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Unconventional quantum annealing methods for difficult trial problems
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We consider a range of unconventional modifications to quantum annealing (QA), applied to an artificial trial
problem with continuously tunable difficulty. In this problem, inspired by “transverse field chaos” in larger
systems, classical and quantum methods are steered toward a false local minimum. To go from this local
minimum to the global minimum, all N spins must flip, making this problem exponentially difficult to solve. We
numerically study this problem by using a variety of new methods from the literature: inhomogeneous driving,
adding transverse couplers, and other types of coherent oscillations in the transverse field terms (collectively
known as RFQA, which stands for Random Field Quantum Annealing or Radio Frequency Quantum Annealing).
We show that all of these methods improve the scaling of the time to solution (relative to the standard uniform
sweep evolution) in at least some regimes. Comparison of these methods could help identify promising paths
towards a demonstrable quantum speedup over classical algorithms in solving some realistic problems with
near-term quantum annealing hardware.
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I. INTRODUCTION

Quantum annealing (QA) [1–6] is a promising method to
solve optimization problems with noisy quantum hardware,
with applications in machine learning, artificial intelligence
[7–12], and many other topics. The time-dependent Hamilto-
nian of QA is engineered to encode the solutions of classical
optimization problems in its ground state. By initializing the
system in the ground state of a trivial driver Hamiltonian
and evolving the system sufficiently slowly, QA can find the
ground state of the target (classical) problem Hamiltonian.
However, it is notoriously difficult to predict the performance
of QA for realistic problems. Conclusive proof of a quantum
speedup over classical methods for real problems remains
elusive, with the possible exception of a frustrated magnet
systems [13], where an empirical scaling advantage over clas-
sical path-integral quantum Monte Carlo (QMC) algorithms
was shown. To help address this challenge, in this paper we
theoretically survey a range of promising extensions to QA
applied to a difficult trial problem, and identify a number of
potential routes to a quantum speedup.

In the setup for QA, the total Hamiltonian in the standard
uniform sweep evolution is a combination of a driving Hamil-
tonian H0 and problem Hamiltonian Hp,

H (t ) = (1 − s(t ))H0 + s(t )Hp, (1)

with the ground state of H0 being easy to prepare. H0 and Hp

do not commute and the time-dependent annealing parameter
s(t ) controls the time evolution of the system. The standard
uniform sweep starts from s(0) = 0 and ends with s(t f ) = 1.
Different functional choices for s(t ) may vary the efficiency of
finding the ground state, such as a “reverse annealing sched-
ule” [14]. It is intuitive to see that slowing down the annealing
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process in the vicinity of minimum gap can help increase the
success probability, and this tuning is required to recover the
quantum speedup in the QA formulation of Grover’s search
problem [15]. However, the instantaneous minimum gap value
and location are not knowable in most realistic problems, and
such fine tuning is often frustrated by noise, so we will study
the simplest form, a linear schedule, s(t ): s(t ) = t

t f
throughout

this paper.
In QA, the ground state of a problem Hamiltonian, Hp,

encodes the optimization problem solution. Experimentally
realistic formulations of quantum annealing are typically ar-
ranged to solve quadratic unconstrained binary optimization
(QUBO) problems, where the problem Hamiltonian is given
by the Ising model,

Hising =
∑
〈i, j〉

Ji jσ
z
i σ z

j +
N∑

i=1

hiσ
z
i , (2)

the ground state of which can be encoded as the solution space
of some NP-hard problems [16], and given enough additional
qubits, any NP-complete problem can be expressed in this
form. To find the ground state of the problem Hamiltonian,
we first prepare the system in the ground state of H0, which is
chosen as a uniform transverse field Hamiltonian,

H0 = −
N∑

i=1

σ x
i . (3)

The initial ground state is a uniform superposition state
in the computational basis. The quantum adiabatic theo-
rem states that as long as the annealing evolution is slow
enough, the system remains in the instantaneous eigenstate
of the time-dependent Hamiltonian at all times. This theorem
also provides a widely used criterion that, with the linear
annealing schedule, the total adiabatic evolution time t f to
find the ground state with high probability has an inverse
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minimum-gap-squared dependence,

t f ∝ W

�2
min

. (4)

Here, �min is the minimum energy gap, and W scales as the
total energy change of the final ground state |0〉 over the entire
evolution: W ∼ 〈0| H0 |0〉 − 〈0| Hp |0〉. Note that this result is
a worst-case scaling estimate of the time to solution, and a
variety of diabatic effects can substantially increase perfor-
mance. We will encounter a number of examples of this later
in this work.

In cases where the system undergoes a first-order transition
[17], �min typically decreases exponentially with the system
size N , and the corresponding evolution time t f (and thus,
time to solution) grows exponentially. For hard optimization
problems which suffer from such phase transitions, many new
schemes have been proposed to accelerate QA, such as the
use of nonstoquastic Hamiltonians [18–23], inhomogeneous
driving of the transverse field [24,25], and oscillatory trans-
verse fields (RFQA, which stands for Random Field Quantum
Annealing or Radio Frequency Quantum Annealing) [26]. We
study a range of examples drawn from these works.

