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Gaussian phase sensitivity of boson-sampling-inspired strategies
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In this paper we study the phase sensitivity of generic linear interferometric schemes using Gaussian resources
and measurements. Our formalism is based on the Fisher information. This allows us to separate the contributions
of the measurement scheme, the experimental imperfections, and auxiliary systems. We demonstrate the strength
of this formalism using a broad class of multimode Gaussian states that includes well-known results from
single- and two-mode metrology scenarios. Using this, we prove that input coherent states or squeezing improve
upon the nonclassical states proposed in preceding boson-sampling-inspired phase-estimation schemes. We
also develop a polychromatic interferometric protocol, demonstrating an enhanced sensitivity with respect to
two-mode squeezed-vacuum states, for which the ideal homodyne detection is formally shown to be optimal.
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I. INTRODUCTION

During the last decade a considerable attention has been
devoted to figure out the optimal phase-estimation scheme
for a (linear) photonic interferometer using Gaussian states
and ideal quadrature measurements [1–5] by means of the
celebrated parameter estimation theory [6–18]. In this context,
most theoretical and experimental treatments have paid atten-
tion to the so-called quantum Fisher information (QFI), which
dictates the ultimate phase sensitivity under generic measure-
ments [7–9,19]. Interestingly, the optimal phase scheme able
to attain the QFI could be determined via the symmetric
logarithmic derivative (SLD) [2–5,20], though it displays an
intricate dependence on the desired parameter, which repre-
sents a major obstacle at the experimental level. For instance,
the QFI has been intensively studied for noisy and lossy
two-mode Mach-Zehnder interferometers (MZIs) pumped by
either a cross product of coherent and squeezed-vacuum states
[21,22] or a two-mode squeezed-vacuum state [22–25]. The
phase sensitivity of the multimode scenario is less under-
stood [3,5,26–32]. Recent work suggests that, in the case of
decoherence-free Gaussian resources with fixed average num-
ber of photons, the optimal Heisenberg limit (HL) is reached
with a trivial squeezed-vacuum state [29].

Most optimal Gaussian protocols relying on the QFI
involve nontrivial technical challenges [33–35], such as
engineering the passive transformation and generating high-
intensity [26] or highly squeezed light beams. In view of
these problems, when working with experimental constraints
we must focus on the Fisher information (FI) [36,37] for the
resources at hand—families of states, transformations, and
measurements. This task has been completed in the single-
mode MZI scenario [38], and in some cases also for the
multimode setup [18,20,39]. More recently, the FI has permit-
ted researchers to show the Heisenberg scaling in multimode
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interferometric schemes endowed with single-mode squeez-
ing resources and some preliminary classical knowledge about
the parameter [40,41]. The FI approach is a versatile treatment
to study the phase resolution of general circuits, such as re-
configurable photonic circuits [33,35,42,43] with homodyne
measurements. It is complementary to earlier and more diffi-
cult studies based on the quantum fidelity [26,30,36,44].

In this paper we compute the Fisher information of ar-
bitrary multimode interferometers working with Gaussian
input states and Gaussian measurements (without necessarily
assuming nonpassive resources and pre- or postprocessing
treatments). This allows us to envisage strategies retrieving
a reasonable compromise between the phase sensitivity and
the technical constraints upon the experimental resources. For
instance, we tackle the question whether multimode setups
can provide a metrological advantage, or improve upon the
shot-noise limit (SNL) with less demanding components than
single-photon sources [45–48]. Our formalism also quantifies
deviations from the ideal limits provided by the QFI and gives
insight on the interplay between the experimental resources
and imperfections, such as losses and nonideal detectors. On
top of that, we analyze various interferometric schemes in
terms of the resolution-energy tradeoff, and introduce a poly-
chromatic protocol providing a multiplicative enhancement of
the phase sensitivity with respect to the conventional strategy.

This paper is divided in two parts. In Sec. II we study
the phase sensitivity of a linear, passive interferometer with
Gaussian resources and measurements. In Sec. II A we in-
troduce the phase-space formalism [1,49–51]. In Sec. II B
we review the connection between phase estimation and the
Fisher information. Section II B uses the phase-space for-
malism to compute the Fisher information of an arbitrary
linear and passive interferometer with Gaussian input states
and measurements. Our results connect the FI to the QFI,
identifying contributions from the ancillas, the interferom-
eter, and the measurement setup. The second part of this
paper illustrates how the FI formalism can be applied to var-
ious setups. Section III A discusses an input state formed by
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FIG. 1. Sketch of a generic N-mode Gaussian phase-estimation
strategy consisting of a probe m-mode state, characterized by 〈RS〉
and V S (orange), and an ancilla (N − m)-mode state, characterized
by 〈RA〉 and V A (green). Both probe and ancillary systems interact
via the interferometer modeled by L, whereafter the first probe mode
undergoes the (single) phase rotation ϕ, such that the whole propaga-
tion is described by S(ϕ). The output modes of the probe system are
finally assessed by a generic quadrature measurement determined by
ΣS .

single-mode squeezed-vacuum and coherent states on N − 1
auxiliary modes. Section III B introduces an interferometric
scheme with polychromatic light. Finally, in Sec. III C we
show how to introduce losses and nonideal detectors.

II. GAUSSIAN PHASE SENSITIVITY

Our paper is devoted to studying an interferometric setup
[11,13–15] such as the one in Fig. 1. This phase-estimation
scheme consists of (i) an N-mode input state of light ρ̂ with
m principal models and N − m auxiliary degrees of free-
dom that will be eventually discarded [16,17,52,53], (ii) an
interferometer L that prepares the state of light prior to in-
teraction, (iii) the actual phase transformation ϕ that we wish
to detect, and (iv) a final measurement stage that combines a
linear transformation with local homodyne measurement on
m modes. This general scheme contains the MZI, and the
vast majority of Gaussian (single) phase estimation previously
treated as particular instances [21,22,26,29,38,54–56]. Our
paper focuses on a family of Gaussian input states [3,5] which
we denote G(m, n̄t ) and which is a product ρ̂ = ρ̂S ⊗ ρ̂A, of a
general Gaussian state ρ̂A for the ancilla, and an isothermal
state ρ̂S for the system—i.e., an m-mode Gaussian state with a
uniform number of thermal photons n̄t on each mode. On the
output of the interferometer, we consider a general m-mode
homodyne detection scheme, engineered by an interferometer
K and local homodyne measurements. Finally, without loss
of generality, we assume that the measured phase ϕ acts as a
local rotation Û = exp(−iϕĤ ) on one of the modes.

We will now proceed in three steps. The following sec-
tion will introduce the phase-space formalism, explaining
how to express states ρ̂, interferometers, local phase rota-
tions, and measurements. Later in Sec. II B, we will introduce
the Cramer-Rao bound and how the Fisher information
determines the maximum achievable sensitivity of our in-
terferometer. Finally, Sec. II C connects both formalisms,
providing an explicit formula for the Fisher information and
the phase sensitivity of our setup, expressed in terms of the
first and second moments of the input state, the covariance
(CV) matrix of the measurement, and the passive transforma-
tions L and K.

A. Phase-space formalism

We model the light using two quadratures per mode,
q̂i and p̂i, which satisfy the canonical commutation re-
lations [q̂i, p̂ j] = i[JN ]i j . Here we have introduced the
symplectic form [49,51] JN = ⊕N

i=1 J, expressed in terms
of [J]αβ = εαβ , the Levi-Civita symbol in two dimen-
sions εαβ. Any operator Ô is described in terms of the
Weyl symbol WO(R) spanned by the phase-space basis R =
(q1, p1, . . . , qN , pN )T ∈ R2N with support in the real sym-
plectic space (R2N , JN ) [50,51]. Gaussian states are those the
density matrix of which has a Weyl symbol W (V , 〈R〉) that is
fully determined by the first moments 〈R〉 ∈ R2N and the CV
matrix:

V = 1
2 〈{R, RT }〉 ∈ R2N×2N . (1)

In particular, our input state ρ̂ is a tensor-product Gaussian
state with first-moment vector 〈R〉 = (〈RS〉, 〈RA〉)T and CV
matrix V = V S ⊕ V A. Moreover, for our isothermal states
V S = (2n̄t + 1)S′ImS′T , where S′ is an arbitrary m-mode (ac-
tive or passive) symplectic transformation and Im is the 2m ×
2m identity matrix. This set of states satisfies a symplecticlike
identity V SJmV S = (2n̄t + 1)2Jm, implying a relation

V S = (2n̄t + 1)2JmV −1
S JT

m (2)

that will be extensively used throughout this paper.
The initial state undergoes a multimode interferometer

transformation, given by a 2N × 2N orthogonal, symplectic
matrix [49]. For convenience, we split this matrix into system
and ancilla:

L =
(

LS LSA

LAS LA

)
, (3)

where LSA is a 2m × 2(N − m) isometry, while LS is a
nonorthogonal 2m × 2m matrix which satisfies a symplecti-
clike relation LS = JT

mLSJm as well.
After this preparation, the bosonic system suffers an un-

known phase shift Û (ϕ), generated by the operator

Ĥ = 1
4

(
q̂2

1 + p̂2
1

) − 1
2 . (4)

The phase shift Û induces a rotation in phase space UN (ϕ) =
U (ϕ) ⊕ IN−1, with U (ϕ) given by Eq. (A5).

The combined N-mode transformation S(ϕ) is composed
of an 2m × 2m nonorthogonal (nonsingular) matrix SS acting
solely upon the probe system, and an isometry SSA(ϕ) describ-
ing the interference between the system and the ancillas:

SS (ϕ) = Um(ϕ)LS,

SSA(ϕ) = Um(ϕ)LSA. (5)

Since S(ϕ) describes a passive interferometric evolution, the
following relations must hold [1]:

SS (ϕ)ST
S (ϕ) = Im − SSA(ϕ)ST

SA(ϕ), (6)

SS (ϕ) = JT
mSS (ϕ)Jm, for ϕ ∈ R, (7)

which also shall be used in the subsequent derivation.
The phase-estimation task is finally accomplished by per-

forming a m-mode Gaussian measurement with outcome λ ∈
R2m. Any m-mode general-dyne measurement acting as a
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Gaussian positive operator-valued measure (POVM) Π̂λ is
characterized by a 2m × 2m real, symmetric, and positive-
definite CV matrix:

ΣS = K
m⊕

j=1

(
r j 0

0 1
r j

)
KT . (8)

K is an orthogonal symplectic transformation [51,57,58] that
may be implemented by the same or a different interferometer.
The squeezing parameter r j = (1 − τ j )/τ j is a function by
the transmissivity τ j of the measurement setup [59,60]. It
includes the limit of an ideal homodyne measurement in the
q or p quadratures as r j → 0 and r−1

j → 0, respectively. In
the applications of Sec. III we will consider the ideal N-
mode homodyne detection scheme consisting of identical local
quadrature measurements, with K = IN and ri = r.

