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The rate at which quantum communication tasks can be performed using direct transmission is fundamentally
hindered by the channel loss. Quantum repeaters allow one, in principle, to overcome these limitations, but
their introduction necessarily adds an additional layer of complexity to the distribution of entanglement. This
additional complexity—along with the stochastic nature of processes such as entanglement generation, Bell
swaps, and entanglement distillation—makes finding good quantum repeater schemes nontrivial. We develop
an algorithm that can efficiently perform a heuristic optimization over a subset of quantum repeater schemes for
general repeater platforms. We find a strong improvement in the generation rate in comparison to an optimization
over a simpler class of repeater schemes based on BDCZ (Briegel, Dür, Cirac, Zoller) repeater schemes. We use
the algorithm to study three different experimental quantum repeater implementations on their ability to distribute
entanglement, which we dub information processing implementations, multiplexed elementary pair generation
implementations, and combinations of the two. We perform this heuristic optimization of repeater schemes for
each of these implementations for a wide range of parameters and different experimental settings. This allows us
to make estimates on what are the most critical parameters to improve for entanglement generation, how many
repeaters to use, and which implementations perform best in their ability to generate entanglement.
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I. INTRODUCTION

The distribution of bipartite entanglement is critical for
quantum communication tasks. Examples of such tasks in-
clude conference key agreement [1,2], clock synchronization
[3–5], and secure multiparty quantum computation [6]. Pho-
tonic transfer of quantum states through optical fiber is one
of the main candidates for long-distance entanglement gener-
ation. This is due to the potential of fast transmission speeds
and the potential to be integrated with the hardware of clas-
sical networks. However, unlike classical bits, quantum states
cannot be copied [7,8], which prevents us from amplifying the
signal at intermediate points. In fact, the rate of entanglement
generation over a fiber with transmissivity η � 1 necessarily
scales linearly in η = exp(− L

L0
) [9–12], where L is the total

distance, and L0 is the attenuation length. Thus, for large
enough distances, the losses are a limiting factor on the rate
of entanglement generation.

Quantum repeaters aim to counteract the effects of loss
[13–16]. Quantum repeater schemes are built on the con-
cept of breaking the total length between two parties—Alice
and Bob—up into several shorter (elementary) links. At the
two end points of these elementary links there is a repeater
node, which is a collection of quantum information pro-
cessing (IP) devices. Depending on the scheme, the nodes
have different requirements ranging from storage of quantum
states to full-fledged quantum computation. By generating
and storing entanglement over the elementary links and per-
forming Bell state measurements on the locally held states,
the distance over which entanglement is present can be

increased, until the two parties at the end are entangled
[13–16].

However, the imperfect operations during this process
lower the quality of the entanglement, potentially ruining the
benefits of utilizing quantum repeater nodes. The effects of
noise can be counteracted by using entanglement distillation,
which can (in general probabilistically) turn multiple entan-
gled pairs of lower fidelity into a smaller amount of pairs with
higher fidelity [17–19].

An entanglement generation scheme between two spatially
separated parties Alice and Bob consists of the generation
of entanglement over elementary links, entanglement swaps,
and distillation. Our goal is to find schemes that minimize the
generation time of the entanglement between Alice and Bob
for a given fidelity to the maximally entangled state in a suit-
able experimental model. However, finding optimal schemes
is nontrivial for two reasons. First, the amount of schemes
that can be performed grows superexponentially in the num-
ber of elementary links or nodes, making a full systematic
optimization infeasible (see Ref. [20] and Appendix A). Sec-
ond, entanglement generation, Bell state measurements, and
distillation are all processes that are in general probabilistic.
Finding the corresponding probability distributions is believed
to be computationally intensive [21–24].

For the reasons mentioned above, it seems necessary to
either approximate or simplify the problem. Notably, in [20],
an algorithm based on dynamical programming was pro-
posed capable of efficiently optimizing repeater schemes over
the full parameter space. Under the heuristic approximation
that all processes finish at the average time and there is no
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decoherence over time in the quantum memories, the algo-
rithm constructs the scheme for a large chain combining the
optimal solutions over smaller (multihop) links.

We take a different route. Instead of approximating the
behavior of the schemes by the mean, we simplify the
problem by considering a relevant subset of schemes. In
particular, we consider schemes that succeed at all levels near-
deterministically. Such schemes have the benefit of having a
small variance of the fidelity and generation time. We note that
the requirement of being near-deterministic does not imply
that our algorithm cannot handle nondeterministic processes.
High success probabilities can be enforced even when certain
processes are not deterministic—in that case, the probability
of a single success can be increased by repeating the process
a number of times, ensuring that the whole process can be
made near-deterministic (see Sec. II for further details). Fur-
thermore, this allows us to calculate the success probability
of a scheme exactly, even when more complicated protocols
such as distillation and probabilistic swapping are performed.
Finally, this approach also allows us to calculate the average
noise experienced during storage, in contrast to [20] (see
Appendix C).

In this paper, we detail an algorithm (publicly available as a
PYTHON script at [25]) that performs a heuristic optimization
over the set of near-deterministic schemes when there are n
elementary links in O[n2 log2(n)] time, and O[n log2(n)] time
if all the nodes have the same parameters and are equidistant.
Concretely, the input to our algorithm is given by the exper-
imental parameters of the nodes and connecting fibers, the
distances between adjacent nodes, the possible protocols for
elementary pair generation (EPG), swapping and distillation,
and a set of algorithm-specific parameters (see Sec. II D 3).
The algorithm returns a collection of optimized schemes for
generating entanglement between Alice and Bob.

We exploit the fact that our algorithm is not specific to any
particular experimental setup, which allows for the optimiza-
tion over repeater schemes for several types of platforms.

The experimental platforms that we consider can be split
up into three types.

(1) Information processing platforms—IP implementations
have the ability to store quantum states and perform opera-
tions on them, such that it is possible to perform distillation.
However, the number of quantum states that can be processed
at the same time is presently limited to a small number.
Examples of information processing implementations include
systems such as trapped ions [26–28], nitrogen-vacancy (NV)
centers in diamond [29,30], neutral atoms [31–33], and quan-
tum dots [34,35].

(2) Multiplexed elementary pair generation platforms—
Multiplexed elementary pair generation (MP) implementa-
tions lack the ability to properly perform operations on the
stored states, prohibiting distillation. However, a large number
(104–107) of states can potentially be generated, transmitted,
and stored simultaneously with such implementations, effec-
tively increasing the success probability for the elementary
pair generation. Examples of such implementations include
the different types of atomic ensembles [36–38].

(3) A combination of IP and MP platforms—Multiplexed
elementary pair generation platforms can overcome the effects
of losses over the elementary links more easily than informa-

tion processing platforms, but suffer from the lack of control
and long coherence times available to information processing
platforms. This motivates a combination of the two. That
is, the elementary pair generation is performed with an MP
implementation, after which the quantum state is transferred
into an information processing system. Such a combined setup
benefits from the high success probability of the generation
of the elementary pairs, together with the ability to perform
entanglement distillation and longer coherence times.