To investigate a number of new methods from the lit-
erature, we make our own artificially difficult problem
Hamiltonian, partially inspired by previous studies of “spike
problems” [18,27], rather than studying QUBO problems di-
rectly as was done in [20]. In this problem, which we call
the asymmetric magnetization problem (AMP), local searches
and QA steer the system toward a false minimum. This
“wrong-way steering” makes finding the true ground state ex-
ponentially difficult. The difficulty exponent associated with
the AMP can be continuously tuned for further investigation
of the performance of these alternative QA methods with
problem hardness. Further, the energy landscape depends only
on total magnetization m, making it easier to study analyt-
ically. We do not consider noise in this paper, as none of
the methods we consider require fine tuning. We expect these
methods to be resilient to noise described by the empirical
noise model for superconducting flux qubits. There is strong
theoretical evidence for this resiliency in the case of RFQA
[26], and both theoretical and experimental evidence for inho-
mogeneous driving [24,25,28,29].

The rest of the paper is organized as follows. In Sec. II,
we introduce our trial problem; in Sec. III, we provide an
analytical prediction of its minimum gap. Section IV discusses
the performance of the standard uniform sweep applied to this
problem, against which we benchmark all other methods. We
then introduce inhomogeneous driving, transverse couplers,
and RFQA, comparing their behavior with the standard uni-
form sweep routine in Secs. V and VI separately. The final
section summarizes our results and provides comments on the
performance of these methods.

II. ASYMMETRIC MAGNETIZATION PROBLEM

While conventional Ising Hamiltonians can encode nearly
any combinatorial optimization problem, we choose an ar-
tificial toy problem model to better study a variety of new
methods to find its solution. This is in part because extracting
exponential difficulty scaling is notoriously difficult and unre-

FIG. 1. Density-of-states distribution and energy of the problem
Hamiltonian in the AMP model. The x axis is the total magnetization
m, and the y axis represents both the energy spectrum of the problem
Hamiltonian (left) and the density-of-states distribution (right). The
lines with markers are the density of states for system sizes of
N = 10, 11, 12. The distributions become narrower with increasing
system size. The solid blue line is the energy landscape of Hp. In
our model, the distribution follows a Gaussian distribution, centered
at m = 0.5. Comparing the distribution of density of states with the
energy spectrum of the problem Hamiltonian, we see the peaks of
the density of states are distributed behind the global maximum. The
asymmetry of the Hp results in an exponentially difficult problem.

liable in random structured problems, at least when N is small
enough for exact classical simulation. Our artificial problem,
the “AMP,” has the problem Hamiltonian defined as function
of total magnetization m,

Hp = f (m); m = 1

2N

N∑
i=1

(
1 + σ z

i

)
, (5)

where N is the system size, σ z
i is the Pauli matrix with discrete

eigenvalues ±1, and f (m) is designed to have two competing
minima at m = 0 and m = 1 with all spins down and all spins
up. The form of f (m) is controlled by two free parameters,
A and xp:

f (x) =
{ x

xp
if x < xp

1 − (1 + A) x−xp

1−xp
if x � xp.

(6)

Here, f (1) is the true ground state, and f (0) is the false
minimum. xp defines the location of the global maximum, and
A defines the energy difference of the two competing states:
f (0) − f (1) = A. By adjusting these two parameters, we can
continuously tune the difficulty of the problem.

The difficulty of finding the global minimum in our model
is strongly related to the distribution of the density of states.
The density of states follows a Gaussian distribution as shown
in Fig. 1, with the most probable initial state centered at
m = 0.5 where half of the spins are flipped from the true
ground state, and a global maximum is distributed at m =
xp > 0.5. We see the system has a large tendency to get
stuck in the local minimum, since the possible initial state is
settled behind the global maximum. The wrong-way guidance
is the generic failure mechanism for classical and quantum
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TABLE I. Summary of scaling exponents for each method. Fitting the time to solution Ttts(N ) of each method to 2β+γ N , the table
lists the exponential scaling coefficient “γ ” value for each method. “S” represents the standard uniform sweep method, “I” represents the
inhomogeneous driving method, “CF,A,M” represents the transverse couplers method, in which “F,” “A,” and “M” correspond to ferromagnetic,
antiferromagnetic, and mixed couplers, respectively. “M” represents the RFQA-M method, “CM” the RFQA-M with couplers method,
“SyncM” the synchronized RFQA-M method, “SyncMC” the synchronized RFQA-M with couplers method, and “D” the RQFA-D method.

Problem set 1/�2
min S I CF,A,M M CM SyncM SyncMC D

A = 0.2, xp = 0.8 2.25 2.12 0.79 1.77, 2.09, 2.50 1.48 1.31 1.28 0.86 1.56
A = 0.28, xp = 0.7 1.48 1.39 0.70 1.25, 1.23, 1.67 0.89 0.86 0.84 0.64 1.05
A = 0.3, xp = 0.64 1.04 1.06 0.69 0.87, 0.77, 1.12 0.62 0.62 0.64 0.62 0.50
A = 0.34, xp = 0.59 0.61 0.52 0.69 0.48, 0.44, 0.54 0.45 0.45 0.45 0.51 0.40

optimization algorithms [30], as if local guidance from a
random initial state tends to point toward the true solution
of a problem it can be solved trivially. But if local guidance
points toward false minima, then the problem can quickly
become hard, and in more realistic problems at large N there
are often exponentially many local minima. Multiqubit tun-
neling between well-separated minima—exactly the process
we simulate here—has been identified as a critical bottleneck
in many realistic problems [31].

