dead time 9 μs
fEC 1.16
N 3 × 1010

statistics, we can predetermine a transmittance cutoff which
produces a near-optimum key generation rate. We explore this
conclusion experimentally in Sec. IV.

III. EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 2. A continuous-
wave (cw) laser source (Wavelength References) at 1550.5 nm
(ITU channel 33.5) is directed to a LiNbO3 (EOSPACE)
intensity modulator (IM) to carve out pulses of full width
at half maximum (FWHM) ∼2 ns at a 25-MHz repeti-
tion rate. The intensity modulator is driven by an arbitrary
function generator (AFG) (Tektronix) with a sequence of
three different voltage scales, implementing the three-decoy-
(signal, weak, vacuum) state method. The DC bias voltage of
the IM is automatically adjusted by a null point controller
(PlugTech) to achieve the optimal extinction ratio (typically
∼30 dB). For each experimental session, Alice prepares and

FIG. 2. A continuous-wave source (CW source, Q) is used to encode the quantum states on. Pulses are carved with an intensity modulator
(IM) driven by an arbitrary function generator (AFG). The driving voltage sequence contains three voltage scales, implementing the three-
decoy- (signal-weak-vacuum) state method. Bits are encoded as polarization states with a polarization modulation (POL-M) setup consisting
of a polarization controller (PC), circulator (CIRC), phase modulator (PM), and Faraday mirror (FM). A polarization controller is used to
align to the rectilinear basis. The beam is attenuated (ATT) to the desired photon number. An additional laser source (CW source, Cl) with
an intensity modulator produces classical pulses that probe the channel statistics. The classical and quantum pulses are multiplexed at a dense
wavelength division multiplexer (DWDM). Turbulence is simulated at an acousto-optic modulator (AOM). At Bob’s side, a DWDM separates
the classical and quantum signals. The high-intensity classical beam is read by a high-gain (HG) detector and sampled by an oscilloscope
(OSC). The quantum beam is sent through a beam splitter (BS) to randomly select the measurement basis. Each polarization, i.e., horizontal,
vertical, diagonal, antidiagonal (H,V,D,A), measurement is realized by a polarization beam splitter (PBS) and a single-photon avalanche
detector (SPAD). An additional polarization controller is used to align to the diagonal (D) basis.
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sends N = 3 × 1010 pulses. To implement polarization encod-
ing BB84, we developed a fiber-based high-speed polarization
modulator, following the design described in [43] which was
proposed in [44].

The pulses are attenuated by a combination of digital and
analog variable attenuators to single-photon levels. The pulses
carrying the quantum states are multiplexed on a dense wave-
length division multiplexer (DWDM) (Lightel) with 1554-nm
(ITU channel 29) classical laser pulses at 4-kHz repetition
rate and ∼3-ns FWHM. The classical pulses are used to probe
the channel’s transmittance statistics. Both sets of pulses are
directed to an AOM (Brimrose), which is used to generate the
random transmittance fluctuations expected from our turbu-
lent channel. Another DWDM is employed at the receiver to
separate the classical probe light and the quantum signals. The
classical laser is detected by a high-gain detector (Thorlabs),
and an oscilloscope (Tektronix) is used to sample and store the
outputs of the detector. A 50:50 beam splitter (BS) is used to
passively select Bob’s detection basis, rectilinear or diagonal.
Measurement in each basis is realized by a polarizing beam
splitter (PBS) and a pair of InGaAs single-photon avalanche
detectors (SPADs) (IDQ) gated at 25 MHz with ∼5-ns gate
width.

The detector dead time is set to 9 μs to reduce the af-
terpulse probability. Since the afterpulse probability depends
on the light intensity received by the detectors, we observe a
linear dependence of the background probability Pbg in terms
of the channel transmittance η of the form Pbg(η) = Y0 + bη.
The parameters Y0 and b are extracted experimentally with
linear fits from test measurements and are displayed in Table I
using input light with the same average photon number as that
used in the experiments.