We find that the optimization returns schemes that outper-
form a simplified optimization over more structured schemes,
similar to those in [13–16]. This highlights the complexity of
repeater protocols for realistic repeater chains and the nontriv-
ial nature of the optimization problem. With such optimized
schemes in hand we use our algorithm to study a range of
questions, such as which setups hold promise for near-term
quantum networks, how many nodes should be implemented,
and which experimental parameters are the most important to
improve upon.

In Sec. II we detail the basics of our algorithm, which
takes as input an arbitrary repeater chain configuration, and
returns a collection of heuristically optimized schemes which
generate entanglement between two specified nodes, i.e., the
schemes have an optimal tradeoff between the fidelity and
generation time (over the set of considered schemes). This
section also contains the heuristics we use to reduce the search
space or complexity of the algorithm in Sec. II D (with further
details in Appendices A and B regarding the complexity and
runtime) and closes with the pseudocode of our algorithm in
Sec. II D 3. Section III contains an overview of how we model
the three experimental platforms considered in this paper,
namely, information processing (Sec. III A) implementations,
multiplexed (Sec. III B) implementations, and a combina-
tion of the two (Sec. III C). We then use the algorithm to
heuristically optimize over repeater schemes for each of the
implementations for several different scenarios in Sec. IV.
We close with a discussion of the results and the algorithm
in Sec. V.

II. ALGORITHM DESCRIPTION

In this section we first explain the general structure
of quantum repeater schemes (Sec. II A). We then focus
on the construction of so-called near-deterministic schemes
(Sec. II B). Afterwards, we first detail a nonscalable brute-
force algorithm for optimizing over such near-deterministic
schemes (Sec. II C), after which we provide a feasible algo-
rithm by implementing certain heuristics into the brute-force
algorithm (Sec. II D). Appendices A and B contain a more
explicit discussion regarding the complexity and runtime with
and without the heuristics implemented.

A. Structure of quantum repeater schemes

The goal of a quantum repeater scheme is to distribute an
entangled state between two remote parties Alice and Bob.
Quantum repeater schemes are built up from smaller schemes.
Schemes are constructed by performing connection and distil-
lation protocols on pairs of smaller schemes.
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FIG. 1. Elementary pair generation (EPG) between adjacent
nodes QRi and QRi+1. The schemes take a number of rounds r = r∗,
even if entanglement is generated at an earlier round. See main text
for further details.

Connection protocols extend the range over which en-
tanglement exists. This can be done by elementary pair
generation and entanglement swapping. EPG creates entan-
glement over elementary links (see Fig. 1). Entanglement
swapping transforms two entangled states over two shorter
(multihop) links to an entangled state over a longer multihop
link using a Bell state measurement, (see Fig. 2).

Distillation protocols allow one to (possibly probabilisti-
cally) convert two entangled states to a single, more entangled
state using only local operations and classical communica-
tion [18,39]. There exist more complicated protocols, where
an arbitrary number of entangled states are converted to a
smaller number of entangled states [40,41]. Here, we only
consider distillation protocols taking two states to a sin-
gle one [42]. See Fig. 3 for an illustration of a distillation
protocol.

QRi-QRj QRj-QRk

QRi-QRk
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FIG. 2. Entanglement swapping between two entangled pairs be-
tween (multihop) links (QRi, QR j) and (QR j , QRk), indicated by a
circle node. By performing a Bell state measurement on the two local
states at QR j , the two entangled states turn into one entangled state
between (QRi, QRk). The schemes take a number of rounds r = r∗

even if the scheme succeeds at an earlier round. See main text for
further details. Note that the distances over which the entanglement
has been generated for the (multihop) links (QRi, QR j) and (QR j ,
QRk) need not be the same.
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FIG. 3. Example of a generic entanglement distillation protocol,
transforming (possibly probabilistically) two entangled states to a
single, more entangled state between nodes QRi and QR j , using
only local operations and classical communication. Distillation is
indicated by a square node. The schemes take a number of rounds
r = r∗ even if distillation succeeds at an earlier round. See main text
for further details. Note that QRi and QR j do not have to be directly
connected by a fiber.

B. Near-deterministic schemes

Entanglement generation schemes should preferably min-
imize the average generation time for a given fidelity F .
However, the generation and distribution of entanglement is a
stochastic process, greatly complicating the optimization over
such schemes. Here, we simplify the problem by demanding
that every step of the entanglement generation scheme is
near-deterministic. This requirement can be enforced even
when some of the processes are not deterministic, such as
elementary pair generation or Bell swaps. The probability of
having at least a single success can be increased by repeating
the whole scheme up until that point for multiple attempts
[43]. Near-deterministic schemes deliver a state with high
probability at a specific time T , and it is this generation time
T that we use as our metric in this paper [44].

Let us exemplify this idea through a process for EPG. This
process might have a very small probability p to succeed in
a single attempt, which takes a time Tattempt to perform. The
probability of having at least a single success after r attempts
is

psingle success = 1 − (1 − p)r . (1)

Thus, the probability of having at least one success can be
increased to no less than pmin by trying for r = � log2(1−pmin )

log2(1−p) �
attempts. We now consider protocols where the state is stored
until a total time rTattempt has passed, even if a success occurs
before r attempts have passed. This ensures that a state can be
delivered near-deterministically (i.e., with probability at least
pmin) at a prespecified time T = rTattempt. However, it comes at
the cost of increased decoherence, since the state might have
to be stored for a longer time (see [23] for a related concept).

Consider now the success probability of distillation pro-
tocols and (optical) Bell state measurements. Both protocols
require the two states to be present, which holds with prob-
ability equal to the product of the probabilities of the two
individual schemes having succeeded. Furthermore, distilling
and swapping typically have a nonzero failure probability,
potentially decreasing the success probability even further.
However, we can use the same strategy used previously to
increase the total success probability. That is, by repeating
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FIG. 4. Schematic description of how near-deterministic
schemes are constructed from the protocols shown in Figs. 1–3.
Here entanglement is generated between the nodes A and B, using
an intermediate node labeled by QR. The overall structure is that
of a binary tree (modulo the leaves indicating elementary pair
generation, indicated by EPG), since swapping and distillation
are always performed between exactly two schemes. Each subtree
is required to succeed with probability at least pmin, which can
be enforced by repeating the whole subtree for a number of
attempts r. Here, the specific number of attempts is indicated by rb,
b ∈ {1, 2, 3, 4, 5}. The circular nodes indicate either elementary pair
generation or swapping, and the square nodes indicate distillation.

the whole scheme up to that point, it is possible to increase
the success probability to at least the threshold pmin. Let us
consider this concept for the example of a swap operation be-
tween two elementary pairs. The total success probability can
now be increased by repeating the whole process of generating
both elementary pairs and performing the swap operation.

This concept can be extended to more complex repeater
schemes, ensuring that each step in the repeater scheme
succeeds with high probability. A repeater scheme can thus
be constructed by combining protocols from the ground up,
where the average state, generation time T , and success prob-
ability p of each scheme are only a function of the number of
attempted rounds r, the protocol used, the parameters of the
repeater chain, and the used schemes. We show an example of
how such schemes can be constructed in Fig. 4.