In the AMP problem, we set the global maximum at m =
xp where xp > 0.5, with two competing minima at each end.
From the density-of-states distribution in Fig. 1, we can tell
the system has a large tendency to be steered toward the false
minimum. In classical algorithms such as simulated anneal-
ing, the system will easily get stuck in the false minimum
since the possible initial state is mostly distributed around
m = 0.5. The possibility of finding the global minimum is
large if the initial instantaneous state of Hp happens to be
guessed beyond the global maximum at a position that m >

xp, but if the initial state is located at any m < xp, the possibil-
ity of climbing the hill is exponentially small. Cost functions
similar to the AMP model have been studied in [18,27], and
classical simulated annealing was shown to be inefficient for
solving such problems. We will show that the AMP problem is
also exponentially difficult to solve with quantum annealing,
and we focus on how various modifications to QA compare
with a homogeneous transverse field and uniform sweep (the
“default” quantum annealing method) in solving the AMP
problem.

When applying QA to the AMP, performance is bottle-
necked by an exponentially small gap at a first-order transition
[17,32,33]. As shown in Fig. 2, the magnetization is en-
tropically steered toward zero as the system evolves, and all
N spins must simultaneously flip to reach the true ground
state. The difficulty scaling of the problem model can be
tuned by A and xp; smaller A corresponds to a smaller energy
gap between the two competing minima, which intuitively
increases the difficulty level of the problem. Similarly, larger
xp moves the peak further away from the center of the den-
sity of states, and the system then has a larger tendency to
be steered to the false local minimum, which also increases
problem difficulty. We make an ensemble of problem models
with different A and xp so that we can investigate the rela-
tionship between the performance of different methods with
the difficulty of the problem models. We make modifications
to the traditional QA method and evaluate their performance
by numerically calculating the time to solution, and show

that the AMP is exponentially difficult to solve with quantum
algorithms, but modifications to the traditional QA method
can lead to substantial improvements in the scaling of the
time to solution. The exponential scaling coefficients for each
method are listed in Table I.

Although this toy model is just a simplified artificial prob-
lem without a realistic implementation, as described above,
it captures the basic bottleneck of most classical and quan-
tum optimization problems. So any method which accelerates
finding a solution in the AMP is likely broadly applicable to
more realistic cases.

III. STANDARD UNIFORM SWEEP ROUTINE

We first investigate the performance of the standard
uniform sweep method, for system sizes N ranging from
5 to 18 spins. In this method, the driving Hamiltonian is

FIG. 2. The instantaneous overlap of the ground and first excited
states with the true and false ground states of the classical problem
as a function of the annealing parameter s, with system size N = 18,
and the problem Hamiltonian is defined with parameters A = 0.2 and
xp = 0.8. The x axis is the annealing parameter s, and the y axis
denotes the probability of getting a specific state. The red (thin) and
blue (thick) solid lines are the overlap of the instantaneous ground
state with the true and false ground states of Hp, the orange (dotted)
and green (dashed) lines are the overlap of the instantaneous first
excited state with the true and false ground states of Hp. The com-
parison shows that the system is steered toward the false minimum
first and all N spins have to flip to reach the true ground state.
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a homogeneous transverse field: H0 = −∑N
i=1 σ x

i . The total
Hamiltonian is a combination of the drive Hamiltonian and
problem Hamiltonian Hp:

H (s) = −(1 − s)
1

N

N∑
i=1

σ x
i + sHp. (7)

The initial ground state of the system is the ground state of
H0, which is a uniform superposition of states corresponding
to all possible assignments of bit values with equal weights.
As the system evolves, the Hamiltonian linearly interpolates
between the transverse field Hamiltonian and the problem
Hamiltonian, i.e., starting as H0 and ending in Hp. As long as
the system stays in the instantaneous ground state, the system
will be steered toward the false minimum first, but at some
critical sc the true and false ground states cross and all N
spins must flip, as shown in Fig. 2 with red and blue solid
lines. For this problem, there is only one avoided crossing in
the standard uniform sweep method (though we find multiple
crossings when inhomogeneous driving is employed). Since
the gap at the phase transition point is exponentially small
in N , unless the evolution is performed extremely slowly, the
avoided crossing will be diabatically missed and the probabil-
ity of finding the true ground state will be suppressed, while
the probability of finding the false ground state dominates, as
shown in Fig. 2 with orange and green dashed lines.

We evaluate the performance of the standard uniform
sweep algorithm by computing the time to solution (Ttts) over
a range of system sizes. The Ttts measures the time needed to
find the ground state with 99% success probability [30]:

Ttts ∝ t f
ln(1 − 0.99)

ln[1 − p(t f )]
, (8)

where p(t f ) is the success probability in a single-trial with
runtime t f ; for small p(t f ), Ttts ∝ t f /p(t f ). A short t f taking
advantage of diabaticity might not show how different meth-
ods change the scaling of multiqubit tunneling at large N , so
we assume polynomially increasing t f with N in our work,
as one would likely want to use in a real annealer at much
larger N , and the t f is empirically chosen as 20( N

7 )2 for the
AMP model. As mentioned in the Introduction, the evolution
time needed to find the ground state increases as �−2

min. To ex-
plore the performance of the standard uniform sweep method
under different problem models, we choose four sets of
parameters, {A = 0.2, xp = 0.8}, {A = 0.28, xp = 0.7}, {A =
0.3, xp = 0.64}, and {A = 0.34, xp = 0.59}, forming an en-
semble of problem models with descending difficulty level.
These parameters are chosen to approximately set �min ∝
{2−N , 2−3N/4, 2−N/2, 2−N/4}, respectively. As mentioned pre-
viously, increasing A or decreasing xp toward 1/2 both
decrease the difficulty exponent, and moving either parameter
in the opposite direction makes the problem harder.