The optical misalignment is approximately 3 × 10−3. Each
SPAD is set to 10% quantum efficiency (ηd ). The experi-
mental parameters are summarized in Table II. Bob’s optical
efficiency (ηBOB) refers to losses due to optical components
(i.e., BS, PBS, and the fiber links). The output of each
SPAD is recorded by a time-interval analyzer (TIA) (IDQ)
and a custom-made program sifts them to collect the sets
nXk, mXk, nZk, mZk , for k ∈ {μ1, μ2, μ3}, which are needed
for the secure key distillation parameters according to the
model of [31]. Here, nBk are the detections where both Al-
ice and Bob use the same basis B ∈ {X, Z} while the decoy
intensity k is used, and mBk are the detections in error for the
basis B and decoy intensity k.

Given the experimental parameters in Tables I and II, we
numerically optimize the key generation to find the optimal
parameters {qX , Pμ1 , Pμ2 , μ1, μ2}. Here, qX is the probability
of using the rectilinear basis, Pμ1 and Pμ2 are the proportions
of the signals and weak decoys, and μ1, μ2 are the signal
and weak decoy intensities for the desired turbulence param-
eter set {η0, σ }. The vacuum decoy parameters are fixed as
Pμ3 = 1 − Pμ1 − Pμ2 , and μ3 = 0.002. The optimized states
are presented in Table III and the details of the optimization
routine are presented in Appendix A.

IV. ANALYSIS AND RESULTS

Having collected all the sets nXk, mXk, nZk, mZk defined in
the previous section for k ∈ {μ1, μ2, μ3}, we distill, according

TABLE III. Alice’s optimized quantum states, for channel pa-
rameters σ = 0.9 and mean channel loss 11, 13, 15, 17, and 19 dB.

Turbulence qx Pμ1 Pμ2 μ1 μ2

{η0 = 10−1.1, σ = 0.9} 0.904 0.660 0.215 0.56 0.225
{η0 = 10−1.3, σ = 0.9} 0.879 0.617 0.244 0.56 0.23
{η0 = 10−1.5, σ = 0.9} 0.844 0.552 0.287 0.56 0.23
{η0 = 10−1.7, σ = 0.9} 0.789 0.460 0.352 0.54 0.24
{η0 = 10−1.9, σ = 0.9} 0.683 0.319 0.439 0.54 0.245

to [31], a secure key of length �,

� =
⌊

sX,0 + sX,1[1 − h(φX )]

− nX fECh(eobs) − 6 log2
21

εsec
− log2

2

εcor

⌋
, (10)

where sX,0 and sX,1 are the lower bounds on the number of
bits generated by zero- and single-photon pulses (which are
immune to photon number splitting attacks) while both Alice
and Bob use the rectilinear basis, φX is the upper bound on the
phase error, h(·) is the binary entropy function,

h(x) = −x log2 x − (1 − x) log2 (1 − x), (11)

and eobs = mX
nX

is the quantum bit error rate, with mX =
mXμ1 + mXμ2 + mXμ3 and nX = nXμ1 + nXμ2 + nXμ3 . The
term −nX fECh(eobs) describes the bits consumed by the clas-
sical error-correction algorithm [45] with efficiency fEC =
1.16, and εcor = 10−15 is the correctness parameter. The term
−sX,1h(φX ) describes the bits consumed during the privacy
amplification stage to achieve secrecy according to the secrecy
parameter εsec = 10−10.

We explore the premise of Sec. II, whereby one can
predetermine a near-optimal transmittance cutoff while con-
sidering finite-size effects, even with an imperfect knowledge
of the channel statistics. For each examined channel loss
(11–19 dB), Alice prepares her state parameters while (i)
having perfect knowledge of the channel, (ii) underestimating
the mean loss by 2 dB, and (iii) overestimating the mean
loss by 2 dB. For example, at the 17 dB mean channel loss,
Alice assumes (i) 17, (ii) 15, and (iii) 19 dB mean channel
loss and prepares her state (Table III) accordingly. A 2-dB
uncertainty window for the mean channel loss can be comfort-
ably achieved by classical means during the initial calibration
stage. In any case, such knowledge of the channel parameters
is required and should be pursued for the construction of
Alice’s state (Table III) as the state parameters (especially the
proportions {qX , Pμ1 , Pμ2}) are sensitive to the mean channel
loss. For this reason, we did not consider the case of larger
uncertainty on the channel loss.