We can compute the probability p(λ|ϕ) of obtaining a
measurement outcome λ conditioned to a phase shift ϕ. This is
a Gaussian function characterized by the first-moment vector
and the CV matrix [57]:

〈λ(ϕ)〉 = SS (ϕ)〈RS〉︸ ︷︷ ︸
〈λS (ϕ)〉

+SSA(ϕ)〈RA〉, (9)

σ(ϕ) = ΣS + SS (ϕ)V SST
S (ϕ)︸ ︷︷ ︸

σS (ϕ)

+SSA(ϕ)V AST
SA(ϕ). (10)

Note how the probe system statistics ρ̂S only appears in
〈λS (ϕ)〉 and σS.

B. Basics of phase-estimation theory

Using the so-called maximum likelihood and Bayesian es-
timators [11,54,61], we can approximate an unknown phase
shift ϕ from a set of measurement outcomes λ. The precision
of this method will be determined by the conditional proba-
bility p(λ|ϕ), as well as the estimator strategy pest(ϕ̃|λ). The
statistical inference process is described by the probability
distribution [7,15,62]:

P(ϕ̃|ϕ) =
∫

d2mλ pest(ϕ̃|λ)p(λ|ϕ). (11)

The quality of the estimator, or its precision, is given by the
mean square error [7,11,14]:

var(ϕ) = 〈〈(ϕ̃ − ϕ)2〉〉 =
∫

dϕ̃ (ϕ̃ − ϕ)2P(ϕ̃|ϕ). (12)

In particular, for any unbiased estimator function with ϕ =
〈〈ϕ̃〉〉, the ultimate precision satisfies the Cramér-Rao bound
[7–9,14]:

var(ϕ) � 1

F (ϕ)
, (13)

where F (ϕ) is the Fisher information of the probability dis-
tribution p(λ|ϕ) [8,9] [see Eq. (A1) in Appendix A]. In our
Gaussian scenario, the FI can be explicitly computed (see
Appendix A) as

F (ϕ) = ∂ϕ〈λT 〉σ−1∂ϕ〈λ〉 − 1
2 Tr(∂ϕσ−1∂ϕσ ). (14)

This includes earlier results for single- [26,38], two- [56], and
multimode Gaussian metrology scenarios [5,15]. Notice that
F (ϕ) in the multiphase scenario is replaced by the Fisher

information matrix [20,63], which could be expressed as
Eq. (14) up to minor changes: ∂ϕ should be substituted by a
gradient in the vector parameter, while σ would be replaced
by a larger matrix containing the parameter correlations due to
the interferometric transformation. Since our framework relies
on Eq. (14), it could be equivalently adapted to the multiphase
situation as well by following the procedure illustrated in
Sec. II C.

The Fisher information is particularized for a measurement
strategy. The QFI is an upper bound over all POVM strategies,
Gaussian or not [7–9,14]:

F = maxΠ̂λ
[F (ϕ)]. (15)

Since by definition F (ϕ) � F , it follows that the ultimate
sensitivity [19,62] for any quantum or classical measure-
ment strategy is dictated by the quantum Cramér-Rao bound
(QCRB) [7–9]:

var(ϕ) � 1

F . (16)

As shown in Appendix A, there is a closed-form formula for
the QFI when working with isothermal Gaussian input states
and passive linear transformations [2,26,44]:

F = 1

(2n̄t + 1)2

[
〈R′

1〉T V ′
1〈R′

1〉

+ 1

1 + (2n̄t + 1)−2
(Tr(V ′

1V
′
1) − 2(2n̄t + 1)2)

]
. (17)

The first-moment 〈R′
1〉 and CV V ′

1 belong to the probe mode
immediately before undergoing the phase-shift rotation. This
expression is independent of ϕ because of the phase-shift
generator Ĥ (ϕ) = Ĥ [9,62].

While F dictates the ultimate sensitivity limit, this limit re-
quires implementing a measurement strategy that can depend
on the estimator ϕ. This can involve elaborate transforma-
tions L and K and measurements of second- or higher-order
moments of the quadrature. For this reason, unlike the vast
majority of the previous works [7–9,11], we will center on
discussing the FI and the attainable limits of phase sensi-
tivity under given experimental setups and constraints. As
we will show below, this is not a severe restriction. We can
compute the sensitivity of protocols that are experimentally
feasible (see Fig. 1). We can also show that it saturates the
QCRB around certain strategies, and we can manipulate (14)
to separate the contributions of the probe, the ancillary Gaus-
sian state, the interferometer, and the Gaussian measurement
scheme.

C. FI analysis

We now present the main result which is the basis of the
future analysis. Starting from the identity (14), in Appendix B
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we decompose the FI as follows:

F (ϕ) = FS + FAnc(ϕ) + FInt(ϕ) − FMeas(ϕ)

+ (2n̄t + 1)2

1 + (2n̄t + 1)2

(
Tr(V ′

1V
′
1)

(2n̄t + 1)4
+ 2

)

− Tr
(
P0LSLT

S

)
, (18)

where FS is the QFI associated to the m-mode probe sys-
tem alone [which is obtained from (17) in the absence of
the ancilla], and Pϕ = U (ϕ) ⊕ 0m−1 is a 2m × 2m projection
matrix. The new functions FAnc(ϕ), FMeas(ϕ), and FInt(ϕ),
respectively, encode the influence of the input ancilla state,
the m-mode quadrature measurement, and the interference be-
tween the ancilla and system. The measurement contribution
reads

FMeas(ϕ) = 〈
RT

S

〉
∂ϕST

S Σ̃S∂ϕSS〈RS〉
− 1

2 Tr
(
∂ϕΣ̃S∂ϕ

(
SSV SST

S

))
. (19)

The symmetric and symplectic 2m × 2m matrix

Σ̃S = (
ST

S

)−1
V −1

S S−1
S

(
Σ−1

S + (
ST

S

)−1
V −1

S S−1
S

)−1

× (
ST

S

)−1
V −1

S S−1
S (20)

is manifestly independent of the input ancilla state. The influ-
ence of the ancilla is fully contained in

FAnc(ϕ) = 2
〈
RT

S

〉
∂ϕST

S σ−1
S ∂ϕSSA〈RA〉

+ 〈
RT

A

〉
∂ϕST

SAσ−1
S ∂ϕSSA〈RA〉

− ∂ϕ

〈
λT

〉
Ṽ A∂ϕ〈λ〉 + 1

2 Tr(∂ϕṼ A∂ϕσ )

− 1
2 Tr

(
∂ϕσ−1

S ∂ϕ

(
SSAV AST

SA

))
, (21)

with

Ṽ A = σ−1
S SSA

(
V −1

A + ST
SAσ−1

S SSA
)−1

ST
SAσ−1

S . (22)

Similarly, the function FInt(ϕ) only depends on the input sys-
tem state and system-ancilla interference SSA [see Eq. (B9) in
Appendix B]. Note that both FAnc(ϕ) and FInt(ϕ) vanish when
the system-ancilla interference cancels (which corresponds to
the nonassisted scenario without an ancilla system).

Let us give a brief overview about the derivation of the
expression (18). From Eqs. (9) and (10) we may separate the
contribution of the ancilla state. Indeed, using the so-called
Woodbury identity [see Eq. (B1) in Appendix B] [64,65],

F (ϕ) = FS (ϕ) + FAnc(ϕ), (23)

we can separate the contribution FS (ϕ) from the first moment
〈λS (ϕ)〉 and CV σS (ϕ). Collecting all remaining terms that de-
pend on the auxiliary system, FAnc adopts the form in Eq. (21).
This procedure may be repeated, using the symplecticlike
identities (2) and (7), to separate from FS (ϕ) the interfer-
ence FInt(ϕ) and measurement terms FMeas(ϕ), as shown in
Eq. (B12). Finally, using property (B13), one may group the
remaining terms into the QFI FS [see Eq. (B14)] plus addi-
tional corrections, as shown in Eq. (18).

The closed-form expression (18) is valid for any probe
isothermal Gaussian state W (V S, 〈RS〉) ∈ G(m, n̄t ), and for
single-phase interferometric schemes, Gaussian ancilla states,
as well as measurements. For the sake of clarity, we pay

special attention to input coherent resources and a partic-
ular subset of quantum uniform multimode interferometers
(QUMIs) recently studied in the context of boson-sampling
inspired phase-estimation strategies [45–47]. These are fur-
ther discussed in the following section.

Coherent ancilla state and QUMI

In the simple scenario in which the ancillary system is
composed of coherent states V A = IN−m, that interfere with
the system through a simple QUMI device—see the linear
transformation L from Eq. (C2)—the FI simplifies to

F (ϕ) = F̃S (ϕ) + 〈
RT

A

〉
∂ϕST

SAσ−1∂ϕSSA〈RA〉
+ 2

〈
RT

S

〉
∂ϕST

S σ−1∂ϕSSA〈RA〉, (24)

with

σ = (ΣS + Im)︸ ︷︷ ︸
Σ̃S

+SS (V S − Im)︸ ︷︷ ︸
Ṽ S

ST
S . (25)

The term F̃S (ϕ) is the FI of a phase-estimation scheme that
uses a Gaussian input state with first moment 〈RS〉 and CV Ṽ S ,
along with a Gaussian measurement with a white background
noise Σ̃S .

For a state with homogeneous input intensity n̄c—
i.e., 〈Ri〉 = (

√
2n̄c,

√
2n̄c) for i ∈ [1, N]—it turns out that

SSA〈RA〉 = (N − m)/mSS〈RS〉 [which follows from the trans-
formation (C2)]. This means that the ancillary terms in
Eq. (24) are positive and increase the FI—provided Ṽ S is
a positive semidefinite matrix. The auxiliary coherent state
improves the phase sensitivity, although it introduces some
background noise in the measurement outcome.