As expected by an exponentially closing gap, the time
needed to find the solution exponentially increases with sys-
tem size. This is confirmed in Fig. 3, where the corresponding
time to solution exponentially increases with the system size
in all problem sets, and the difficulties of the four sets are well
separated from each other. With the minimum gap and per-
formance of the standard uniform sweep method rigorously
understood, we now apply other methods from the literature

FIG. 3. Time to solution to find the true ground state in four prob-
lem model sets using the standard uniform sweep method, computed
from the final success probability for a runtime polynomially increas-
ing with N . The difficulty level of the four models is arranged in
descending order: {A = 0.2, xp = 0.8}, {A = 0.28, xp = 0.7}, {A =
0.3, xp = 0.64}, and {A = 0.34, xp = 0.59}. Different markers are
data with the standard uniform sweep method of four problem model
sets, solid lines are best-fit curves of the numerical data, and dashed
lines are the inverse of the square of the numerically estimated mini-
mum gap from Fig. 9. The time to solution closely tracks the average
minimum gap squared as expected. In all cases, the N-spin tunneling
bottleneck in this problem leads to an exponentially increasing time
to solution.

to compare their performance with it and investigate their
abilities of providing a quantum speedup.

IV. SUMMARY OF RESULTS

Before we proceed to the detailed investigation of alter-
native QA methods, we compile a summary in Table I that
lists the exponential fitting results of Ttts for each method.
We fit Ttts(N ) to 2β+γ N and extract the γ value to deter-
mine the difficulty scaling for each method. We find that
in the harder problem sets where xp = 0.8, A = 0.2 and
xp = 0.7, A = 0.28, synchronized RFQA-M (with transverse
couplers) and inhomogeneous driving show the best per-
formance, but in the relatively easier problem sets where
xp = 0.64, A = 0.3 and xp = 0.59, A = 0.34, the RFQA-D
method shows the best scaling advantage. The details are
illustrated and discussed in the following sections; we include
this table as a central reference point for the results of all of
our studies.

V. MODIFIED ADIABATIC ANNEALING STRATEGIES:
INHOMOGENEOUS DRIVING AND TRANSVERSE

COUPLERS

A wide range of modifications to quantum anneal-
ing have shown significant promise in theoretical studies
[19,20,23,25,34–38]. In this section, we begin applying meth-
ods from the literature to our AMP model and assess
their performance by computing the Ttts as in Eq. (8). We

032612-4



UNCONVENTIONAL QUANTUM ANNEALING METHODS FOR … PHYSICAL REVIEW A 103, 032612 (2021)

begin by considering the inhomogeneous driving method
and transverse couplers. Inhomogeneous driving and the
ferromagnetic transverse couplers belong to the class of sto-
quastic Hamiltonians, while the antiferromagnetic couplers
and mixed-sign couplers have nonstoquastic Hamiltonians. A
stoquastic Hamiltonian has real and nonpositive off-diagonal
matrix elements in the computational basis [39], and can
often (but not always [40]) be efficiently simulated by sign-
problem-free QMC. Nonstoquastic Hamiltonians, on the other
hand, suffer from a sign problem and thus cannot be efficiently
simulated in QMC in general, though some particular non-
stoquastic Hamiltonians can be simulated in QMC by clever
schemes to avoid the sign problem [41]. Amenability (or not)
to QMC is a critical issue in QA, as in recent studies, QMC
displays comparable exponential scaling to the physical inco-
herent tunneling rate in quantum annealers [40,42–45]. It is
thus intuitive to infer that the efficiencies of QMC and quan-
tum annealers are similar in solving many problems, making it
difficult to realize a genuine quantum speedup. Nonstoquastic
Hamiltonians do not suffer from this issue, and have demon-
strated significant benefits in some theoretical work [19,21–
23,46].

A. Inhomogeneous driving

In inhomogeneous driving, the transverse fields are ramped
down at different rates from one site to the next, as first de-
scribed in [24,25]. In the original proposal [24], the magnitude
of the transverse field applied to the N spins is turned off
sequentially with a set of time-dependent amplitudes �i(s).
In that work, the inhomogeneous driving transverse field
circumvents the first-order quantum phase transition and pro-
vides an exponential quantum speedup in a p-body interacting
mean-field-type model. A more careful analysis [25] which
included noise and disorder found the exponential speedup
to be somewhat fragile, but showed that a consistent polyno-
mial speedup persisted given these more realistic assumptions.
Further, there is experimental evidence that inhomogeneous
driving is effective in real hardware [29].

Inspired by the performance improvements offered by in-
homogeneous driving of the transverse field Hamiltonian, we
apply it to the four AMP problem sets as follows:

H (t ) = − 1

N

N∑
i=1

�i(s)σ x
i + sHp,

�i(s) =

⎧⎪⎨
⎪⎩

1 if s < si

N (1 − sr ) + (1 − i) if si � s � si−1

0 if si−1 < s.