We present our measurement results in Fig. 3 for each
channel loss and optimized state. The measurement data
points correspond to ARTS [25]-type postselection, where we
scan successive transmittance cutoffs and extract the corre-
sponding secure key rate. The yellow shaded area corresponds
to the variance on the optimal cutoff observed in Fig. 1.
The error bars represent an uncertainty ±0.005 in setting,
during the experiment, the desired signal photon number μ1

and weak decoy photon number μ2 given in Table III. In
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FIG. 3. ARTS-type measurements: The logarithm of the secure key rate for increasing applied transmittance cutoff. (a)–(c) Distilled secure
key rates at 13 dB mean channel loss for increasing applied transmittance cutoffs. Alice optimizes her state assuming (a) 11, (b) 13, and
(c) 15 dB mean channel loss. (d)–(f) Similar for 15 dB channel loss, and (d) 13, (e) 15, and (f) 17 dB loss assumed by Alice. (g)–(i) Similar for
17 dB channel loss, and (d) 15, (e) 17, and (f) 19 dB loss assumed by Alice. (j),(k): 19 dB channel loss, and (j) 17 and (k) 19 dB loss assumed
by Alice; no key is generated if Alice assumes 21 dB loss. The error bars represent a ±0.005 uncertainty in the signal and weak decoy average
photon number. The yellow shaded areas represent the range of variation on the optimal transmittance threshold, presented in Fig. 1.

practical applications though, intensity uncertainties should
be treated more formally with methods such as those dis-
cussed in Ref. [46].

We observe that for a wide range of mean channel losses
(13–17 dB) and within the range of uncertainty of the optimal
threshold (yellow shaded range), the extracted secure key rate
does not vary significantly from its optimal value. However,
this conclusion does not hold well at higher losses, where
more precise knowledge of the channel parameters is required,
in order to both prepare Alice’s state parameters and apply the
selection threshold.

FIG. 4. P-RTS-type measurements. (a) Cutoff set as ηTH =
0.016, i.e., the asymptotic optimal cutoff. This cutoff does not gener-
ate a key at 19 dB mean channel loss. (b) Cutoff set as ηTH = 0.0275,
i.e., an average cutoff observed in Fig. 1.

In Fig. 4, we present an evaluation of our P-RTS-type
measurements where a fixed and predetermined cutoff trans-
mittance is set. In Fig. 1(a), we have observed that the optimal
threshold approaches the value ηTH = 0.016 as the number of
sent pulses, N, becomes large. We acquire a similar value from
the root of the equation RGLLP(η) = 0, where RGLLP(η) is the
Gottesman-Lo-Lutkenhaus-Preskill (GLLP) [47] asymptotic
secure key rate as a function of the channel transmittance. This
value is the asymptotic cutoff applied in Fig. 4(a) and it can be
predetermined without any knowledge of the channel statistics
[26]. In Fig. 1(b), we have observed a limited variance in the
optimal threshold around the value ηTH = 0.0275 throughout
the range of channel parameters where the selection method
offers significant improvement on the extracted key rate. We
choose this value to represent a threshold acquired through
partial knowledge of the channel parameters.

Figure 4 shows that for a wide range of the examined mean
channel loss, the asymptotic threshold only slightly underper-
forms the threshold acquired through partial knowledge of the
channel. However, at higher losses, a P-RTS-type (channel-
independent) threshold fails to produce a secure key rate and
some partial knowledge of the channel parameters is required.
In any case, choosing the asymptotic threshold still allows
ARTS-type scanning during postselection to fully maximize
the generated secure key rate.