This result simplifies in the ideal homodyne detection in
which the system, not only the ancilla, is in a coherent state
V S = Im. Furthermore, the studied subset of QUMI schemes
has the property that it maps a superposition of all input modes
to the single mode that experiences the phase transformation
[46]. In our notation, this mode has label 1 (see Fig. 1), so that

n̄1 = 1

4

(〈
N∑

i=1

1√
N

Ri

〉)2

= N

2
(
√

2n̄c)2 = Nn̄c. (26)

The ancilla proves beneficial as increases phase sensitiv-
ity, since F̃S (ϕ) becomes 4mn̄c in the optimal operating
points ϕopt = ∓π/4 [see the discussion around Eq. (36) in
Sec. III A]. Using Eq. (24) we obtain the phase sensitivity for
the QUMI assisted coherent setup:

(δϕ)2 = 1

4n̄cN
, (27)

in agreement with previous results for single-parameter
schemes with an external phase reference [16,17]. This co-
incides with the phase sensitivity of a single-mode coherent
state with input intensity n̄cN . Moreover, Eq. (27) shows
that input coherent resources outperform earlier QUMI-based
phase estimation using single-photon states [45–48], for any
size of the interferometer. For more general assisted phase-
estimation schemes, it is less clear to see the influence owing
to the interferometer FInt(ϕ) and ancilla FAnc(ϕ) contribu-
tions at first sight; instead they deserve a more profound
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analysis that is beyond the scope of the present treatment
[16,17,52,53].

III. APPLICATION: N-MODE HOMODYNE DETECTION
WITHOUT AN ANCILLA SYSTEM

We will now compare the strength of our treatment with
earlier Gaussian phase-estimation analysis [21,22,26,29,38],
using no auxiliary modes (N = m), Gaussian pure input states
(n̄t = 0), and an ideal N-mode homodyne measurement.
Since there are no ancillas, we can eliminate the subscript S,
SS (ϕ) → S(ϕ), 〈RT

S 〉 → 〈RT 〉,V S → V , and FS → F . Both
the FI (18)

F (ϕ) = F − FMeas(ϕ) + 1
2 [Tr(V ′

1V
′
1) − 2] (28)

and the contribution from the measurement radically simplify
[see Eq. (B15) in Appendix B]:

FMeas(ϕ) = 〈RT 〉LT PT
ϕ SV ST Σ̃SV ST PϕL〈R〉

− 1
2 Tr((Σ̃∂ϕ (SV ST ))2)

+ Tr(Σ̃SV ST (∂ϕ (JN SV ST ))2). (29)

The matrix Σ that characterizes the Gaussian measurement
appears in the new matrix Σ̃ = (Σ + SV ST )

−1
. For an ideal

homodyne detection in either position or momentum quadra-
ture, Σ effectively becomes a projection matrix, π(x) =
diag(1, 0, 1, 0, · · · , 1, 0) or π(p) = diag(0, 1, 0, 1, · · · , 0, 1),
respectively. In this case Σ̃ must be understood as a Moore-
Penrose (MP) inverse [51,58,66], computed as follows [64]:

Σ̃
(x/p) = (π(x/p)SV ST π(x/p) )MP. (30)

Note also that the CV matrix of the chosen measure-
ment remains invariant Σ = KΣKT under any interferometric
transformation K, rendering this choice irrelevant [67].

A. Coherent and one-mode squeezed resources

Let us analyze a collection of independent single-mode
squeezed states, characterized by an arbitrary displacement
〈R〉 ∈ R2N and the CV matrix:

V = V 1(s1)
⊕

V N−1(s2), (31)

with

V l (s) =
l⊕

i=1

(
s 0

0 1
s

)
.

The squeezing of the first and of the remaining N − 1 modes
is given by the parameters s1, s2 ∈ R+. When N = 2, this
state reduces to the vast majority of nonentangled Gaussian
states previously studied: when s1 = s2 = s, it maps to studies
of single-mode squeezed states [3,21,38,54,56,68–72], when
s2 = 1 we have the squeezed mode combined with a coherent
state from [16,17,22,26,29,56,61,72,73], and for s1 = s2 = 1
we recover the coherent phase-estimation scenario and the
SNL scaling.

The QFI depends of the average number of photons on the
mode that undergoes the phase rotation (concretely, the QFI
for pure probe states is proportional to the variance of the

photon number [9,46,54]). We can therefore concentrate on
the previously introduced QUMI setup, which maximizes this
intensity. For this we find

SQUMIV ST
QUMI =

(
ΩN (ϕ, s1, s2) 0

0 V N−2(s2)

)
, (32)

where ΩN is a 4 × 4 real, symmetric matrix the representation
of which does not affect the discussion [see Appendix C and
Eq. (C3)]. Note how the size of (32) grows as 2(Ns1 + 1) ×
2(Ns1 + 1) for a large number Ns1 of states with squeezing s1.
Replacing (32) in (30), we further obtain

Σ̃
(x/p) = A(x/p) ⊕ diag(1, 0, · · · , 1, 0). (33)

Here, A(x/p) is a 4 × 4 real matrix given by Eqs. (C11)
and (C12). By paying attention to (32), it is clear to see
that the matrices within the trace in the expression (29)
effectively play the role of a projection operator in the
phase space supporting the mode undergoing the rotation,
i.e., ∂ϕ (SQUMIV ST

QUMI) = ∂ϕΩN ⊕ 0N−1. Having evaluated
the quantities (32) and (33), after substitution in (29) one
obtains the FI:

F (x/p)(ϕ) = F − 1

2N2

(
a2

N (s2, s1) + a2
N (s1, s2)

(s1s2)2
− 2N2

)
+ f (x/p)

N (sin2 ϕ, s1, s2)

−〈R′
1〉W (x/p)

N (ϕ, s1, s2)〈R′
1〉, (34)

where we have introduced aN (s1, s2) = (N − 1)s1 + s2, two
auxiliary functions f (x)

N , f (p)
N [see Eqs. (C19) and (C20)], and a

real symmetric matrix W (x/p)
N ∈ R2×2 [see Eqs. (C13)–(C15)].

The optimal phase-estimation strategy for a given ϕ must
saturate the QCRB (16). In that case the last three terms in
Eq. (34) cancel each other and F = F . To illustrate, let us
consider an input beam with the same coherent low intensity
n̄c � N in each mode [i.e., 〈Ri〉 = (

√
2n̄c,

√
2n̄c)]. For this

choice, the QFI takes the form

F = 2n̄cN
1 + s2

2

s2
+ 1

2

⎛
⎝4n̄c

(
s1 + 1

s1
− s2 − 1

s2

)

+ s2
2 + 1

s2
2

− 2

)
+ O(N−1). (35)

The first term, proportional to N, reproduces the QFI of a
coherent input state, and the second and third term cancel
precisely for that type of input s1 = s2 = 1. Moreover, we
may expand Eq. (34) in the limit of large interferometers
1 � N with finite energy 1/N � s1/2 � N :

F (x/p)(ϕ)

= 4n̄cNs2(1 ∓ sin(2ϕ))

1 + s2
2 ∓ (1 − s2) cos(2ϕ)

+ 2s−1
1 (s1(1 ∓ 1) + s2(1 ± 1))(

1 + s2
2 ∓ (

1 − s2
2

)
cos(2ϕ)

)2

(
s1
(
1 − s2

2

)2
sin2(2ϕ)

s1(1 ∓ 1) + s2(1 ± 1)

+ n̄c(s1 − s2)
(
1 ∓ sin(2ϕ))

(
1 − s2

2 ∓ (
1 + s2

2

)
cos(2ϕ)

))

+ O(N−1). (36)
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FIG. 2. Left: The roots of the polynomial (38) as functions of the interferometer size N , where the horizontal black line represents the unit
value sin2 ϕ

(x)
0 = 1. Notice that the solid blue and dashed orange lines do not regard injective functions because the polynomial has two distinct

real roots. Central: The FI associated to the position quadrature measurement as a function of the interferometer size and for distinct input probe
states: the black-solid, blue-dashed, and orange-dot-dashed lines correspond to the tensor product of coherent (i.e., s1 = s2 = 1), one-mode
squeezed⊗coherent (i.e., s1 = e2s′ and s2 = 1), and single-mode squeezed (i.e., s1 = s2 = e2s′ ) states, respectively. For a fair comparison, we
have fixed the input mean photon number per mode to an identical value for all input states, i.e., n̄ ≈ 1.38, and we have chosen the unknown
phase shift ϕ = π/3 and the squeezing parameter s′ = 1/2. Right: Similarly, the FI as a function of the mean photon number per mode for a
fixed squeezing parameter. We have taken the same values for the rest of the parameters.

Here the signs ∓ correspond to the use of position and mo-
mentum quadratures, respectively.

Inspecting Eq. (36) reveals that the leading sensitivity in
F (x/p) resembles the QFI of coherent states (35) around the
optimal working points ϕ

(x/p)
opt = ∓π/4, i.e.,

F (x/p)(∓π/4) = 4n̄cN + O((s1 − 1)N−1, (s2 − 1)N−1).
(37)

In other words, the combination of ideal homodyne detection
and squeezed input resources with s1 
= s2 can approach the
QCRB for large interferometers, though it never saturates the
QFI except in the strict coherent limit (s1 → 1, s2 → 1) in
agreement with previous results for two-mode [21,22] and
multimode interferometric schemes [26]. On the other hand, if
we use displaced single-mode squeezed states s1 = s2 = s, the
ideal homodyne detection is never an optimal measurement
scheme: the three last terms in the right-hand side of Eq. (34)
never cancel each other if 0 < |〈R〉| and 0 < s.

For input resources with vanishing displacement, the op-
timal working point ϕ

(x/p)
opt is found by solving second-order

equations in the variable y = sin2 ϕ → [see Eqs. (C19) and
(C20)]. For instance, the condition to saturate the QCRB for a
position quadrature measurement is

y2α
(x)
N (s1, s2) + yβ (x)

N (s1, s2) + δ
(x)
N (s1, s2) = 0, (38)

with coefficients α
(x)
N , β

(x)
N , and δ

(x)
N given by Eqs. (C21)–

(C23). In the particular situation of a homogeneous squeezing
s1 = s2 = e−2s′

with s′ ∈ R, the QCRB is saturated for

cos
(
2ϕ

(x/p)
opt

) = ± tanh(2s′), (39)

and Eq. (34) returns

F (x/p)(ϕ(x/p)
opt

) = 8n̄s′ (n̄s′ + 1), (40)

with n̄s′ denoting the input average photon number per mode
(i.e., n̄s′ = sinh2 s′). Notice that this result holds for any choice
of the interferometric transformation [66]. This coincides with
the single-mode Gaussian state results, found with alternative
methods based on the fidelity [3,54,55,68] or the SLD [38].