(9)

The scaling of �i(s) shown in Fig. 4 is what suggested in
[24]. Interestingly, the measurement of Ttts in Fig. 5 shows
that the inhomogeneous driving method has a difficulty scal-
ing which is very weakly dependent on the control parameters
A and xp, with the Ttts scaling virtually identically in each
case. It consequently outperforms the standard uniform sweep
method for the harder problem regimes, but actually shows
worse performance for the easiest parameter sets. While we
cannot predict its performance analytically in this case (the
perturbation theory we use to calculate �min is not well de-

FIG. 4. Transverse field strength �i(s) in the inhomogeneous
driving method at each i. This scaling form is drawn from [24].

fined for some of the transverse fields set equal to strictly
zero), a clue to the origin of this behavior is found in a
numerical analysis of the level structure, as we now describe.

In Fig. 6 we show the energy difference of the higher-order
excited states with the ground state in the hardest problem
class with N = 10. In contrast to a uniform sweep, we find two
avoided crossings in the annealing process, a generic feature
of inhomogeneous driving in this system that we observed for
other parameter sets as well (data not shown). The presence of
two crossings is likely what is responsible for the performance
boost observed in the harder problems, and why it seems
to have the same scaling for different parameters. A similar
phenomenon is observed in the glued trees problem [5], where
constructive interference of diabatically missing two avoided

FIG. 5. Time to find the true ground state in four problem
model sets using the inhomogeneous driving method, computed from
the final success probability for a runtime polynomially increasing
with N . Larger markers are data with the inhomogeneous driving
method, smaller markers are data with the standard uniform sweep
method, dashed lines are best-fit curves of the inhomogeneous driv-
ing method, and solid lines are best-fit curves of the standard uniform
sweep method for comparison purposes. The inhomogeneous driving
method helps in the harder cases but in the easier cases it is less
efficient than the standard uniform sweep.
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FIG. 6. Energy difference of the higher-order excited states with
the ground state in the inhomogeneous driving method. This is the
hardest problem where {A = 0.2, xp = 0.8}, N = 10. We simulated
the energy differences up to the 20th excited state.

crossings leads to an exponential speedup. However, unlike
the glued trees problem, there is no clear separation between
the two competing minima and the higher excited states in the
AMP model. It is clear from Fig. 6 that there also exists an
overlap region of the higher-order excited states with the first
excited state. As A and xp are varied to make the difficulty
scaling decrease, the two avoided crossings move closer to-
gether, and the distance from higher levels also shrinks and
becomes exponentially small. Consequently, this effect does
not result in an exponential speedup here, and shows worse
performance than a uniform sweep in the easiest cases.

B. Transverse couplers

Adding two-body transverse coupling to QA
[19,21,23,46,47] is often considered to be a promising
route to a quantum speedup. For instance, Hormozi et al.
[23], constructed a stoquastic Hamiltonian by inserting the
ferromagnetically coupled term HF

I into the traditional Ising
model, and a nonstoquastic Hamiltonian by inserting the
antiferromagnetically coupled term HA

I or mixed coupled
term HM

I as follows:

HF
I = −

N∑
〈i, j〉

σ x
i σ x

j ,

HA
I = +

N∑
〈i, j〉

σ x
i σ x

j ,

HM
I =

N∑
〈i, j〉

ri jσ
x
i σ x

j , (10)

where ri j is randomly chosen from {−1, 1} to include both
ferromagnetic and antiferromagnetic cases. In that work, they
found that both stoquastic and nonstoquastic Hamiltonians
showed an advantage over a uniform transverse field for a
class of long-range Ising spin glass problems, with the nonsto-
quastic methods generally showing better performance. This

FIG. 7. Time to find the true ground state in the hardest prob-
lem set, {A = 0.2, xp = 0.8}, using the transverse coupler methods,
computed from the final success probability for a run time polyno-
mially increasing with N . Data for adding a ferromagnetic coupler,
an antiferromagnetic coupler, and mixed couplers are given by or-
ange, green, and blue markers, respectively. Red dots are data of
the standard uniform sweep method for comparison purposes. The
solid red line is the best-fit curve of the standard uniform sweep
method for comparison. Other dashed lines are best-fit curves for
the transverse coupler methods. Adding ferromagnetic and antifer-
romagnetic couplers to the conventional standard uniform sweep
routine shows obvious quantum speedup, although adding the mixed
couplers reduces the advantage to some extent.

motivated us to investigate the same method in our AMP
model. We add transverse couplers into our model and choose
a path of the form [23,48]

H (s) = (1 − s)
1

N
H0 + s(1 − s)

1

N
HI + sHp. (11)

We apply the transverse coupler Hamiltonian to our four
problem sets, plotting the results for the hardest scaling choice
as an example in Fig. 7. It is straightforward to see that adding
ferromagnetic or antiferromagnetic coupler has a clear scaling
advantage over a standard uniform sweep, but mixed couplers
actually lead to decreased performance. The quantum speedup
from coupler terms is probably because the couplers can flip
two spins simultaneously, so the tunneling process from one
configuration to the other can occur at lower order than with a
uniform transverse field (where it occurs at N th order in this
model). The ferromagnetic coupler increases the minimum
gap and thus provides a quantum speedup over the standard
uniform sweep method; the same effect is observed in [23].
The antiferromagnetic couplers actually decreased the mini-
mum gap but still show a scaling advantage, so the reason for
the increased performance from the antiferromagnetic ones re-
mains elusive. The behavior of the transverse coupler methods
in the other three problem sets are shown in Table I.