We note here that such near-deterministic schemes require
us to keep states stored for some time, even if the underlying
process has already succeeded, similar to the approaches in
[23,45]. This evidently comes at the cost of increased storage
times, and thus a greater amount of average decoherence.
Near-deterministic schemes also have benefits, however. First,
with near-deterministic schemes it is possible to make the
variance of the resultant probability distributions arbitrarily
small by increasing pmin. Thus, near-deterministic protocols

are able to deliver entanglement at a prespecified time with
high probability, which may be important for quantum in-
formation protocols consisting of multiple steps [45], such
as entanglement routing [46,47]. Second, it is possible to
calculate exactly the generation times and fidelities of near-
deterministic schemes with relative ease, allowing for the
optimization over such schemes.

Let us now compare near-deterministic schemes with
two similar frameworks considered in [20,23]. Both near-
deterministic schemes and the schemes considered in [20]
take as building blocks a similar set of probabilistic protocols.
In [20], however, the protocols are freely combined, which
makes it challenging to estimate the average time they take to
generate entanglement. This problem is sidestepped in [20] by
heuristically assuming that all protocols take average time. In
contrast, in our framework, we combine protocols in blocks
that have high success probability and take a fixed amount
of time. This reduces the class of schemes but allows us to
estimate exactly the generation time and the fidelity of the
state generated.

The protocols from [23] are constructed in a similar fash-
ion as we do in this paper without the near-deterministic
requirement. More concretely, the steps in the protocols are
repeated a maximum number of times until success and the
state is only read after the time equivalent to the maximum
number of attempts has elapsed. The protocols in [23] are,
however, more structured as they consist of combinations of
elementary pair generation and swapping over repeater chains
with a power of two elementary links. This structure enabled
the analytical optimization of the number of attempts under
dephasing noise.

C. Brute-force algorithm

We now introduce a brute-force algorithm to optimize
entanglement distribution over the set of near-deterministic
schemes between two distant nodes Alice and Bob. The algo-
rithm takes as input the experimental parameters of the nodes
and connecting fibers, the distances between adjacent nodes,
a set of protocols for elementary pair generation, swapping
and distillation, a minimum success probability, and a limit on
the maximum number of attempts and the maximum number
of distillation rounds. The output consists of a data struc-
ture containing the schemes that minimize generation time
parametrized by success probability and fidelity.

The brute-force algorithm generates and stores every possi-
ble scheme that can be created from the input conditions. Then
for each achieved fidelity, it walks over the stored schemes to
find the scheme minimizing the generation time achieving at
least that fidelity. In the following we sketch only the first part,
as this is enough to argue that such an approach is nonscalable.

First, the algorithm takes the set E of protocols for ele-
mentary pair generation, together with the different number of
attempts considered (of which there are at most rdiscr), and ex-
plores all possible combinations of elementary pair generation
protocols and number of attempts for each elementary link.
Each of these combinations is stored if the success probability
is larger than a specified pmin.

Next, the algorithm takes the set of distillation protocols
D and a maximum number of distillation rounds m. For
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each elementary link, the algorithm loops over the number
of distillation rounds: 1, . . . , m. For each number of rounds,
the algorithm explores all combinations of pairs of schemes,
number of attempts, and distillation protocols and stores the
resulting scheme if the success probability is larger than pmin.

The algorithm then proceeds iteratively over multihop links
of length i ∈ {2, 3, . . . , n}, where n is the total number of
elementary links between the target nodes. Each iteration is
divided into a swapping and distillation step.

In the swapping step the algorithm considers all adjacent
(multihop) links of lengths i1, i2 such that i1 + i2 = i. For
each valid pair of adjacent links and for each pair of schemes
stored over the adjacent links, the algorithm explores all
combinations of number of attempts and protocols in the set
of swapping protocols S . It stores a resulting scheme if the
success probability is larger than pmin.

In the distillation step, the algorithm proceeds analogously
to the description above for distillation over elementary links.
The output of the brute-force algorithm is then a collection
of schemes. Each of these schemes is built up from smaller
schemes, similar to the scheme shown in Fig. 4.

While the approach just described might work for a very
small chain, the number of schemes grows too quickly. In par-
ticular, the number of near-deterministic schemes to consider
in the brute-force approach is lower bounded by

O([(rdiscr )
2|E ||S|]n) (2)

when distillation protocols are not considered and by

O([rdiscr|E ||S||D|]2m·n
) (3)

when distillation is considered (see Appendix A). Here n is
the number of elementary links, |E | is the number of ways
elementary pairs can be generated (due to for example varying
a parameter over some set of values), |S| is the number of
swapping protocols, |D| is the number of distillation proto-
cols, rdiscr is the different number of attempts considered, and
m is the number of distillation rounds.

D. Heuristic algorithm

Now we introduce an efficient heuristic optimization al-
gorithm. The heuristic algorithm takes as starting point the
brute-force algorithm presented before and incorporates a
number of modifications that reduce the search space, thus
overcoming the fast-growing complexity of the brute-force
algorithm. We divide the modifications into heuristics for
the pruning of schemes and heuristics for good schemes and
detail them in the following. In the following we first dis-
cuss the modifications to the brute-force algorithm before
presenting the pseudocode of the algorithm and analyzing its
complexity.

1. Heuristics for the pruning of schemes

The brute-force algorithm explores a grid of parameters
at each step and stores all schemes with success probability
above pmin independently of their quality. Instead, we can
identify schemes that either are unlikely to combine into good

schemes at subsequent steps or are very similar to existing
schemes and not store them.

A first strategy is to only store schemes that deliver a state
with fidelity above the threshold Fthreshold � 1

2 .
A second strategy is to coarse-grain the fidelity and

success probabilities. For this, the algorithm rounds the fi-
delity F and success probability p of each scheme to F̃
and p̃, the closest values in the sets [Fthreshold, Fthreshold

+ εF , Fthreshold + 2εF , . . . , 1] and [pmin, pmin + εp, pmin +
2εp, . . . , pmax] (see Appendix B).

If no scheme with the same F̃ and p̃ exists, the scheme is
stored. Otherwise, we compare the two generation times of the
two schemes. If the old scheme has a lower generation time,
the new scheme is not stored. Otherwise, the new scheme
replaces the old one. We note here that the actual values of
F and p are stored, and not the values F̃ and p̃.

The third strategy consists in pruning suboptimal protocols
after having considered all protocols over a given (multihop)
link. A scheme is suboptimal if there exists another scheme
over that (multihop) link with the same p̃ and has a lower
generation time but equal or higher fidelity. We detail the im-
plementation of the above pruning heuristics in Algorithm 2.

2. Heuristics for good schemes

Pruning reduces the amount of suboptimal schemes that
are kept stored. This prevents those schemes from being com-
bined with other schemes, reducing the algorithm runtime.
However, it would be preferable if those schemes would
not even be considered in the first place. For this reason,
we use heuristics on what schemes to consider. The heuris-
tics that we use are banded distillation, banded swapping,
and the bisection heuristic, which we will detail in what
follows.