V. CONCLUDING REMARKS

We conducted an experimental demonstration of decoy-
state BB84 QKD over a simulated turbulent channel taking
finite-size effects into account. We showed that the main con-
clusion of the prefixed-threshold real-time selection (P-RTS)
scheme proposed in [26], where the transmittance threshold

032614-6



EXPERIMENTAL DECOY-STATE BENNETT-BRASSARD … PHYSICAL REVIEW A 103, 032614 (2021)

FIG. 5. Simulations: The improvement that the selection method
offers for typical SPAD background (Y0) and quantum efficiency (ηd )
values. As a comparison criterion, we examine the mean channel loss
at which a key rate of 10−8 can be achieved. Sample size is N =
3 × 1010 and the optimal cutoff is applied. σ = 0.9.

can be predetermined independently of the channel statistics,
holds well in the regime of realistically finite events, further
supporting the applicability of the method. The secure key
rate can be significantly improved in turbulent atmospheric
conditions, especially at high loss. The selection method can
be easily implemented without any significant technological
upgrades, while saving computational resources. We observe
that it is especially beneficial for lower-quality detection se-
tups, with higher detection noise, as the turbulence impacts
their SNR more severely. We offer supporting simulations in
Fig. 5. For example, by applying a transmittance cutoff at
background noise Y0 = 10−4, we can extend the mean channel
loss so that a 10−8 key rate is generated by 6.2 dB. For
Y0 = 10−6, this extension is for 2.5 dB.

Depending on the knowledge of the turbulence statistics,
the two selection methods could be used in combination.
One could select a conservative transmittance threshold to
perform P-RTS-type real-time data rejection and then perform
an ARTS-type scan during postselection to further maximize
the extracted secure key rate.

It should be pointed out that one important assumption
behind the security proof adopted in this work is that the
global phase of Alice’s quantum state signal is random [48].
This could be achieved by using a PM at Alice’s station
to actively randomize the phase of each quantum signal, as
demonstrated in [49]. For simplicity, we did not implement
phase randomization. Nevertheless, since the coherence time
of Alice’s laser is much smaller than the data-collection time,
the detection statistics observed in our experiment match the
case where phase randomization is applied.

A similar technique could be used to enhance free-space
MDI QKD, as well as other free-space protocols where the
secure key rate can be approximated as a straight line at the
lower boundary. Being able to overcome the challenges of
atmospheric turbulence is a crucial step in building a future
global quantum network.
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APPENDIX A: OPTIMIZING THE SECURE KEY RATE

Decoy-state QKD introduces additional degrees of free-
dom for the pulses that are sent. Optimization of these
parameters can have a profound effect on the secure key rate.
In this Appendix, we explain how the secure key rate is calcu-
lated and describe the optimization process. We assume that
Alice has full knowledge of Bob’s detection setup parameters,
as summarized in Table II. She knows that Bob will apply
a selection threshold and she also has some knowledge of
the channel parameters {η0, σ }, according to the discussion
in Sec. IV. For the rest of the section, we follow the notation
of Lim et al. [31], where X denotes the rectilinear (compu-
tational) basis and Z the diagonal (Hadamard) basis. Alice
performs a numerical optimization over the free parameters
of her state, {qX , Pμ1 , Pμ2 , μ1, μ2}, where qX is the fraction of
bits encoded in the X basis, Pμ1 and Pμ2 are the fractions of
the signal state and weak decoy-state bits, respectively, and
μ1 and μ2 are the photon numbers per pulse for the signal and
weak decoy states, respectively. For the vacuum decoy state,
we have fixed μ3 = 0.002, and Pμ3 = 1 − Pμ1 − Pμ2 .

The detection probability for the decoy k ∈
{signal, weak, vacuum} at the detector measuring the i
polarization state, where i ∈ {H,V, D, A}, is

Pi
click(μk ) = 1 − (

1 − pi
bg

)
e−ηi

SYSμk . (A1)

The error probability is

Ei(μk ) = 1 − (
1 − p⊥i

bg

)
e−emisη

⊥i
SYSμk , (A2)

where ηi
SYS = η × ηBOB × ηd is the total transmission leading

to detector i [i.e., the channel transmittance (η), the transmit-
tance of Bob’s optical instruments (ηBOB), and the detector’s
quantum efficiency (ηd )]. In Eq. (A2), p⊥i

bg is the background
noise probability on the detector orthogonal to i and emis is
the optical misalignment. We note that the background-noise
probability is taken as a linear function of the channel’s trans-
mittance η: pbg = pbg(η) = Y0 + bη.