VI. REVERSE ANNEALING AND COLD BATHS

Reverse annealing [11,49–51], where the system is initial-
ized in a local classical minimum and the transverse field is
ramped up and down to search for other minima, unfortunately
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provides no benefit for the AMP. Reverse annealing was
shown in [51] to provide benefit for the p-spin ferromagnet
problem, if one is able to guess an initial state sufficiently
close to the true ground state. However, in the AMP there are
only two minima to choose from, separated by N spin flips.
The only sensible choice (without dramatically modifying
HP) is thus to initialize the system in the false minimum.
We simulated the reverse annealing protocol (data not shown)
by initializing the system in the false minimum, ramping the
transverse field up to a finite value guessed randomly from
an O(1) range enclosing the phase transition point, evolving
from that point for O(N2) time, then ramping it back down to
zero. With sufficient averaging over the location of the pause
point (which is not knowable precisely in real problems), we
found a time to solution which scaled nearly identically to the
standard uniform sweep method for all parameters studied.
Thus, we found no benefit in applying reverse annealing to
this problem.

The influence of a cold bath on this system is more subtle.
It is well known [36,52–58] that coupling a quantum spin
glass to a cold bath can improve the process of finding its
low-energy states. So let us consider coupling the AMP to a
low-temperature bath during annealing. Importantly, we here
assume that T is small compared to the single qubit excitation
energy, but it may still be large compared to the (exponentially
small) minimum gap. How much can such a bath improve the
time to solution?

Unfortunately, numerical simulation of such a system is
prohibitively expensive [59] given the complexity of the Lind-
blad operators used to represent the finite temperature bath.
We can, however, estimate the relaxation rate from the bath by
appealing to the matrix element scaling conjecture (MSCALE
conjecture) [26]. This conjecture states that, for few-body op-
erators, the scaling (with problem size N) of matrix elements
of these operators between competing minima of quantum
spin glasses near a phase transition is the same as the scaling
of the minimum gap itself. This conjecture is true by inspec-
tion for the AMP, since the gap can be computed accurately
using the modified forward approximation in the Appendix.
If we assume that each spin couples to a cold bath inde-
pendently, then the rate of mixing near the phase transition
scales as N�2

B/W , where �B ∝ �min is the matrix element
from a local spin operator and W is the energy range swept
over. This produces a factor-of-N enhancement relative to the
closed system, but does not change the scaling exponent as
the other methods do. The cold bath may, however, improve
performance in a real system by relaxing few-body excitations
back toward the ground state, correcting “errors” induced by
other channels.

VII. RFQA

Stoquastic or not, the previous sections all explored “DC”
schemes involving slow variations of transverse field and
coupler terms. In this section, we consider an AC alterna-
tive, called RFQA [26]. In RFQA, the traditional transverse
field driver Hamiltonian is modified by independently oscillat-
ing either the magnitude (RFQA-M) or direction (RFQA-D)
of each transverse field term (M and D refer to magnitude
and direction, respectively). As we will describe shortly, the

qualitative explanation for a quantum speedup in RFQA is
an exponential proliferation of weak many-spin processes,
leading to accelerated mixing near first-order quantum phase
transitions. The total Hamiltonian in RFQA is given by

H (t ) = (1 − s)HM/D(t ) + sHp, (12)

where the driving fields in RFQA-M and RFQA-D are defined
as follows:

HM (t ) = −κ

N∑
i=1

[1 + ᾱi sin(2π fit )]σ x
i ,

HD(t ) = −κ

N∑
i=1

[cos(ᾱi sin(2π fit ))σ x
i

+ sin(ᾱi sin(2π fit ))σ y
i ]. (13)

Here, ᾱi is the amplitude of each oscillation, the frequencies fi

of the field are randomly chosen between fmin and fmax, and κ

is the magnitude of the transverse field. To avoid uncontrolled
heating, both fmin and fmax have inverse polynomial scaling
in N . To estimate the performance of RFQA, we average the
success probability p(t f ) over hundreds of random choices of
the { fi} when computing time to solution. The RFQA methods
all rely on finite frequency dynamics that are not captured
by QMC, making them promising candidates for producing
a quantum speedup. The two methods are straightforward
to implement in flux qubit hardware, by applying oscillating
magnetic fields as described in [26].

As described in the original work, the qualitative speedup
mechanism from RFQA is complex and arises from an expo-
nential proliferation of weak multiphoton transitions. As the
system nears a phase transition point, whenever the energy of
the two ground states crosses a combination of m oscillating
frequencies there is an mth-order driving process that (very
weakly) mixes the two states. In general, the Rabi frequency
of such a process decreases exponentially in m, but there
are 2m

(N
m

)
such terms and the combination of all of them

dramatically accelerates the phase transition. If the mth-order
resonance is smaller than the base tunneling rate 
0 = �min/2
by a factor �m, then the total transition rate is expected to
scale approximately as

�T =
∑N

i=1 |
i|2
W

� 
2
0

W

N∑
l=1

�2l

(
N

l

)
2l

� 
2
0

W

(
1 + 2�2

)N
. (14)

Predicting � is a subtle challenge and something we will
leave for future work; we restrict our study of RFQA to purely
numerical simulations here.