Many distillation protocols acting on two states yield states
of fidelity larger than the input states only when the input
states have fidelities that are relatively close to each other
[48]. This motivates restricting distillation to states that have
fidelities F1 and F2 separated at most by some threshold εdistill:

|F1 − F2| � εdistill. (4)

This heuristic, first considered in [49], is called banded distil-
lation.

Inspired by banded distillation we introduce a similar
heuristic for entanglement swapping that we dub banded
swapping. A naive extension of banded distillation to swap-
ping would be to require that the absolute difference of the
fidelities of the two swapped states be small. However, by
investigating the heuristically optimized schemes, our numer-
ical exploration (see Appendix B) suggests that the number of
nodes over which the entanglement is generated also plays
a role. In particular, we find that it is sufficient to restrict
swapping to states that satisfy

|i1 − i2| � 2 log2(i1 + i2 − 1) (5)

and ∣∣∣∣ log2(F1)

i1
− log2(F2)

i2

∣∣∣∣ � εswap (6)
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where εswap controls the granularity of the heuristic, F1 and F2

are the fidelities of the two states, and i1 and i2 are the
numbers of elementary links over which the entanglement
was generated, e.g., the number of elementary links between
QRi-QR j and QR j-QRk in Fig. 2, respectively. We note that
the first condition was already present in [20]. We found that
the above heuristics work well even in the case of asymmetric
repeater chains.

The third heuristic—which we call the bisection heuristic–
-is inspired by the BDCZ scheme [13]. Similarly to the BDCZ
scheme, it applies to symmetric repeater chains. That is, re-
peater chains where all nodes have the same parameters and
are connected by identical elementary links. However, unlike
the BDCZ scheme which is only applicable if the number
of elementary links is equal to a power of 2, the bisection
heuristic is applicable independent of the number of elemen-
tary links.

The heuristic works as follows. Factorization allows us to
write the total number of elementary links as n = 2 jh, where j
is the number of times n is divisible by 2, and h is the odd part
of n. First, an optimization is performed over a link of length
h. From then on, similar to the BDCZ scheme, swapping only
occurs between entanglement that has been generated over
a total number of elementary links equal to a multiple of h.
This heuristic has the possibility of dramatically reducing the
algorithm runtime for certain values of n.

3. Pseudocode of the heuristic algorithm

We now present the pseudocode of the heuristic algorithm.
The general algorithm is described in Algorithm 3, while
the subroutines for storing the schemes and for the pruning
heuristic are given in Algorithm 1 and Algorithm 2.

Algorithm 1. STORESCHEME, subroutine for storage of the
schemes. Here, ‘link’ refers to either an elementary or multi-hop link.

Algorithm 2. PRUNE, prunes the sub-optimal schemes stored for
a given link. Here, ‘link’ refers to either an elementary or multi-hop
link.

The algorithm takes as input an additional number of pa-
rameters on top of the parameters already discussed for the
brute-force algorithm. These parameters regard the heuristics
and were described in the previous section. These parame-
ters are εF and εp (the discretization used for the pruning
of schemes for the fidelity and success probability, respec-
tively) and Fthreshold and pmax (the minimum values required
to consider a scheme for the fidelity and success probabil-
ity, respectively). A software implementation requires also
a number of experimental parameters for characterizing the
hardware and estimating the output of each scheme, however
we leave the explicit description of the hardware parameters
out of the pseudocode. For details of the actual implementa-
tion, please refer to the repository [25].

4. Complexity and runtime of the heuristic algorithm

As we show in Appendix A, the heuristics allow us to go
from a number of considered schemes that grows superexpo-
nentially in the number of elementary links, to a number of
schemes that is upper bounded by

O

[
2rdiscr

(
(1 − Fthreshold)(1 − pmin)

εF εp

)2

n2 log2 (n)

]
, (7)

implying that the number of considered schemes is now only
on the order of n2 log2(n), as opposed to superexponential in
n. Here rdiscr is the maximum number of values allowed for
the number of attempts r, Fthreshold is the minimum fidelity
we allow a scheme to have, pmin is the minimum accepted
success probability, εF and εp are the discretizations used
for the coarse-graining, and n is the number of elementary
links. Furthermore, in the case of a symmetric repeater chain
(i.e., every node has the same parameters and the nodes are
equidistant), the optimization can be further simplified. As
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Algorithm 3. Heuristic optimisation over near-deterministic schemes for a repeater chain of n elementary links. Here, ‘link’ refers to
either an elementary or multi-hop link.
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we show in Appendix A, the number of schemes to consider
in the symmetric case is upper bounded by

O

[
rdiscr

(
(1 − Fthreshold)(1 − pmin)

εF εp

)2

n log2 (n)

]
. (8)

In practice, we find that our algorithm runtime ranges from
approximately 100 s to approximately 100 min, when consid-
ering 1 and 35 intermediate nodes for a symmetric repeater
chain, respectively. We investigate the effects of the heuristics
on the algorithm runtime in more detail in Appendix B, where
we perform an experimental analysis of the algorithm runtime
and its “accuracy” when varying εF , εp, εswap, and εdistill. We
use these results to settle on the values for εF , εp, εswap, and
εdistill. We only investigate the bisection heuristic when going
to a larger number of nodes in Sec. IV C.

III. PLATFORM MODELS

The algorithm discussed is independent of the underlying
physical implementation, and can thus be applied to several
experimental platforms. We use our algorithm to study three
different types of platforms encapsulating a large range of
technologies. The three platforms share the capability to store
quantum information but differ in their quantum information
processing capabilities. We call these platforms: information
processing platforms, multiplexed elementary pair generation
platforms, and combined platforms. Information processing
platforms have the ability to perform operations on the stored
qubits, but are currently limited to a small number of qubits.
Multiplexed elementary pair generation platforms, on the
other hand, lack the ability to perform operations on stored
states, but can generate and store a potentially very large
number of different states simultaneously. Obviously, these
platforms differ greatly, but both approaches have comple-
mentary qualities for long-distance entanglement generation.
This motivates us to also compare a combination of the two,
that is, a setup where the elementary pairs are generated
with a multiplexed elementary pair generation platform, but
swapping and distillation are performed by an information
processing platform.

In the rest of the section, we discuss the basics of each
of the implementations and the modeling of the underlying
processes.

A. Quantum repeaters based on information
processing platforms

We call IP platforms those that have the capability to per-
form gates on the stored states, thus enabling entanglement
distillation. The number of quantum states that can be stored
and processed is presently limited. Experimental informa-
tion processing platforms that have demonstrated excellent
control over storage qubits include NV centers in diamond
[19,30,45,50–53], neutral atoms [31,32], non-NV color cen-
ters in diamond [54,55], quantum dots [56–58], and trapped
ions [26–28].