The subsidiary condition (38) proves that a quadrature de-
tection in position (or equivalently, in momentum) is no longer
optimal for a tensor product of zero-displacement states with
s1 = s and s2 = 1. We see this in the left panel of Fig. 2, which
shows the real roots of (38) as a function of N for two fixed
squeezing values s. Note how these roots are always above
or at most equal to 1 for all problem sizes N . Consequently,
there is no value ϕ

(x)
opt for which the QCRB is saturated except

for the single-mode Gaussian metrology setup N = 1. This
observation is also confirmed by computing the roots in the
limits of extreme squeezing in either position or momentum,
i.e., lims→∞ sin2 ϕ

(x)
opt = N2/(2N − 1). All these findings are

consistent with results obtained in the single- and two-mode
phase-estimation analysis based on the SLD [21,26,30,38,55]:
for displaced squeezed states the SLD is a quadratic operator
in terms of the quadrature operators [1,2,5] (which means
that the optimal measurement scheme is non-Gaussian), how-
ever it becomes linear when dealing with either coherent or
squeezed-vacuum resources [38].

The FI is also plotted in Fig. 2 for the purpose of
comparison. The central panel depicts this in terms of the
interferometer size N for a given homogeneous intensity n̄,
while the right panel illustrates it as a function of n̄ at a
fixed interferometer size N = 100. In summary, these figures
outline the main conclusion from Eq. (36): that is, none of the
nonentangled Gaussian states along with the QUMI architec-
ture provide a better scaling than the SNL (see the black solid
line) in the finite energetic regime and for large interferometer
sizes. In other words, our analysis indicates that QUMI-based
phase-estimation strategies provide no real advantage with
respect to the resolution-energy tradeoff [45–48].

B. Two-mode squeezed resources and
polychromatic phase generator

Let us now study a metrology setup using two-mode non-
degenerate squeezed states as resources. These states have
been shown to overcome the SNL in estimation errors or
phase sensitivities when using homodyne [24,74], intensity
[75], or parity measurements [76–78]. The input state will
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FIG. 3. Left: Log plot of the polychromatic QFI as a function of s′ and for distinct values of the modulation parameter ε, shown in the
large squeezing regime. We have fixed the transmissivity τ = 0. Central: Three-dimensional plot of the deviation associated to the position
quadrature measurement for input two-mode squeezed-vacuum states and fixed value of the phase shift ϕ = π/4. Right: Similarly, the deviation
of the FI as a function of ϕ for a fixed modulation frequency ε = 1/2 and two given values of the squeezing parameter: the blue and dashed
orange lines correspond to s = 0.1 and 0.15, respectively. In the central and left panels, the transmissivity was chosen τ = 1/2. Log denotes
the natural logarithm.

be described by the first-moment vector 〈R〉 ∈ R4 and a CV
matrix [14,23,79]:

V =

⎛
⎜⎜⎜⎝

cosh 2s′ 0 sinh 2s′ 0

0 cosh 2s′ 0 − sinh 2s′

sinh 2s′ 0 cosh 2s′ 0

0 − sinh 2s′ 0 cosh 2s′

⎞
⎟⎟⎟⎠, (41)

that depends on the squeezing parameter s′ ∈ R+. Notice that
one obtains the result related to the coherent resources dis-
cussed previously for the choice s′ = 0.

These states can be generated using the well-established
procedure of pumping a nondegenerate optimal parametric
amplifier with a strong coherent beam, say at frequency 2ω0.

These input photons are split into highly correlated pairs that
conserve the total energy ω1,2 = ω0 ± Ω. Here Ω < ω0 is
a small modulation frequency that renders the photons dis-
tinguishable [50,76,77]. To the best of our knowledge, there
is no previous treatment that studied the influence of such
modulation from the metrological point of view (for instance,
see [28,69,80]).

We will now go beyond previous phase-estimation analy-
sis, addressing a polychromatic metrology scenario in which
each port of the two-mode interferometric setup is fed with
beams at two different frequencies. We label those modes
with the annihilation operators âω1 and âω2 , and consider that
different frequencies may experience a different single-mode
phase shift, generated by

Ĥpol(ε) = (1 + ε)n̂ω1 + (1 − ε)n̂ω2 . (42)

The parameter −1 � ε � 1 can be regarded as a frequency-
dependent index of refraction or optical path, and n̂ωi =
â†

ωi
âωi . As the total average energy 〈Ĥpol(ε)〉 remains constant

for distinct ε, we can compare the resolution-energy tradeoff
retrieved by polychromatic Gaussian phase-estimation scenar-
ios. The choice (42) returns an extension of the phase-shift
generator that is

Upol(ϕ, ε) = U ((1 + ε)ϕ) ⊕ U ((1 − ε)ϕ), (43)

which reduces to the conventional generator (A5) for the
choices ε = ±1 [74]. Further, we shall consider that the trans-
formation L represents a beam splitter with transmissivity τ .

Returning to the phase-space formalism, the polychromatic
QFI can be expressed as follows:

Fpol(ε) = (1 + ε)2F1 + (1 − ε)2F2

+ 4(1 − ε2)
[
Tr(V ′

12V
′
12) + 2

〈
R′T

1

〉
V ′

12〈R′
2〉
]
, (44)

where F1 = F2 = (1 + 4τ (1 − τ ))n̄s′ (n̄s′ + 2) with n̄s′

denoting the total average number of photons, whereas
〈R′

i〉 = (L〈R〉)i and V ′
12 = diag((1 − 2τ ) sinh 2s′,−(1 −

2τ ) sinh 2s′).
The left panel of Fig. 3 shows a log-log plot of the QFI

in terms of the squeezing parameter, for distinct choices of
the frequency modulation and vanishing input displacement.
The polychromatic QFI is larger than the monochromatic
counterpart for sufficient high squeezing (1 � s′), and the
highest sensitivity is obtained for ε = 0. Interestingly, the
sensitivity grows with the squeezing with an identical power
for all values of ε, so that the polychromatic QFI may be
approximately expressed as Fpol(ε) ≈ c(ε, τ )F1 with c being
a multiplicative enhancement independent of s′. This factor is
found to take values 2 � c � 10 for the available modulation
frequencies and transmissivity, implying that a polychromatic
setup can provide a significant improvement of the resolution-
energy tradeoff compared to the monochromatic MZI, e.g.,
Fpol ∼ 10n̄2

s′ for 1 � s′, ε = 0, and τ = 0.
The treatment about the FI presented in Sec. II C holds for

very general phase generators beyond (4) and can be adapted
to the polychromatic scenario. Going back to the general
expression (B12) and replacing the phase-shift generator (43),
we obtain a closed-form expression of the FI associated to
the polychromatic strategy by following a similar procedure
as to compute the expression (28) discussed in Sec. II C. The
result is

Fpol(ϕ, ε) = Fpol(ε) − FMeas(ϕ, ε) − 2(1 + ε2)

+ 1
2 Tr((1 + ε)2V ′

1V
′
1 + (1 − ε)2V ′

2V
′
2)

− 2(1 − ε2)
(
Tr(V ′

12V
′
12) + 3

〈
R′T

1

〉
V ′

12〈R′
2〉
)
,

(45)

where FMeas(ϕ, ε) is obtained from (29) after substituting the
CV matrix (41).
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The central panel of Fig. 3 displays the deviation of
the Fisher information from the quantum limit F (x)

pol (ϕ, ε) −
Fpol(ε), in the case of position quadrature measurements, for
a fixed unknown phase shift and vanishing input displace-
ment. As expected, the deviation is always negative or zero.
However, it also remains close to zero for a growing squeez-
ing around ε ≈ ±1/2. This indicates that an ideal N-mode
quadrature detection may constitute an optimal measurement
scheme. We can verify this for two-mode squeezed-vacuum
states and ε = ±1. After a 50:50 beam splitter transfor-
mation (i.e., τ = 1/2), the probe system is in the tensor
product of single-mode squeezed-vacuum states. In agree-
ment with the discussion in the previous section, we may
expect to recover an identical relation for the operating point
as Eq. (39). Indeed, after some manipulation Eq. (45) boils
down to a simple algebraic expression in the argument y =
cos(4φ) [see Eqs. (C24) and (C25)], from which follows the

subsidiary condition: cos (4φ
(x/p)
opt ) = ∓ε/|ε| tanh(2s′). This is

complementary to earlier findings for homodyne or inten-
sity detection schemes combined with active interferometry
[25,56,75].

The right panel in Fig. 3 also illustrates the saturation of
the QCRB, as zeros of the difference F (x)

pol (ϕ, ε) − Fpol(ε),
for a strategy based on position measurements and vanishing
input displacement. Note how this deviation is an oscillating
function of the phase, with an amplitude that grows with
the squeezing [see dashed vs solid lines in Fig. 3]. Upon a
closer look we appreciate an optimal operating point around
ϕ

(x)
opt ≈ π/2 (see Fig. 3 inset), where the FI reaches the QFI,

and thus it takes the value

Fpol
(
ϕ

(x)
opt, 1/2

) = 5 sinh2(2s′) ≈ 5n̄2
s′ . (46)

This is an optimal measurement strategy for the poly-
chromatic scenario (with τ = 1/2), a result which is also
recovered in a setup with momentum-based measurements.

Unfortunately, the quadrature measurement is no longer
optimal in the case of a vanishing modulation frequency ε =
0, which is when the polychromatic scheme obtains the largest
improvement over the conventional strategy. In this case, the
optimal operating point is determined by an algebraic equa-
tion f (x)

0 (cos(4ϕ), s′) = 0 [see discussion around Eq. (C26)
in Appendix C], as in preceding sections. The closed-form
expressions for these roots given in Eq. (C29) show that no
value of squeezing 0 < s′ can saturate the QCRB for a given
phase shift ϕ.