A. RFQA-M

In RFQA-M the magnitudes of the transverse field terms
coherently oscillate with time as the global amplitude is
ramped down toward zero, so that an individual transverse
field term κ is replaced with κ (1 + ᾱ sin 2π fit ). In our sim-
ulations we used ᾱ = 0.9, and magnitude of frequencies fi

is randomly chosen between { 0.3
N1.5 ,

0.6
N1.5 }; the signs of the fi

are also randomly chosen. This is superficially similar to
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FIG. 8. Time to find the true ground state in four problem model sets using the RFQA method, computed from the final success probability
for a run time polynomially increasing with N . Data of the RFQA methods are given by different markers. Red dots are data of the standard
uniform sweep method, and the solid red line is the best-fit curve of the standard uniform sweep method for comparison purposes. Other
dashed lines are best-fit curves of the RFQA methods.

inhomogeneous driving, but the coherent oscillations lead to
nonmonotonic changes of κi with time and very different
scaling as a result. We also considered a few additional vari-
ations of RFQA-M. In one set of simulations, we explored a
partially synchronized RFQA-M method, in which N spins are
broken into k groups; instead of generating different random
frequencies for each site, the transverse fields in each group
are all oscillated in phase with the same frequencies. In this
work, we only divided the N spins into two groups, but other
arrangements are possible. We also explored adding trans-
verse couplers to the RFQA-M method, where all transverse
couplers and fields are independently oscillated in magnitude.
The total Hamiltonian in this method is defined as follows:

H (s) = (1 − s)HM/D + sHp

+ s(1 − s)κr

∑
<i, j>

sin(2πri jt )σ x
i σ x

j , (15)

where κr is the magnitude of the coupler terms, and ri j are
the oscillating frequencies of the coupler, randomly chosen
between {rmin, rmax}. The magnitude r is defined to polynomi-
ally decrease with N , and the frequencies ri j are also inverse
polynomial in N . Finally, we looked at partially synchronized
RFQA-M with transverse couplers, where the transverse cou-
plers are also synchronized into groups.

We compare the Ttts of the various implementations of
RFQA-M with the standard uniform sweep method in Fig. 8.
The results show that RFQA-M and its adaptations can
provide quantum speedup over the standard uniform sweep
routine, with a scaling advantage which is particularly obvious
in harder problem sets.

B. RFQA-D

In RFQA-D the direction of each transverse field term
oscillates in time, tipping back and forth in the x-y plane.
This can be engineered through oscillating z biases (which
can be shown to be equivalent to a tipping transverse field
through a time-dependent unitary transformation) and has the
elegant property that the instantaneous spectrum of the system
is preserved in the evolution, so the oscillations have no “steer-
ing” effect whatsoever (unlike RFQA-M, where changing
transverse field magnitudes can change the relative energies
of competing minima, in addition to any AC effects). Any
performance advantage from RFQA thus comes directly from
the proliferation of weak transitions described above.

As shown in Fig. 8, we see that RFQA-D does provide
an obvious quantum speedup over a uniform sweep. In all
studied cases, RFQA-D reduced the exponent for Ttts(N ) rel-
ative to the standard uniform sweep, and for the two easier
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difficulty regimes, it outperformed all other studied methods.
We expect that these results will carry over to the larger class
of optimization problems that experience wrong-way steering
towards false minima.

VIII. CONCLUSION

In this work, we defined a simple toy model—the asym-
metric magnetization problem—with two competing minima
separated by a global peak, and used it to benchmark a variety
of modifications to quantum annealing in the literature. The
problem is exponentially difficult to solve due to its expo-
nentially closing gap, and the entropic steering toward a false
minimum responsible for its difficulty is a generic bottleneck
mechanism for a huge array of optimization problem classes.
Thus, methods to accelerate finding the solution in it should
prove beneficial in much broader contexts.

We studied an ensemble of problem model sets with
descending difficulty: {A = 0.2, xp = 0.8}, {A = 0.28, xp =
0.7}, {A = 0.3, xp = 0.64}, and {A = 0.34, xp = 0.59}, and
assessed a variety of new quantum methods by evaluating the
scaling of the time to solution (Ttts). To have a straightforward
view of the performance of each method, we fit their Ttts to
exponential functions and extracted the exponential scaling
value, summarized in Table I. The standard uniform sweep
method shows inverse gap-squared dependence as expected.
In contrast, in the inhomogeneous driving approach, the Ttts

has a nearly constant difficulty scaling of 2∼7N/10, roughly
independent of the tuning parameters. It likely means that
the problem is steered less toward the false minimum in this
case than it is for uniform driving, but that is not enough to
avoid a first-order transition and the resulting lack of guidance
becomes counterproductive when the problem is easier.

While the problem we studied is homogeneous (in that
energy is a function of total magnetization only), we do not
expect disorder to significantly change the results for the
standard uniform sweep, couplers, and RFQA. If we modeled
disorder as a simple random Z term with magnitude 1/N for
each spin [recall that the problem energy is O(1)] added to Hp,
it would change the relative energies of the ground states by
1/

√
N for the energy scale we have chosen. This will move the

transition point sc around from one instance to the next, but by
an amount that vanishes as N → ∞. Given that our modified
forward approximation calculation predicts �min fairly accu-
rately, examination of those equations shows that this change
should not affect the scaling exponent at large N . However, it
might affect inhomogeneous driving more significantly, as has
been seen in other problems [5,24,25,60].