In this paper we consider two protocols for the genera-
tion of elementary pairs for information processing platforms.
These protocols are the single-click [59–61] and double-click
protocol [62]. We give an example based on nitrogen-vacancy

FIG. 5. An example of an elementary link implemented with an
information processing platform. The two nodes are connected by
a fiber with a beamsplitter in the middle and two detectors. For the
case considered in this figure, the two nodes are nitrogen-vacancy
centers in diamond. For both protocols, the two nodes both send one-
half of an entangled state to the middle, which after interference and
successful detection leads to a shared state between the two nodes.
Figure taken with permission from [61].

centers in diamond in Fig. 5. We stress that this is just one
example of an information processing platform, and that our
algorithm can be applied to other platforms.

The setup for both the single-click and the double-click
protocols consists of two nodes with at least one memory
qubit. The two nodes are connected via an optical channel to
an intermediate beamsplitter station with a detector at each of
the output ports (see Fig. 5).

Let us now detail first the single-click protocol. The qubits
at the nodes are prepared in a superposition of the ground state
(|↓〉) and the first excited state (|↑〉): sin(θ )|↓〉 + cos(θ )|↑〉.
Upon receiving an appropriate excitation signal, the mem-
ory emits a photon (|1〉) if it is in the excited state, and
no photon (|0〉) otherwise. Since the memory qubit is in
a superposition, this results in a memory-photon entangled
state sin(θ )|↓〉|0〉 + cos(θ )|↑〉|1〉. The two photons are then
directed to and interfered on the intermediate beamsplitter.
One experimental complication here is that the phase picked
up by the photons as they travel through the fiber is unknown
unless the fibers are stabilized. However, if this is the case,
upon the detection of a single photon (single click) at the
beamsplitter station, the creation of an entangled pair can be
heralded to the two nodes.

The double-click protocol on the other hand does not rely
on phase stabilization. For the double-click protocol, each
node prepares a qubit in a uniform superposition of the ground
and first excited state [62]. By applying specific pulses to the
qubits, a photon will be coherently emitted in the early or
late time bin, depending on the state of the qubit at the node.
The photons are then interfered at the beamsplitter station.
The entanglement between the two qubits is heralded to the
two nodes upon the detection of two consecutive clicks at
the beamsplitter station. While the double-click protocol does
not require phase stabilization, it has a lower success rate in
comparison to the single-click protocol.

The parameter θ is tuneable, which allows for a tradeoff
between the success probability and the fidelity of the her-
alded state for the single-click protocol [19,61,63]. For the
double-click protocol there is no such tradeoff, however.

For the single-click protocol we use the error model from
[61]. For the double-click protocol we use the error model
from [62].

Entanglement distillation across two separated matter
qubits has been achieved with an NV-center setup [19], where
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a specific entanglement distillation protocol [63] was im-
plemented. This distillation protocol is optimal when the
involved states are correlated in a particular manner [64]. In
general, however, the states that we consider are not of this
form. For this reason, we will consider here only the DEJMPS
(Deutsch, Ekert, Jozsa, Macchiavello, Popescu, Sanpera) pro-
tocol [39], which was originally designed to work well for
maximally entangled states with depolarizing noise. In this
protocol, we first apply a local rotation on each of the qubits,
then two local controlled-NOT (CNOT) operations, and measure
the targets of the CNOT operations in the computational basis.
We deem the distillation to be a success when the measure-
ment outcomes are equal.

We now sketch the underlying abstract error models and
the various experimental parameters.

State preparation for the generation of elementary pairs
takes some time tprep, performing the gates for distillation
takes time tdistill, and performing a Bell state measurement
takes time tswap. State preparation is also imperfect, which we
model as dephasing with parameter Fprep. States stored in the
memories for a time t are subject to decoherence. We model
this decoherence as joint depolarizing and dephasing noise
(see Appendix C for details on the decoherence model).

The fiber has a refractive index of nRI and an attenuation
length L0. The attenuation length is defined such that η =
e−L/L0 , where η is the transmissivity and L is the length of
the fiber. There are three other sources of photon loss that
we model [61,65]—the probability of successfully emitting
a photon pem, the probability of emitting a photon with the
correct frequency and it not being filtered out (conditioned
on having emitted the photon) ppps, and the probability of the
detector successfully clicking when a photon is incident pdet.

Applying gates induces noise on the states. Performing
a Bell state measurement induces depolarizing and dephas-
ing with parameters λBSM, depol and λBSM, deph, respectively.
Performing the CNOT operations for distillation also leads
to depolarizing and dephasing with parameters λCNOT, depol

and λCNOT, deph, respectively. Furthermore, we model measure-
ment errors by applying depolarizing noise with parameter
λmeas. depol. before measuring a state. Finally, the uncertainty
in the phase stabilization �φ induces dephasing in the state
preparation for the single-click protocol (see [61]).

B. Quantum repeaters based on multiplexed elementary
pair generation platforms

MP platforms based on atomic ensembles are a promising
candidate for quantum repeater implementations [36–38,66].
Such implementations generate elementary pairs with a po-
tentially large number of modes at the same time. While
multiplexed elementary pair generation platforms lack the
ability to perform gates on the states stored in the mem-
ories, they have the potential to process a large number
of states simultaneously, which can dramatically increase
the probability at which elementary pairs can be generated.
Here we discuss the basics of a model for the quantum
repeater scheme proposed in [38] (see Appendix D). This
repeater scheme uses photon-number and spectrally resolving
detectors, frequency-multiplexed multimode memories, and
parametric down conversion (PDC) sources.

FIG. 6. Schematic description of an MP implementation. Top:
The total distance L is split into N elementary links, each with
a spectrally resolving BSM (indicated by νRBSM) in the middle,
and with two nodes (each indicated by REP) at the end point of
the elementary links. Middle: Zoom in of a node. Each node con-
tains two PDC sources of multiplexed bipartite entanglement, two
quantum memories (indicated by QM) and a number-resolving Bell
state measurement station (indicated by NRBSM). Bottom: Detailed
view of QM and NRBSM. Each quantum memory not only stores
(in the unit indicated by τ ), but can also perform a frequency shift
(in a unit indicated by �ν) and a frequency filter (indicated by
the unit ν0), while each NRBSM contains a beamsplitter and two
single-photon detectors, which performs a Bell state measurement
on the frequency-shifted photons. Illustration taken with permission
from [38].