C. Photon-loss effects and nonunit efficiency detection

Finally, we address the degrading effects owing to the
experimental imperfections, extending our treatment to in-
clude these in the analysis of the FI. In most interesting
cases, the photon-loss process, determined by a given strength
ηloss, and the nonunit efficiency detection, designated by
ηeff, can be regarded as the major limits to interferometric
precision [21,22,25,26,28,38,55,56,81–84]. Furthermore, it is
customary to assume that the environmental noise and photon-
loss mechanism act identically and independently upon each
probe mode [85], and that the environment is in a ther-
mal state at a temperature determined by the mean photon
number nth. Under these considerations, the light interfero-

metric propagation is modified in the presence of decoherence
as S(ϕ)V ST (ϕ) → ηlossS(ϕ)V ST (ϕ) + (1 − ηloss)(1 + nth )IN

[22,81,86,87]. Combining this result with Eqs. (9) and (10),
we directly obtain

〈λ(ϕ)〉 = √
ηlossS(ϕ)〈R〉, (47)

σ(ϕ) = (1 − ηeff + (1 − ηloss)(1 + nth ))IN

+ ηeffΣ + ηlossS(ϕ)V ST (ϕ)︸ ︷︷ ︸
σdeco(ηloss,ηeff )

, (48)

where the CV matrix σdeco solely regards photon-loss effects.
By replacing (47) and (48) into the general equation (14)
and doing some manipulation as illustrated in Sec. II C, we
obtain a closed-form expression of the FI in presence of these
decoherence effects, say Fdeco, similar in structure to (18)
[see Eq. (C35) in Appendix C3]. In the particular case we
assume the propagation photon losses and nonunit efficiency
contribute equally, i.e., ηloss = ηeff = η, the FI can be cast as
follows:

Fdeco(ϕ, η, nth ) = η2F (ϕ) − η〈RT 〉LT PT
ϕ Σ−1

deco(η, nth )PϕL

×〈R〉 + 1
2 Tr

(
∂ϕΣ−1

deco(η, nth )∂ϕσdeco(η)
)

− (1 − η2)
(
2 + 1

2 Tr((Σ̃∂ϕ (SV ST ))2)
)
,

(49)

where Σdeco(η, nth ) is a 2N × 2N real, symmetric matrix
[given by Eq. (C36)] that fully contains the influence owing
to the environmental thermal noise. Recall F (ϕ) denotes the
FI in the ideal scenario.

Equation (49) manifests that the decoherence effects influ-
ence the phase resolution beyond a limiting constant factor
of the phase sensitivity achievable in the ideal case [84]. Fur-
thermore, this expression shows that the decoherence effects
impact differently the phase sensitivity provided by distinct
probe resources [14,22,56]: while the third and last terms in
the right-hand side vanish for input coherent states, the second
term cancels for probe resources without an initial displace-
ment. For instance, Eq. (49) indicates that thermal noise is
especially detrimental for input displaced states, whilst the
phase sensitivity due to coherent resources is apparently more
tolerant to photon losses [22] [since the last term in (49)
vanishes].

As a final remark, from Eq. (49) it is clear that the
Gaussian interferometric schemes in presence of experimental
imperfections cannot reach the HL; instead they could be
able to improve upon the SNL for moderate values of η,
as well as saturate the QCRB for quadrature measurements
[15,21,25,56,81]. Rather than figuring out the strict homodyne
measurement attaining the ultimate sensitivity given by the
QFI in presence of photon loss and noise, from Eq. (49) one
may be tempted to look for an alternative “optimal” Gaus-
sian measurement scheme where optimal is understood in the
sense that Fdeco eventually converges to η2F instead (notice
that F denotes the QFI in the ideal scenario). The latter yields
an algebraic subsidiary condition as well, from which we
may determine the corresponding optimal operating point. For
instance, for the probe coherent scheme we find out that this
is given by the formula sin(2ϕ(x/p) ) = ∓[2(η/η̃)2 − 1] [see
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TABLE I. Summary of the phase sensitivity retrieved by the distinct Gaussian interferometric phase-estimation strategies involving an
ideal homodyne detection, expressed in terms of the interferometer size N and the input average photon number per mode n̄. The particular
choice of the probe Gaussian state and the interferometric scheme are specified in the first two columns. The third column illustrates the scaling
of the FI with respect to n̄ at a fixed value of the interferometer size N . The fourth column represents instead the scaling in terms of N and for
a given input intensity n̄, whilst the fifth column determines which strategies are able to attain the QCRB. Accordingly, the SNL-type scaling
in terms of the input intensity must be understood as F ∼ 4n̄, whereas the SNL-type scaling is similarly defined as F ∼ 4N in terms of the
interferometer size.

Interferometric Scaling Scaling with
Input resources transformation per mode energy interferometer size QCRB

Coherent QUMI SNL SNL Yes
(s1 = s2 = 1) See text around Eq. (27)
Single-mode squeezed vacuum Any HL Constant Yes
(s1 = s2 = e−2s′ ) See Eq. (40)
One-mode squeezed⊗coherent QUMI Sub-SNL Sub-SNL No (nearly optimal for s′ � N)
(s1 = e−2s′ and s2 = 1) See Eq. (37)
Two-mode squeezed vacuum (N = 2) 50:50 beam splitter HL Yes (for ε 
= 0)

See Eq. (46)

Eq. (C37)], with

η̃2 = η2 + (2 + nth)(1 − η)

η + (1 − η)nth − 2
, (50)

which significantly differs from the ideal scenario (i.e.,
ϕ

(x/p)
opt = ∓π/4). This manifests that the experimental im-

perfections substantially influence the optimal working point
besides the ultimate sensitivity.

IV. OUTLOOK AND CONCLUDING REMARKS

In this paper we have presented a theoretical framework
to explore the metrological potential of generic Gaussian
interferometric schemes accessible with current photonic
technology. Our treatment proves convenient to address the
optimal phase-estimation scheme and operating point: in par-
ticular, we recover the vast majority of previous well-known
results in the single- and two-mode Gaussian metrology
scenarios. In Table I, we summarize the phase sensitivity
provided by the choice of different input states and interfer-
ometric schemes in the finite energetic regime. To a large
extent this table contains most of the previous results related
to Gaussian phase resolution in the absence of photon loss and
for perfect detection schemes [21,22,26,38].

Interestingly, input coherent resources were shown to
outperform the probe nonclassical states used in previous
QUMI-based phase-estimation proposals. Moreover, our anal-
ysis revealed that in the low-intensity regime (e.g., when the
squeezing parameter is small compared to the interferometer
size N) the QUMI architecture along with probe single-
mode squeezed states is unable to provide a real metrological
advantage with respect to the best classical strategy for a
large N .

Additionally, we also developed a polychromatic version
of the well-established MZI setup endowed with probe two-
mode nondegenerate squeezed-vacuum states. We show that
this setup can significantly improve the resolution-energy
tradeoff with optimal (ideal) quadrature measurements. Also
our treatment is a versatile approach to address the impact
of experimental imperfections on the phase sensitivity unlike

the analysis based on the complex SLD: e.g., we show that
the optimal working point associated to coherent resources is
significantly shifted by both the photon losses and the nonunit-
efficiency detection.

Remarkably, the recent developments on the fabrication
and manipulation of integrated photonic circuits [42,43,88]
makes them more resilient to phase stability, or photon losses
and noise effects, which opens new avenues to implement
higher sophisticated phase-estimation experiments with rel-
atively little effort [39] (e.g., endowed with current photon
sources and measurement detection schemes). In particular
this prospect highlights the demand for further theoretical
tools to enable us to explore its feasible metrological power.
In this sense, the present treatment could render a valuable
theoretical support to envisage a new series of experiments in
the realm of quantum phase estimation.
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APPENDIX A: BASICS OF PHASE ESTIMATION

In this section we briefly sketch the derivation of the gen-
eral expressions (14) and (17) by using results from matrix
analysis theory [64,65] and the matrix identities (2) and (7)
just relying on the interested set of probe isothermal Gaussian
states. We start from the formal definition of the FI, which
reads [8,9,15]

F (ϕ) =
∫

d2mλ
1

p(λ|ϕ)

(
∂ p(λ|ϕ)

∂ϕ

)2

. (A1)

Thanks to the fact that the probability distribution character-
izing the Gaussian phase-estimation scheme is a Gaussian
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function, the result of the integral involved in (A1) is
a Gaussian function as well. This can be seen more

clearly once the derivative of the probability distribution is
computed, i.e.,

∂ p(λ|ϕ)

∂ϕ
= 1

2
p(λ|ϕ)((λ − 〈λ〉)T σ−1∂ϕσσ−1(λ − 〈λ〉) + 2(λ − 〈λ〉)T σ−1∂ϕ〈λ〉) − Tr(σ−1∂ϕσ)), (A2)

where the last term of the right-hand side appears due to the dependence of the probability distribution normalization constant
with the desired phase shift [64]. Hence, one may realize that the classical Fisher information (A1) reduces to carry out the
integral of a quadratic polynomial (in the variable λ) weighted by p(λ|ϕ). After substituting Eq. (A2) in (A1), it is convenient to
swap from p(λ|ϕ) to a zero-mean Gaussian probability distribution p(λ̃|ϕ), with the CV σ, by making the change of variables
λ̃ = σ−1(λ − 〈λ〉). Upon doing this, we obtain

F (ϕ) = 1

4

∫
d2mλ̃ p(λ̃|ϕ)((Tr(σ−1∂ϕσ))2 − 2Tr(σ−1∂ϕσ )(λ̃

T
∂ϕσλ̃ − 2∂ϕ〈λT 〉λ̃)

+ ((λ̃
T
∂ϕσλ̃)(λ̃

T
∂ϕσλ̃) + 4(∂ϕ〈λ〉λ̃)(∂ϕ〈λ〉λ̃) − 4(∂ϕ〈λ〉λ̃)(λ̃

T
∂ϕσλ̃))). (A3)

Since p(λ̃|ϕ) is centered with respect to the origin λ̃ = 0, the contribution coming from the linear and third-order terms in the
right-hand side of (A3) must cancel. The rest of the contributions can be computed by using the following identity for multivariate
Gaussian integrals [64]:∫

d2mλ |λ|4exp
(
−1

2
(λ − 〈λ〉)σ−1(λ − 〈λ〉)

)
= |〈λ〉|4 + 4〈λT 〉σ〈λ〉 + Tr2(σ) + 2Tr(σ)|〈λ〉|2 + 2Tr(σσT ), (A4)

with |x| denoting the usual Euclidean norm of a 2m-
dimensional vector x. After substituting the result (A4) in
(A3), we obtain an expression with several terms involving the

derivative of σ; these terms can be further simplified by using
the matrix identity ∂ϕσ−1 = −σ−1∂ϕσσ−1 [64]. This finally
leads us to Eq. (14).