For the transverse coupler method, both ferromagnetic
and antiferromagnetic coupler terms can provide obvious
improvements, but adding a mixture of ferromagnetic and an-
tiferromagnetic coupler terms proved counterproductive. We
expect that the speedup from the coupler terms arises from
creating more tunneling paths between the two competing
minima, since each coupler flips two spins simultaneously.
Interestingly, we saw very similar scaling benefits for both
ferromagnetic (stoquastic) and antiferromagnetic (nonsto-
quastic) coupler methods; there is no obvious connection
between nonstoquasticity and increased performance in this
problem.

Among the RFQA methods, synchronized RFQA-M with
the added couplers provided the greatest quantum speedup
in the two hardest problem sets, while RFQA-D showed the
best scaling in the easier problem instances. The speedup
mechanism for both couplers and RFQA methods is due to
an amplification of the tunneling rate and has nothing to do
with local energetic guidance.

We conclude that although we did not achieve an exponen-
tial speedup for this problem, all of the methods can provide
a quantum speedup over the standard uniform sweep routine:
inhomogeneous driving provides a significant boost in harder
problem sets; transverse couplers added to the standard uni-
form sweep routine create more tunneling paths between two
competing minima and help decrease the time needed to find
the solution; and the introduction of oscillating fields in the
RFQA methods can help to stimulate multitone transitions,
providing more possibilities for the two competing minima
to mix. Undoubtedly, the relative advantages of the methods
will certainly depend on the problem class, but since our
AMP model exhibits such a generic bottleneck mechanism,
any methods to accelerate finding the solution in it should be
very widely applicable. Given that all three of inhomogeneous
driving, RFQA-M, and RFQA-D only require modification
to the control circuitry and not the qubit hardware itself, we
see them as the most promising and cost-effective routes to
a near-term benefit. It would be worthy to continue to study
these methods on realistic problems at larger scales, and it
requires minimal changes to existing hardware to verify their
potential in experiment.
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FIG. 9. Numerical values of the minimum gap for four parameter
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gap are red, orange, green, and blue solid lines. The minimum gaps
in the four problem sets all decrease exponentially with increasing
system size.

032612-9



ZHIJIE TANG AND ELIOT KAPIT PHYSICAL REVIEW A 103, 032612 (2021)

FIG. 10. Ratio of analytical and numerical values of minimum
gap for four problem sets in the standard uniform sweep method,
system size N ranging from 5 to 12. The analytical values of �min

are from the modified forward approximation [Eqs. (A1)–(A3)]. The
markers represent the ratio of analytical and numerical values of
minimum gap in four problem sets. The dash-dotted line, dashed line,
line with point marker, and solid line represent the ratio of analytical
and numerical values with a correction term 2π/N for problem sets
{A = 0.34, xp = 0.59}, {A = 0.3, xp = 0.64}, {A = 0.28, xp = 0.7},
and {A = 0.2, xp = 0.8} separately. The corrected analytical predic-
tions in the four sets match well with the numerical values.
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APPENDIX: ANALYTICAL PREDICTION OF THE
MINIMUM GAP

The minimum gap �min determines the worst-case diffi-
culty of a problem, so analytically predicting it can help us to
better assess the behavior of the quantum annealing algorithm.
To compute it, we use a modified form of the “forward approx-
imation” N th-order perturbation theory employed in [61–65].

In this approximation, the minimum gap is predicted to be

�min = N!

∏N
i=1 κi∏N−1

n=1 Un

, (A1)

where κi is the transverse field strength on each site i (eval-
uated at the critical point κc), and U −1

n is the average of the
inverse of the energy difference to flip n spins from either
ground state:

1

Un
=

〈
1

εn + δεn − ε0 − δε0

〉
. (A2)

Here, the ε terms are the classical energies defined in the
problem Hamiltonian and the δ terms are their perturbative
corrections from the transverse field, which act to increase the
excitation energies in this case. Including these corrections in
the energy denominators (which is effectively a resummation
scheme) is vital to obtaining relatively accurate predictions;
explicitly, for the AMP

Un � n

(
1

xp
+ 2κ2

c xp

)
, {n � xpN},

� (N − n)

(
1 + A

1 − xp
+ 2κ2

c

1 − xp

1 + A

)
, {n > xpN}. (A3)

From this expression, it is straightforward to predict
the minimum gap in our problem. As shown in Fig. 9,
the exponential fittings of numerical �min as a function
of N for descending-difficulty problem sets are 2−0.4−1.12N ,
2−0.79−0.74N , 2−1.35−0.52N , and 2−2.04−0.31N . Figure 10 indicates
that the scaling of our theoretical prediction matches well
with the numerical result by multiplying by a factor of 2π/N .
Equation (A1) appears to overestimate the true gap by a fac-
tor of ∼N/2π ; the reason for this is unclear. Some level of
disagreement is expected, however, particularly in the easiest
of the four parameter sets. If the coefficient of the problem
Hamiltonian is 1, the phase transition for those parameters
occurs at κc � 1.73. At such a large value of κc the ratio
of κ to the single spin excitation energy approaches unity
and thus a perturbative expansion in it may break down. As
the log of the minimum gap is an integral of a function of
total magnetization and the order in which spins are flipped
does not matter, we expect that other Hamiltonians which
are simple polynomials of total magnetization (such as p-spin
models) would likely show similar physics to our AMP.
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