An elementary link consists of two PDC sources, each
located at one of the two nodes. The PDC sources emit en-
tangled states for a large set of frequencies. One half of each
entangled state is sent towards a jointly collocated quantum
memory, which can store a large number of modes simul-
taneously. The other half is sent to an intermediate station
between the two nodes, where it interferes on a spectrally
resolving beamsplitter with the corresponding state sent from
an adjacent node. If at least one successful click pattern is
detected at the output of the beamsplitter, the information of
the corresponding mode is sent to the nodes. The information
is used to filter out the other modes, after which frequency
conversion is performed to a predetermined frequency at each
of the nodes. The frequency conversion to a predetermined
frequency ensures that at each node the successful modes from
the two adjacent links can interfere at a local beamsplitter
station. Photon-number resolving detectors are collocated at
the output of the local beamsplitter to identify and discard
multiphoton events. A schematic description can be found in
Fig. 6.
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Let us now investigate the parameters underlying the
scheme we have just described. Consider a PDC source emit-
ting entangled states with time-bin encoding. An ideal source
would emit states of the form 1√

2
(|10, 01〉 + |01, 10〉), where

the notation |nm, mn〉 indicates n/m photons in the “early
or late” bin in one-half of the state and m/n photons in the
“early or late” bin in the other half. However, realistic PDC
sources include additional terms. The resulting state can be
approximated [38] by a state of the form

|ψNs〉 = √
p0|00, 00〉 +

√
p1

2
(|10, 01〉 + |01, 10〉)

+
√

p2

3
(|20, 02〉 − |11, 11〉 + |02, 20〉), (9)

with

p0 = 1

(Ns + 1)2
, p1 = 2Ns

(Ns + 1)3
, p2 = 1 − p0 − p1.

(10)

Here Ns is the mean photon number present in the state and is
a tuneable parameter. Increasing the mean photon number Ns

increases the probability of detecting two clicks at the middle
station (as can be seen from the decrease in the parameter
p0), while at the same time lowering the fidelity of the state
conditioned on detecting two clicks.

Note that (10) is a truncated version of the state derived in
[67], i.e., all the higher-order terms are included in p2. As de-
scribed in [38], the multiphoton components limit the ability
to generate entanglement without the use of photon-number
resolving detectors.

The number of modes Nmodes increases the success proba-
bility of elementary pair generation. If the success probability
of the creation of a single elementary pair is given by pel,
the success probability of generating at least one elemen-
tary pair is given by 1 − (1 − pel )Nmodes . Thus, Nmodes should
be on the order of 1

pel
, since limpel→0 1 − (1 − pel )

α
pel = 1 −

e−α . Finally, while a purely deterministic Bell state measure-
ment is impossible using only linear optics [68,69], there are
theoretical workarounds to increase the success probability
[70–76]. We consider the approach introduced in [72], where
the success probability of the Bell state measurement can be
increased to 1 − 1

2N+1 by using 2N+1 − 2 ancillary photons.
We assume the states can be retrieved from the memories

on demand. On-demand retrieval is necessary for our algo-
rithm to work, since the storage times are not fixed. This is due
to the uncertainty in which attempt entanglement will be gen-
erated. On-demand retrieval can be achieved with rare-earth
ion ensembles by, for example, switching coherence from
electronic levels to spin levels, as done in [77,78]. Besides
allowing for on-demand recall, this also has the added benefit
of increased memory lifetime [79].

We consider the same type of noise for operations as we
did for information processing platforms. This means that
measurements have an associated amount of depolarizing and
dephasing. Finally, “decoherence” over time for the memory
manifests as an exponential decay in the output efficiency of
the memory, not in a reduction of the fidelity of the state
[79,80]. Thus, the longer a state is stored, the smaller the prob-
ability it can be retrieved for measuring or further processing.

C. Combining the two setups

An information processing implementation has the benefit
of long coherence times and control over the memory qubits,
which allows for distillation. On the other hand, multiplexed
elementary pair generation platforms do not support distil-
lation, but have the benefit of emitting and storing a large
number of modes, increasing the success probability of the
elementary pair generation significantly. Optimistically, one
could imagine a futuristic setup which combines the strengths
of the two setups. That is, elementary pair generation is per-
formed by a multiplexed elementary pair generation platform,
after which the successfully generated pairs are frequency
converted into a frequency that can be stored in an information
processing platform. The state is then stored in a memory,
which can be done using, for example, a reflection-based
heralded transfer [81,82]. For simplicity, we assume that the
transfer and frequency conversion do not introduce any further
noise or losses.

IV. RESULTS

In this section, we study information processing platforms,
multiplexed elementary pair generation platforms, and the
combination thereof with the algorithm that we introduced in
Sec. III. In order to compare different optimization results, we
have chosen four sets of parameters for both platforms. With
these sets, we first investigate the performance of information
processing platforms for short (≈15–50 km), intermediate
(50–200 km), and large (i.e., ≈200–800 km) distances. We
then perform a similar investigation for multiplexed elemen-
tary pair generation platforms, after which we investigate the
combination of the two. In order to get an understanding of the
necessary parameters to generate remote entanglement with
each platform or combination, the four sets of parameters for
each platform are strictly ordered, with set 4 having the best
parameters. We begin each three of the investigations with a
specification of the input to our algorithm, which consists of
the used elementary pair generation, swapping and distilla-
tion protocols, experimental parameters, and the parameters
specific to the algorithm discussed previously.

In order to investigate longer repeater chains, we consider
only symmetric repeater chains (see Sec. II D) in this section
unless specified otherwise.

A. Scheme optimization results for IP platforms

In the following we discuss the heuristic optimization re-
sults for information processing platforms. Let us first briefly
discuss the protocols that we include in the optimization.

We consider two protocols for elementary pair generation:
the single- and double-click protocol (see Sec. III A). The
single-click protocol has an additional parameter θ , which
modulates the weight of the zero- and one-photon component
[61]. We optimize over all single-click protocols with θ taking
values between 1

2 and π , equally spaced in 300 steps, thus
|E | = 301.

Both for swapping and distillation we consider a single
protocol, |S| = |D| = 1. For swapping we perform a deter-
ministic Bell state measurement on matter qubits while for
distillation we implement the DEJMPS protocol. For swap-
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TABLE I. Base parameters used for information processing
platforms.

tprep (entanglement preparation time) 6 μs [50]
Fprep (dephasing for state preparation) 0.99 [50]
DcS (dark count rate) 10 Hz [50]
L0 (attenuation length) 22 km [83]
nRI (refractive index of the fiber) 1.44 [83]
�φ (optical phase uncertainty) 14.3◦ [45]
Fgates, deph (dephasing for all gates) 1

ping and distillation, we optimize over all pairs of schemes
that satisfy the banded swapping and distillation heuristics
(see Sec. II D).

For all of the schemes, r ranges from rmin to rmax in (at
most) rdiscr = 200 steps, where rmin and rmax are chosen such
that the success probabilities are at least pmin and pmax, re-
spectively.

We set εswap = εdistill = 0.05, εF = 0.01, and εp = 0.02.
These parameters were settled on by investigating the tradeoff
between the accuracy of the algorithm and its runtime (see
Appendix B for a detailed analysis). We only consider m = 2
distillation rounds. Finally, we set pmin = 0.9.

We now specify four sets of parameters for information
processing platforms. We fix the parameters in Table I as a
baseline common to all sets. We then choose sets of parame-
ters for the efficiency coherence times, efficiencies, and gate
fidelities, which can be found in Table II.