Now we turn the attention to the formula (17) of the QFI by virtue of the phase generator UN (ϕ) = U (ϕ) ⊕ IN−1 with

U (ϕ) =
(

cos ϕ sin ϕ

− sin ϕ cos ϕ

)
. (A5)

This is worked out from the general expression of the QFI valid for any pure or mixed single-mode Gaussian state provided in
[2,26,44]. The latter takes the following form for the set G(1, n̄t ) of interesting states and the phase-shift generator (A5):

F = 〈
R′T

1

〉
∂ϕUT (ϕ)U (ϕ)V ′−1

1 UT (ϕ)∂ϕU (ϕ)〈R′
1〉 − 1

2(1 + (2n̄t + 1)−2)
Tr
(
∂ϕ (UT (ϕ)V ′−1

1 U (ϕ))(∂ϕ (UT (ϕ)V ′
1U (ϕ))

)
. (A6)

By replacing the matrix identity (2), we obtain upon some manipulation

F = 1

(2n̄t + 1)2

〈
R′T

1

〉
∂ϕUT (ϕ)U (ϕ)V ′

1U
T (ϕ)∂ϕU (ϕ)〈R′

1〉 + (2n̄t + 1)−2

2(1 + (2n̄t + 1)−2)
Tr(∂ϕ (JUT (ϕ)V ′

1U (ϕ))2)

= 1

(2n̄t + 1)2

(〈
R′T

1

〉
∂ϕUT (ϕ)U (ϕ)V ′

1U
T (ϕ)∂ϕU (ϕ)〈R′

1〉 + 1

1 + (2n̄t + 1)−2
(Tr((J∂ϕUT (ϕ)V ′

1U (ϕ))2)

− (2n̄t + 1)2Tr(∂ϕUT (ϕ)∂ϕU (ϕ)))

)
, (A7)

which after substituting ∂ϕU (ϕ) = JU (ϕ) leads to the expression (17). Notice that in the pure case (i.e., n̄t = 0) the expression
(17) identically coincides with the result independently obtained from the standard expression of the QFI F = 4(ΔĤ )2.

APPENDIX B: GAUSSIAN PHASE ESTIMATION

In this Appendix we extensively illustrate the derivation of
Eq. (18) appearing in Sec. II C. We first express the inverse of
(10) in terms of the CV matrix σS by means of the Woodbury
identity [64,65], that is

σ−1 = σ−1
S − σ−1

S SSA
(
V −1

A + ST
SAσ−1

S SSA
)−1

ST
SAσ−1

S , (B1)

which always holds as V −1
A + ST

SAσ−1
S SSA is expected to be

an invertible matrix. Notice that we have omitted the explicit
dependence of the matrices with ϕ for the sake of clarity. The
above identity allows us to separate the FI contribution in (14)
that is completely independent of the ancilla CV matrix. This
yields the expression (23). In other words, we gather together
in FS (ϕ) all dependence in σS . Since Σ−1

S + (ST
S )

−1
V −1

S S−1
S
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must be an invertible matrix as well (see remark 2.16.21 in
[65]), we can employ again the Woodbury identity in order to
express the σ−1

S in terms of V −1
S , which is

σ−1
S = (

ST
S

)−1
V −1

S S−1
S − (

ST
S

)−1
V −1

S S−1
S

×(
Σ−1

S + (
ST

S

)−1
V −1

S S−1
S

)−1(
ST

S

)−1
V −1

S S−1
S . (B2)

Replacing this result in the obtained expression for FS (ϕ), we
arrive to

FS (ϕ) = 〈
RT

S

〉
∂ϕST

S

(
ST

S

)−1
V −1

S S−1
S ∂ϕSS〈RS〉

− 1
2 Tr

(
∂ϕ

((
ST

S

)−1
V −1

S S−1
S

)
∂ϕ

(
SSV SST

S

)) − FMeas(ϕ),

(B3)

where we have identified FMeas(ϕ) as the residual contribu-
tion given by Eq. (19). We can further simplify (B3) by

substituting the following identities satisfied by the inverse of
the sub-block matrices of S (see proposition 2.8.7 in [65]):

S−1
S = ST

S − ΔSS, (B4)(
ST

S

)−1 = SS − ΔST
S , (B5)

with

ΔSS = S−1
S SSA

(
S/SS

)−1
SASS−1

S , (B6)

where S/SS stands for the Schur complement of SS in S, i.e.,
S/SS = SA − SASS−1

S SSA, which is nonsingular for a realistic
transformation S. By plugging the relations (B4) into (B3),
after some tedious manipulation we obtain

FS (ϕ) = 〈
RT

S

〉
∂ϕST

S SSV −1
S ST

S ∂ϕSS〈RS〉
− 1

2 Tr
(
∂ϕ

(
SSV −1

S ST
S

)
∂ϕ

(
SSV SST

S

)) + F̃Int(ϕ)

−FMeas(ϕ), (B7)

where

F̃Int(ϕ) = FInt(ϕ) − Tr
(
∂ϕST

S ∂ϕSSV −1
S SSAST

SAV S
)
, (B8)

and FInt(ϕ) is given by

FInt(ϕ) = Tr
(
∂ϕST

S ∂ϕSSV −1
S SSAST

SAV S
) − 2

〈
RT

S

〉
∂ϕST

S SSV −1
S ΔSS∂ϕSS〈RS〉 (B9)

+ 〈
RT

S

〉
∂ϕST

S ΔST
S V −1

S ΔSS∂ϕSS〈RS〉 + 1
2 Tr

(
∂ϕ

(
2SSV −1

S ΔSS − ΔST
S V −1

S ΔSS
)
∂ϕ

(
SSV SST

S

))
.

Now we substitute the inverse matrix V −1
S in (B7) according to the symplecticlike identity (2), and then we use the relation

(7) to cast Eq. (B7) in the following form:

FS (ϕ) = 1

(2n̄t + 1)2

(〈
RT

S

〉
∂ϕ (JmSS )T SSV SST

S ∂ϕ (JmSS )〈RS〉 + 1

2
Tr
((

∂ϕ

(
JmSSV SST

S

))2))
+ F̃Int(ϕ) − FMeas(ϕ). (B10)

Let us now focus the attention on the trace term of Eq. (B10). This term can be simplified as follows:

Tr
((

∂ϕ

(
JmSSV SST

S

))2) = Tr
((

Jm∂ϕSSV SST
S + JmSSV S∂ϕST

S

)2)
= 2Tr

((
Jm∂ϕSSV SST

S

)2) + 2Tr
(
∂ϕSSJmV SJmST

S SSV S∂ϕST
S

)
= 2Tr

((
∂ϕ (JmSS )V SST

S

)2) − 2(2n̄ + 1)2
(
Tr
(
∂ϕST

S ∂ϕSS
)

− Tr
(
∂ϕST

S ∂ϕSSV −1
S SSAST

SAV S
))

, (B11)

where once again we have made use of the linear properties of the trace, as well as the identities (2) and (6). Replacing the result
(B11) in Eq. (B10) directly returns the expression

FS (ϕ) = (〈
RT

S

〉
∂ϕ (JmSS )T SSV SST

S ∂ϕ (JmSS )〈RS〉 + Tr
((

∂ϕ (JmSS )V SST
S

)2)) 1

(2n̄t + 1)2

− Tr
(
∂ϕST

S ∂ϕSS
) − FMeas(ϕ) + FInt(ϕ), (B12)

after rearranging the contribution Tr(∂ϕST
S ∂ϕSSV −1

S SSAST
SAV S )

into the definition of FInt(ϕ). One can proceed by noticing
from (A5) that ∂ϕU (ϕ) = U (ϕ)J. The latter combined with
Eq. (5) directly yields

∂ϕSS (ϕ) = PϕJmLS, (B13)

where Pϕ = U (ϕ) ⊕ 0m−1, which is a 2m × 2m projec-
tion matrix (i.e., PϕPT

ϕ = PT
ϕ Pϕ = I1 ⊕ 0m−1 as well as

JT
mPϕJm = Pϕ). Here 0m−1 stands for the 2(m − 1) × 2(m −

1) null matrix (i.e., all its entries are zero), so that the effect of
Pϕ through the subsequent computation is to drop the explicit
dependence with the slice of matrix that is not supported
by the phase space of the phase-shifted mode (q̂1, p̂1): for
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instance, for value ϕ = 0, 〈RS〉 and V S get projected into
the displacement vector 〈R′

1〉 and the CV matrix V ′
1 of the

first probe mode immediately before undergoing the phase
rotation, that is 〈R′

1〉 = P0LS〈RS〉 and V ′
1 = P0LSV SLT

S PT
0 .

By virtue of the latter, after some manipulation replacing
Eq. (B13) in (B12), one gets

FS (ϕ) = 1

(2n̄t + 1)2

(〈
R′T

1

〉
V ′

1〈R′
1〉 + Tr

(
V ′

1V
′
1

))
−FMeas(ϕ) + FInt(ϕ) − Tr

(
P0LSLT

S

)
, (B14)

from which one can identify the QFI characteristic of the m-
mode probe system upon close inspection. By conveniently
manipulating (B14) once plunged into (23), we arrive at the
desired expression (18) for the FI.

In the particular case of nonassisted phase-estimation
schemes and pure input Gaussian states, the expression
(18) boils down to (28). In this scenario, the aforemen-
tioned auxiliary matrix Σ̃ further becomes SV −1ST (Σ−1 +
SV −1ST )

−1
SV −1ST , so that the measurement contribution

FMeas, given by Eq. (19), can be substantially simplified as
well. More specifically, by substituting this observation we
obtain the first term in the right-hand side of (29), whereas
the second terms may be further simplified by using the sym-
plecticlike identities for Σ, S(ϕ), and V as before (as well as
∂ϕA−1 = −A−1∂ϕAA−1):

Tr(∂ϕΣ̃∂ϕ (SV ST ))

= Tr(∂ϕ (Σ−1 + SV −1ST )−1SV −1ST ∂ϕ (SV ST )SV −1ST )

+ 2Tr(∂ϕ (SV −1ST )(Σ−1 + SV −1ST )−1(SV −1ST )

× ∂ϕ (SV ST ))

= −Tr
(
JT

N∂ϕ (Σ + SV ST )−1JN∂ϕ (SV −1ST )
)

+ 2Tr
(
(Σ−1 + SV −1ST )−1JN (SV ST )JT

N∂ϕ (SV ST )

× JN∂ϕ (SV ST )JT
N

)
= Tr((Σ + SV ST )−1∂ϕ (SV ST )(Σ + SV ST )−1∂ϕ

× (SV ST )) − 2Tr((Σ + SV ST )−1(SV ST )

× ∂ϕ (JN SV ST )∂ϕ (JN SV ST )), (B15)

where once again we have employed the linearity properties
of the trace and JN = −JT

N . By substituting (B15) in (19), it
is clear to see that we arrive at the desired expression (29) for
the measurement contribution.