The numerical optimization returns the parameters
{qX , Pμ1 , Pμ2 , μ1, μ2} that maximize the secure key rate R =
�
N for a given number N of sent pulses (N = 3 × 1010 for our
experiment), where � is the number of distilled bits [31],

� =
⌊

sX,0 + sX,1[1 − h(φX )]

− nX fECh(eobs) − 6 log2
21

εsec
− log2

2

εcor

⌋
. (A3)

To summarize the approach of Lim et al. in [31], we estimate
the lower bound of the zero-photon pulse’s contribution as

sX,0 � τ0

μ2n−
X,μ3

− μ3n+
X,μ2

μ2 − μ3
, (A4)
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and the lower bound of the single-photon pulse’s contribution
as

sX,1 �
τ1μ1

[
n−

X,μ2
− n+

X,μ3
− μ2

2−μ2
3

μ2
3

(
n+

X,μ1
− sX,0

τ0

)]
μ1(μ2 − μ3) − μ2

2 + μ2
3

. (A5)

In the above, we use the conditional probability τn that an
n-photon pulse is sent,

τn =
∑

k

e−kkn pk

n!
, (A6)

and n±
X,k the number of detections where both Alice and Bob

use the X basis, considering the finite sample size:

n±
X,k := ek

pμk

[
nX,k ±

√
nX

2
ln

21

εsec

]
. (A7)

The detection numbers nX,k are calculated from Eqs. (A1) and
(A2). Here, nX = nX,μ1 + nX,μ2 + nX,μ3 . The observed error
in the rectilinear basis, eobs, is calculated as eobs = mX

nX
with

mX = mX,μ1 + mX,μ2 + mX,μ3 . The numbers of errors, mX,k ,
is calculated from Eq. (A2). Similar expressions hold in the
diagonal basis by replacing X → Z .

We estimate the upper bound of the phase error rate as

φX � vZ,1

sZ,1
+ γ

(
εsec,

vZ,1

sZ,1
, sZ,1, sX,1

)
. (A8)

Here, γ (·) is the estimation uncertainty and vZ,1 is the number
of errors stemming from single-photon pulses in the diagonal
basis and is estimated as

vZ,1 � τ1

μ2m+
Z,μ2

− μ3m−
Z,μ3

μ2 − μ3
, (A9)

with m±
Z,k the number of errors in the diagonal basis consider-

ing the finite sample size,

m±
Z,k := ek

pμk

[
mZ,k ±

√
mZ

2
ln

21

εsec

]
. (A10)

APPENDIX B: ESTIMATING THE CHANNEL’S
TRANSMITTANCE WITH CLASSICAL PROBE PULSES

In our experiment, classical probe pulses at a 4-kHz rep-
etition rate and ∼3 ns FWHM at the 29 ITU channel are
sent along the quantum pulses. After passing the AOM, they

FIG. 6. (a) Polynomial fit to determine the correlation between
the measured area under the probe pulse and the programmed trans-
mittance. (b) Example of a probed pulse captured by the oscilloscope
and its Gaussian fit.

are separated from the quantum pulses with a DWDM and
collected by a high-gain classical photodetector. We utilize
the fast-frame feature of a DPO 7205 Tektronix Oscilloscope,
which stores samples in a short interval around the trigger
[16 ns in Fig. 6(b) sampled at 5 G-samples/sec]. Thus, we
acquire high-resolution pulses [Fig. 6(b)] with minimum data
storage. By performing a Gaussian fit on the pulses, we ac-
quire the area under each pulse, which is a direct measure
of the transmitted intensity. For an initial calibration set, we
correlate, with a polynomial fit, the measured pulse area with
the programmed transmittance. For the actual measurements,
we use this polynomial fit to deduce the transmittance given
the measured pulse area. We note that we achieve similar
resolution in Fig. 6(a) by simply calculating the sum of the
samples of each frame, which is also significantly faster to
compute compared to the Gaussian fits.
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