1. Entanglement generation for short distances with IP platforms

Small-scale experiments relevant for entanglement distri-
bution with information processing platforms have already
been performed [19,45,50,51,53,84,85], demonstrating the
potential of such platforms for quantum networks. It is
therefore of interest to understand what is within reach for
information processing platforms, and what are the relevant
parameters to improve. Thus, in this section we investigate
how well we can perform entanglement generation with a
small number of nodes and near-term parameters over short
distances with information processing platforms. In particular,
we are interested in when the introduction of a node becomes
useful. To this end, we first consider entanglement generation
over a distance of 50 km with parameter set 1. We show the
results from our heuristic optimization in Fig. 7, where we
consider the scenarios with no node, a single node, and two
intermediate nodes. Furthermore, we plot the results where

TABLE II. Four different sets of example parameters considered
for information processing platforms.

Set 1 Set 2 Set 3 Set 4

Tdeph (dephasing with time) 3 s 10 s 50 s 100 s
Tdepol (depolarizing with time) 3 s 10 s 50 s 100 s
pem (probability of emission) 0.8 0.9 0.95 0.99
pPS (probability of postselection) 0.8 0.9 0.95 0.99
Fgates (depolarization of all gates) 0.98 0.99 0.995 0.999

0.5 0.6 0.7 0.8 0.9 1.0
Fidelity
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With double-clickWithout double-click

No node Single node Two nodes

FIG. 7. Results of the achieved fidelity and generation time for
a total distance of 50 km using parameter set 1 (see Table II) for
information processing nodes, where we consider having 0 (green),
1 (purple), or 2 (yellow) of such intermediate nodes. The solid line
corresponds to a heuristic optimization where we have excluded the
double-click protocol, and the dotted line corresponds to a heuristic
optimization with both the single- and double-click protocol. The
double-click protocol does not provide a benefit for direct trans-
mission, since the double-click protocol suffers more strongly from
losses than the single-click protocol.

we include only the single-click protocol, and both the single-
and double-click protocol.

First, the double-click protocol provides only a benefit
for higher fidelities and for the scenarios with one and two
intermediate nodes. This can be attributed to the fact that the
double-click protocol is inherently less noisy if there are no
losses, but is more sensitive to losses than the single-click
protocol. However, this does not necessarily imply that all
the elementary pairs have been generated with the double-
click protocol. As we will see in later results, we will find
schemes where elementary pairs are generated using both the
single- and double-click protocol, indicating the importance
of considering such complex schemes in our optimization.

Second, we observe that there is a crossover point for
F ≈ 0.7 below which adding a node allows for a shorter
generation time. Thus, implementing a quantum node over
a modest distance of less than 50 km can in fact increase
the generation rate by a moderate amount for low fidelities
(�0.7). However, increasing the total distance does not shift
this crossover point, since the maximum achieved fidelity with
a single node also drops down if the parameters do not change.

Next, we explore the impact of a single parameter in the
performance of implementations expected in the longer term.
To this end, in Fig. 8 we investigate how the minimum gener-
ation time for several fixed target fidelities (F = 0.7, 0.8, 0.9)
scales, when varying the gate fidelities and coherence times
and using parameter set 2. More specifically, we vary the gate
fidelities from 0.98 to 1 and the coherence times Tdeph and
Tdepol from 1 to 100 s. We perform a similar investigation in
Fig. 10, where instead of varying the coherence times we vary
the success probabilities of the detector successfully clicking
(pdet), successfully emitting a photon from a node (pem), and
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FIG. 8. Maximum generation rates for several different values
of the coherence times (1–10 s) and gate fidelities (0.98 to 1) and
for several different target fidelities, for a distance of 50 km and a
single information processing node. Down and to the right in the
plot indicate better parameters. All the other parameters are fixed to
those of set 2 (Table II) or the base parameters (Table I). The target
fidelities are (a) F = 0.7, (b) F = 0.8, and (c) F = 0.9, respectively.
We also plot the gradient, indicating the direction and magnitude
of steepest ascent. The blue ring and yellow diamond indicate the
schemes we investigate in Fig. 9.

successfully emitting a photon of the correct frequency (ppps)
simultaneously from 0.8 to 1.

From Fig. 8 we observe that increasing the gate fidelities
has a bigger impact on the ability to generate entanglement
than increasing the coherence times. In the bottom plot of
Fig. 8 we choose two points, indicated by a blue ring and
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FIG. 9. Visualization of the two schemes indicated in the bottom
of Fig. 8 by the blue ring (left) and the yellow diamond (right).
The numbers indicate the number of nodes over which entanglement
has been established, or elementary pair generation (EPG) has been
performed. The “DC” indicates the double-click protocol, and the
“θ = θ∗” indicates a single-click protocol with the θ parameter set
to θ∗. The “r” here indicates the number of rounds the correspond-
ing subtree is attempted. Note the necessity of combining disparate
schemes—in both cases the EPG protocols used are not the same,
and the yellow diamond scheme requires a swap on a distilled and
undistilled pair.

a yellow diamond. The schemes corresponding to those two
points are visualized in Fig. 9. The nonmonotonicity of the
maximum generation rate most noticeable in Fig. 8(a) is an
artifact from the heuristics occasionally leading to worse pro-
tocols, even with improved experimental parameters.

We make two observations about the algorithm from Fig. 9.
First, the two schemes in Fig. 9 require swaps and distillation
on states that have been created in different ways. This shows
that already for only a single node entanglement distribution
benefits from combining schemes in asymmetric fashion, even
if the repeater chain itself is symmetric. Second, the algorithm
is sensitive to parameter changes. We see that a small change
in the parameters allows the diamond scheme to achieve a
generation rate approximately four times as large as the ring
scheme. This demonstrates further that the large space of
explored schemes can provide a benefit.

The tradeoff between the success probability and the gate
fidelities in Fig. 10 appears more complex. Not surprisingly,
we observe that increasing the success probabilities has the
greatest effect on the generation time and the ability to gen-
erate entangled states. In contrast to the previous scenario
where only varying the gate fidelities leads to jumps in the
generation time, we do not observe a similar phenomenon
when varying the success probabilities. This is due to the fact
that changing the success probabilities changes the generation
time primarily by reducing the required number of attempts.
Thus, if the minimal number of attempts rmin is well approxi-
mated by a continuous function r̂min(p) in p, we expect to see
no jumps in the generation time as we vary p. More formally,
we say that rmin approximates r̂min well if rmin(p)−r̂min(p)

rmin(p) ≈ 0.
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FIG. 10. Maximum achieved generation rates for several differ-
ent values of the success probabilities (i.e., we vary pdet = pem = pPS

simultaneously from 0.8 to 1) and gate fidelities (0.98 to 1), and for
several different target fidelities, for a distance of 50 km and a single
intermediate node for information processing platforms. Down and
to the right in the plot indicate better parameters. All the other pa-
rameters are fixed to those of set 2 (Table I) and the base parameters
(Table IV). The target fidelities are (a) F = 0.7, (b) F = 0.8, and
(c) F = 0.9, respectively. We also plot the gradient, indicating the
direction and magnitude of steepest ascent.