APPENDIX C: N-MODE HOMODYNE DETECTION WITH
INPUT COHERENT STATES AND WITHOUT AN

ANCILLA SYSTEM

1. Explicit expressions from Sec. III A

In this section we provide the explicit form corresponding
to the particular QUMI transformation studied in Sec. II C, as
well as the functions and matrices involved in the expressions
from (32) to (38) appearing in Sec. III B.

In the phase-space notation, the transformation of the first
probe mode due to any interferometric operation can be com-
pactly expressed as follows:

R1 →
N∑

i=1

V1i Ri with Ri = (xi, pi ), (C1)

where V1i is determined by the unitary evolution describing
the interferometric operation. As stated in Sec. IV of [46],
the family of QUMI transformations is formally character-
ized by the constraint |V1 j | = 1/

√
N for j = 1, . . . , N [see

discussion below Eq. (5)]. In particular, we will focus the
attention on the subset of QUMI transformations which satis-
fies V1 j = 1/

√
N . For this subset and for input coherent states

with 〈Ri〉 = (
√

2n̄c,
√

2n̄c) for i ∈ [1, N], the average photon
number of the first probe mode after transformation is equal
to the average number of input photons, as mentioned in the
discussion around Eq. (26).

The interesting subset of QUMI schemes is provided by
the following prescription [46]: The probe N mode sequen-
tially interferes with all the remaining input modes, and the
transmissivity between the probe N and j mode is given by
τ = 1 − 1/ j (notice that

√
1 − τ retrieves the transmissivity

amplitude in the notation of [46]). Based on this prescription,
we found out that the orthogonal matrix, say LQUMI, associ-
ated to a simple QUMI architecture takes the form

LQUMI =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
1
N 0

√
1
N 0

√
1
N 0 · · · 0

0
√

1
N 0

√
1
N 0

√
1
N · · ·

√
1
N

−
√

N−1
N 0

√
1

N (N−1) 0
√

1
N (N−1) 0 · · · 0

0 −
√

N−1
N 0

√
1

N (N−1) 0
√

1
N (N−1) · · ·

√
1

N (N−1)

0 0 −
√

N−2
N−1 0

√
1

(N−1)(N−2) 0 · · · 0

0 0 0 −
√

N−2
N−1 0

√
1

(N−1)(N−2) · · ·
√

1
(N−1)(N−2)

0 0 0 · · · ...
...

0 0 0 · · · −
√

1
2 0

√
1
2 0

0 0 0 · · · 0 −
√

1
2 0

√
1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C2)
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Note that LQUMI satisfies the condition which defines the QUMI family of transformations: all matrix elements on the first row
are identical to 1/

√
N . Let us briefly sketch how to obtain the result (C2) by following a mathematical induction procedure: we

initially prove that LQUMI with N = 2 takes the form given by (C2), and then we show that (C2) holds for the next value N + 1.
For N = 2, LQUMI just reduces to the symplectic transformation describing a 50/50 beam splitter [51], i.e.,

LQUMI =
√

1

2

(
I2 I2

−I2 I2

)
,

with I2 being the N × N identity matrix. For N = 3, we must realize that both the probe third and second mode interfere
with transmissivity τ2 = 1/2, and subsequently the probe second mode interferes with the probe first mode with transmissivity
τ3 = 2/3. Hence, LQUMI must result from two subsequent beam splitter operations, i.e.,

LQUMI =

⎛
⎜⎝

√
1/3I2

√
1 − 1/3I2 02

−√
1 − 1/3I2

√
1/3I2 02

02 02 I2

⎞
⎟⎠
⎛
⎜⎝

I2 02 02

02
√

1/2I2
√

1 − 1/2I2

02 −√
1 − 1/2I2

√
1/2I2

⎞
⎟⎠,

where 02 denotes the N × N zero matrix. After manipulation the above expression returns the result expected from (C2) for
N = 3. We can repeat this procedure for N = 4 in similar fashion, i.e.,

LQUMI =

⎛
⎜⎜⎜⎜⎝

√
1/4I2

√
1 − 1/4I2 02 02

−√
1 − 1/4I2

√
1/4I2 02 02

02 02 I2 02

02 02 02 I2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

I2 02 02 02

02
√

1/3I2
√

1 − 1/3I2 02

02 −√
1 − 1/3I2

√
1/3I2 02

02 02 02 I2

⎞
⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎝

I2 02 02 02

02 I2 02 02

02 02
√

1/2I2
√

1 − 1/2I2

02 02 −√
1 − 1/2I2

√
1/2I2

⎞
⎟⎟⎟⎟⎠,

and probe that LQUMI for N = 4 coincides again with the orthogonal matrix retrieved by (C2). By repeating this procedure one
may see that LQUMI for arbitrary size N takes the form provided by the expression (C2), as we wanted to show.

By computing Eq. (32) replacing (C2) for different small values of N , an induction procedure for greater N reveals that

ΩN (ϕ, s1, s2) =

⎛
⎜⎜⎜⎜⎝

d1 c1 c2
c3

s1s2

c1 d2 c3 − c2
s1s2

c2 c3 d3 0
c3

s1s2
− c2

s1s2
0 d4

⎞
⎟⎟⎟⎟⎠, (C3)

the diagonal entries of which are determined by

d1 = 1

s1s2N
(s1s2aN (s2, s1) cos2 ϕ + aN (s1, s2) sin2 ϕ), (C4)

d2 = 1

s1s2N
(aN (s1, s2) cos2 ϕ + s1s2aN (s2, s1) sin2 ϕ), (C5)

d3 = aN (s1, s2)

N
, (C6)

d4 = aN (s2, s1)

s1s2N
, (C7)

whereas the nondiagonal elements are given by

c1 = aN (s1, s2) − s1s2aN (s2, s1)

2s1s2N
sin(2ϕ), (C8)

c2 = (s2 − s1)
√

N − 1

N
cos ϕ, (C9)

c3 = (s1 − s2)
√

N − 1

N
sin ϕ. (C10)
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On the other side, by replacing the generic form (C3) in (33) and using results borrowed from matrix analysis to compute the
Moore-Penrose pseudoinverse [64], one obtains the auxiliary matrix (33) with

A(x) =

⎛
⎜⎜⎜⎜⎝

d3

d1d3−c2
2

0 − c2

d1d3−c2
2

0

0 0 0 0

− c2

d1d3−c2
2

0 d1

d1d3−c2
2

0

0 0 0 0

⎞
⎟⎟⎟⎟⎠, (C11)

whereas for the momentum quadrature measurement

A(p) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0

0 d4s2
1s2

2

d2d4s2
1s2

2−c2
2

0 c2s1s2

d2d4s2
1s2

2−c2
2

0 0 0 0

0 c2s1s2

d2d4s2
1s2

2−c2
2

0 d2s2
1s2

2

d2d4s2
1s2

2−c2
2

⎞
⎟⎟⎟⎟⎟⎠, (C12)

which reduces to the expected results A(x) = diag(1, 0, 1, 0) or A(p) = diag(0, 1, 0, 1) when the initial squeezing vanishes [51]
(i.e., s1 = s2 = 1).

Moreover, by substituting (C3) in (28), one obtains the expression (34) for the FI for position quadrature measurement after
a long tedious calculation where we have introduced

(
W (x)

N

)
11 = − iNs1s2

2Ns1s2 cot(ϕ) + 2i((N − 1)s1 + s2)
+ iNs1s2 sin(ϕ)

2Ns1s2 cos(ϕ) − 2i sin(ϕ)((N − 1)s1 + s2)
+ s1 − s2

N
+ s2, (C13)

(
W (x)

N

)
22 = ((N − 1)s1 + s2)3

N3s3
1s3

2 cot2(ϕ) + Ns1s2((N − 1)s1 + s2)2
, (C14)

(
W (x)

N

)
12 = (

W (x)
N

)
21 = Ns1s2 sin(2ϕ)((N − 1)s1 + s2)

2N2s2
1s2

2 cos2(ϕ) + 2 sin2(ϕ)((N − 1)s1 + s2)2
, (C15)

or for the momentum quadrature measurement

(
W (p)

N

)
11 = ((N − 1)s2 + s1)3

N3 cot2(ϕ) + N ((N − 1)s2 + s1)2
, (C16)

(
W (p)

N

)
22 = − N ((N − 1)s2 + s1)

N2 cot2(ϕ) + ((N − 1)s2 + s1)2
+

1
s1

− 1
s2

N
+ 1

s2
, (C17)

(
W (p)

N

)
12 = (

W (p)
N

)
21 = − N sin(2ϕ)((N − 1)s2 + s1)

2(N2 cos2(ϕ) + sin2(ϕ)((N − 1)s2 + s1)2)
, (C18)

as well as the auxiliary functions determining the influence of the second-moment resources:

f (x)
N (sin2 ϕ, s1, s2) = (

(N − 1)s1s5
2

(
N2s2

1 + 1
) + 2s4

2

(
s2

1

(
N2((N − 1)N + 1)s2

1 − N (N + 3) + 2
) + 1

)
− 2(N − 1)2s2

1s2
2

((
2N2 + N − 2

)
s2

1 − 6
) + 2(N − 1)4s4

1 + (N − 1)s1s3
2

(
s2

1

(
N
(
N
(
s2

1 − 7
) − 6

) + 6
) + 8

)
+ cos(2ϕ)(Ns1(s2 − 1) + s1 − s2)

(
2s2

2

(
((N − 1)N + 1)s2

1 − 1
) + (N − 1)s1

(
s2

1 − 4
)
s2

− 2(N − 1)2s2
1 + (N − 1)s1s3

2

)
(s1(Ns2 + N − 1) + s2) + (N − 1)3s3

1

(
s2

1 + 8
)
s2
) sin2 ϕ

2y2
x (ϕ)

, (C19)

or

f (p)
N (sin2 ϕ, s1, s2) = (

2N4s1s2
(
s2

2 − 1
)2 + N3(s1 − s2)

(
8s1s4

2 − 7s1s2
2 + s1 − s3

2 − s2
)

+ cos(2ϕ)(N (s2 − 1) + s1 − s2)((N − 1)s2 + N + s1)
(
2s1s2

(−N2 + N + s2
1 − 1

)
+ (N − 1)

(
4s2

1 − 1
)
s2

2 + (1 − N )s2
1 + 2(N − 1)2s1s3

2

) + N2(s1 − s2)2(12s1s3
2 − 2s1s2 − 3s2

2 − 1
)

+ N (s1 − s2)3
(
8s1s2

2 + s1 − 3s2
) + (s1 − s2)4(2s1s2 − 1)

) sin2 ϕ

2s1s2y2
p(ϕ)

, (C20)

with yx(ϕ) = (Ns1s2)2 cos2 ϕ + a2
N (s1, s2) sin2 ϕ and yp(ϕ) = (N2 cos2 ϕ + a2

N (s2, s1) sin2 ϕ.
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When addressing the optimal working point, as stated in the main text [by demanding the second and third terms in the
right-hand side of Eq. (34) cancel] we find out the second-order polynomial (38) with real coefficients given by

α
(x)
N (s1, s2) = −2N2s2

1s2
2((N − 1)s1 + s2)2

(
2N2 −

(
N − 1

s2
+ 1

s1

)2

− ((N − 1)s2 + s1)2

)

− 2N2(Ns1(s2 − 1) + s1 − s2)
(
2s2

2

(
((N − 1)N + 1)s2

1 − 1
) + (N − 1)s1

(
s2

1 − 4
)
s2 − 2(N − 1)2s2

1

+ (N − 1)s1s3
2

)
(s1(Ns2 + N − 1) + s2) + ((N − 1)s1 + s2)4

(
2N2 −

(
N − 1

s2
+ 1

s1

)2

− ((N − 1)s2 + s1)2

)

+ N4s4
1s4

2

(
2N2 −

(
N − 1

s2
+ 1

s1

)2

− ((N − 1)s2 + s1)2

)
, (C21)

β
(x)
N (s1, s2) = 2N2

(
(N − 1)2s2

1s6
2

(
N2s2

1 − 1
) − (N − 1)s1s3

2

(
2N2s2

1 + (N − 2)2s4
1 − 4

)
− (N − 1)2s2

1s2
2

(
N2s2

1 + s4
1 − 6

) + s4
2

(
N2s6

1 − N2s2
1 − (N (N ((N − 2)N + 8) − 12) + 6)s4

1 + 1
)

+ (N − 1)4s4
1 + 4(N − 1)3s3

1s2 + (N − 1)s3
1s5

2

(
N
(
N
(
2s2

1 − 1
) + 4

) − 4
))

, (C22)

δ
(x)
N (s1, s2) = N4s4

1s4
2

(
2N2 −

(
N − 1

s2
+ 1

s1

)2

− ((N − 1)s2 + s1)2

)
. (C23)

2. Explicit expressions from Sec. III B

Now we turn the attention to the polychromatic scenario described in Sec. III B. As stated in the discussion about the Fisher
information, after some manipulation one can show that for the choices ε = ±1 the expression (45) boils down to

F (x)
pol (ϕ, ε) = Fpol(ε) − 2(sign(ε) sinh2(2s′) + cos(4ϕ) sinh(4s′))2

(cosh(2s′) + sign(ε) cos(4ϕ) sinh(2s′))2
, (C24)

for a measurement quadrature in position, or

F (p)
pol (ϕ, ε) = Fpol(ε) − 2(sign(ε) sinh2(2s′) − cos(4ϕ) sinh(4s′))2

(cosh(2s′) − sign(ε) cos(4ϕ) sinh(2s′))2
, (C25)

for a measurement quadrature in momentum. By paying attention to Eqs. (C24) and (C25), it is clear that the optimal operating
point is obtained by demanding the numerator of the second term in the right-hand side cancels. Upon doing this, one arrives
to the relation determining the optimal angle for the choice ε = ±1. For the most general case of modulation frequency (i.e.,
ε 
= ±1), one obtains the following subsidiary condition from a perturbative analysis:

(3 + cosh(4s′) − 2 cos(4φ) sinh2(2s′)) f (x)
0 (cos(4φ), s′) + ε f (x)

1 (φ, s′) ≈ 0, (C26)

where we have introduced the auxiliary functions

f (x)
0 (cos(4ϕ), s′) = sinh2(2r)(−2 sinh2(2r) cos(4ϕ) + cosh(4r) + 3)(2 sinh2(4r)(2 cos2(4ϕ) − 1)

− 4(cosh(8r) − 9) cos(4ϕ) + 3 cosh(8r) + 29), (C27)

f (x)
1 (ϕ, s′) = 16 sinh3(2r)(2ϕ sinh(2r) sinh(4r) sin(10ϕ) + cosh(6r)(−14ϕ sin(2ϕ) + 3ϕ sin(6ϕ) − 3 cos(6ϕ))

+ cosh(2r)(4(cosh(4r) + 3) cos(2ϕ) + 16 sinh2(r) cosh2(r) cos(10ϕ) − 2ϕ sin(2ϕ) + 45ϕ sin(6ϕ)

− 13 cos(6ϕ))). (C28)

Clearly, from Eq. (C26) follows that in the particular case
ε = 0 the optimal operating point ϕ(x)

opt is figured out from solv-

ing the second-order polynomial f (x)
0 (y, s′) = 0 with argument

understood as y = cos(4ϕ). Doing this, one directly obtains

y = 1
2 (cosh(8r) ± 4

√
6 − 2 cosh(8r) − 9)csch2(4r), (C29)

which is greater than the unit except for the choice of coherent
resources s′ = 0 when one of the roots becomes x → −1,

retrieving in turn the same result ϕ
(x)
opt = −π/4 as previously

obtained in Sec. III A, as expected.

3. Explicit expressions from Sec. III C

In this Appendix, we briefly illustrate the derivation of
Eqs. (47), (48), and (49) appearing in Sec. III C. First, the
nonunit efficiency of a single-mode homodyne measurement
mainly resides in the use of photon detectors suffering from
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a limited resolution ηeff ∈ [0, 1], which results in a vacuum
noise contribution proportional to

√
1 − ηeff in the measure-

ment outcomes, i.e.,

[λ] = 1

2

(√
1 + r

2
q f ,

√
1 + r

2r
pf

)
+
√

1 − ηeff(q
vac, pvac).

(C30)
Without loss of generality, this source of noise may be well ap-
proximated by the combination of an ideal Gaussian detector
(described by the CV matrix Σ) preceding by a beam splitter
with transmission coefficient identical to the photon-detector
resolution factor, where the probe mode would fictitiously
interfere with an input vacuum beam representing (q̂vac, p̂vac).
In our framework, this corresponds to take the CV matrix
determining the nonideal Gaussian measurement scheme as

Σ = ηeffΣ + (1 − ηeff )IN , (C31)

which returns the lossless homodyne detection scenario for
ηeff = 1. On the other side, decoherence effects of the probe
N-mode system taking place during the light field propagation
through the interferometer can be formulated in terms of the
interaction with an environment modeled by a continuum of
oscillators [87]. When the system-environment interaction is
essentially linear, the time evolution of our probe N-mode sys-
tem is governed by the Fokker-Plank (or diffusion) equation
expressed in the interaction picture [86]:

∂W (R, t )

∂t
=
((

∂

∂R

)T

Γ R +
(

∂

∂R

)T

D
(

∂

∂R

))
W (R, t ),

(C32)
with ( ∂

∂R )
T = ⊕N

i=1 ( ∂
∂qi

, ∂
∂ pi

); Γ and D are 2N × 2N real,
symmetric matrices that essentially encrypt the photon losses
and thermal noise effects, respectively. In the interesting dis-
sipative scenario the above matrices take the following simple
form:

Γ = γ

2

N⊕
i=1

I1, (C33)

D = γ (1 + 2nth )

4

N⊕
i=1

I1, (C34)

where γ is the usual dissipative coefficient. Equation (C32)
is a linear Fokker-Plank equation that can be solved by using
the Green’s-function method [86]. Furthermore, thanks to the

diagonal form of the above dissipative and noise matrices, the
decoherence evolution commutes with the phase shift rotation
[22,38,81], and we obtain the results (47) and (48). Substitut-
ing these in Eq. (28), and following a similar procedure as to
compute the expression (23), we obtain

Fdeco(ϕ, ηloss, ηeff, nth ) = F (ϕ, ηloss, ηeff ) − ηloss〈RT 〉LT PT
ϕ

×Σ−1
decoPϕL〈R〉

+ 1
2 Tr

(
∂ϕΣ−1

deco∂ϕσdeco
)
, (C35)

with

Σdeco(ηloss, ηeff, nth ) = σdeco((1 − ηeff + (1 − ηloss)

× (1 + nth ))−1IN + σ−1
deco)σdeco,

(C36)

where F (ϕ, ηloss, ηeff ) comprises the Fisher information ob-
tained from the noiseless expression (28) after substituting
S(ϕ) → √

ηlossS(ϕ), and Σ → ηeffΣ. It is worthwhile to re-
alize that the second contribution in the right-hand side of
(C35) will be always negative for any ϕ ∈ R and 〈R〉 ∈ R2N ,
since the CV matrix Σ−1

deco is positive-semidefinite by con-
struction, and further it asymptotically cancels in the limit
of an ideal phase-estimation scenario (i.e., Fdeco → F when
ηeff, ηloss → 1), as expected. Notice that the corresponding
QFI is formally obtained from Eq. (17) (with nt = 0) by
replacing 〈R′

1〉 → √
ηlossP0L〈R〉, and V ′

1 → P0(ηlossLV LT +
(1 − ηloss)(1 + nth)IN )PT

0 .
In particular, in the dissipative scenario ηeff = ηloss = η, we

find the FI for the previously studied coherent resources and
homodyne detection, i.e.,

F (x/p)
deco (ϕ, η, nth) = 2n̄cN (1 ∓ sin(2ϕ))

×
(

η2 + (2 + nth )(1 − η)

η + (1 − η)nth − 2

)

= 2η̃2n̄cN (1 ∓ sin(2ϕ)).

(C37)

By comparing with the ideal result (27) for F , it is clear from
the above equation (C37) that the optimal working point de-
fined in Sec. III C is obtained from demanding sin(2ϕ(x/p) ) =
∓[2(η/η̃)2 − 1], which returns a result that substantially dif-
fers from the ideal case (i.e., ϕ = ∓π/4).
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