Since rmin(p) = � log2(1−pmin )
log2(1−p) �, an obvious choice for r̂min is

log2(1−pmin )
log2(1−p) . Note that we then have that |rmin(p) − r̂min(p)| �

1, and that for p small enough � log2(1−pmin )
log2(1−p) � � 1. Since the

total success probability of establishing an elementary pair is
small, we have indeed that rmin(p)−r̂min(p)

rmin(p) ≈ 0, explaining the
lack of sudden jumps. Furthermore, we find from Fig. 10(c)
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FIG. 11. Secret-key generation using the six-state protocol, for
several different values of (a) the coherence times (1–10 s) and gate
fidelities (0.98 to 1) and (b) the success probabilities (i.e., we vary
pdet = pem = pPS simultaneously from 0.8 to 1) and gate fidelities
(0.98 to 1) for a distance of 50 km and a single intermediate node
for information processing platforms. Down and to the right in the
plot indicate better parameters. All the other parameters are fixed to
those of set 2 (Table II) and the base parameters (Table IV). We also
plot the gradient, indicating the direction and magnitude of steepest
ascent.

that, for almost all values of success probabilities and gate
fidelities, it is impossible to generate a state with a fidelity of
0.9.

One of the near-term applications of a quantum repeater
chain is the generation of a secret key. This motivates investi-
gating the rate at which a secret key can be generated per unit
time for several parameter ranges. Concretely, in Figs. 11(a)
and 11(b) we investigate the same experimental settings and
parameters as in Figs. 8 and 10. Each point corresponds to the
maximum achieved secret key per unit time generated using a
six-state protocol with advantage distillation [86] for each of
the schemes in the output of our algorithm.
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As in Fig. 8, we find in Fig. 11(a) that for increasing
both the generation rate and secret-key rate increasing the
coherence times is most beneficial only up to a certain point,
after which the gate fidelities become more important. As
in Fig. 10, we observe in Fig. 11(b) that almost always the
success probabilities are more critical than the gate fidelities
for increasing the secret-key rate.

2. Intermediate-distance entanglement generation
using IP platforms

We expect the addition of nodes to become more bene-
ficial as the distance over which entanglement is generated
increases, conditioned on the fact that the experimental pa-
rameters are sufficiently high. In this section, we aim to
quantify how good the experimental parameters need to be
for this to be true. This motivates us to perform the heuristic
optimization for the entanglement generation for greater dis-
tances, and with improved parameter sets. More concretely,
we investigate the achieved generation times and fidelities for
intermediate distances (i.e., 50 to 200 km) for the different
experimental parameters proposed in Table II. We start with
Fig. 12(a), where we reexamine the scenario of Fig. 7 of a
total distance of 50 km. We now perform the heuristic op-
timization with parameter sets 2 and 3, where we consider
implementing either no or a single intermediate node. It is
clear from Fig. 12(a) that introducing a node over a distance
of 50 km only improves the generation time by a modest
amount for low fidelities, even with increased parameters.
If we increase the total distance to 100 km, where we now
also include parameter set 4, we find in Fig. 12(b) that a
single node proves advantageous for almost all fidelities over
all three considered parameter sets. In Figs. 12(c) and 12(d)
we consider greater distances of 150 and 200 km, where we
also include the heuristic optimization with two intermedi-
ate nodes. We observe that while having no node is clearly
inferior to having at least one, introducing two nodes also
outperforms a single node for most fidelities and sets of pa-
rameters for these distances. This suggests that the values
of parameter set 3 (see Table II) are a relevant objective to
reach for fast near-deterministic entanglement generation with
information processing platforms.

We investigate the schemes for the above scenario of
200 km in Fig. 13, where we depict the schemes that achieve
the lowest (nontrivial) fidelity and the highest fidelity. Inter-
estingly, the scheme that achieves the highest fidelity requires
that the different elementary pairs are generated both with the
double- and single-click protocol. This exemplifies the need
for including such asymmetric schemes in our optimization,
which appears to become more important for higher fidelities.

The numerical investigation until this point has been
dedicated to symmetric repeater chains. However, realistic
quantum networks will be inhomogeneous and nodes will not
be equally separated. In Fig. 26 in Appendix G we show the
optimization results when considering an asymmetric repeater
chain over 200 km with three intermediate nodes equally sep-
arated. The parameters used are parameter set 4 for the three
intermediate nodes, and parameter set 2 for the nodes corre-
sponding to Alice and Bob (see Table II). Such a situation
can arise if the end users have access to different technology
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FIG. 12. Results of the achieved fidelity and generation time for
total distances of 50 (a), 100 (b), 150 (c), and 200 (d) km using
parameter sets 2 (solid), 3 (dashed-dotted), and 4 (dashed) (see Ta-
ble II) for information processing nodes, where we consider having
0 (green), 1 (purple), or 2 (yellow) of such intermediate nodes.

than the network operator. In this setting, we compare the
results of a full optimization with an optimization over BDCZ
schemes, a class of schemes similar to the ones proposed
in [13,14]. In particular, we include under the BDCZ class
schemes that only combine identical pairs of schemes for
connection and distillation. This class is different than the
one in [20] as it allows optimization over the elementary pair
generation protocols but, on the other hand, it does not include
distillation schemes based on pumping [20]. We find that the
full optimization gives an increased generation rate of up to a
factor of 10 over BDCZ schemes.

3. Long-distance entanglement generation using IP platforms

Generating near-deterministic entanglement over larger
distances requires excellent experimental control. It is not
clear how the number of nodes and the experimental param-
eters affect our ability to generate entanglement. To this end,
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FIG. 13. Visual representation of the schemes with the lowest
nontrivial fidelity (a) and highest fidelity (b), for a distance of 200 km
with information processing platforms using parameter set 4 (see
Table II) and two intermediate nodes or three hops. The numbers in
the vertices indicate the number of nodes over which entanglement
has been established. The “θ = θ∗” indicates a single-click protocol
with the θ parameter set to θ∗. The “r” indicates the number of
rounds the corresponding subtree is attempted. We find that the
second scheme performs distillation between two elementary pairs
generated with a single- and double-click protocol, demonstrating the
benefit of including such distillation protocols in our optimization.

we consider here the generation of high fidelity entanglement
over distances of 200, 400, 600, and 800 km. To gain an
understanding of the relevant parameters, we study the effects
of increasing gate fidelities and the memory coherence sepa-
rately in Fig. 29 in Appendix G. We observe in Fig. 29 that
increasing the coherence times yields a greater benefit than
increasing the gate fidelities for these distances and parame-
ters. In particular, increasing the coherence times allows for
the generation of entanglement over larger distances, while
increasing the gate fidelities effectively extends the ranges
of fidelity over which entanglement is generated with the
same generation time. We note here that the parameters pem,
ppps, and pdet (corresponding to the probability of emitting
a photon from the memory, emitting in the correct mode or
frequency, and detecting a photon successfully, respectively)
remain fixed, which inhibits the potential benefits of including
more nodes.

We have found that information processing platforms
with sufficiently high parameters are a good candidate for
near-term entanglement generation. In particular the success
probabilities are an important factor for the generation of
entanglement. However, even with multiple nodes, the max-
imum fidelity that can be reached is limited when attempting
entanglement generation at large distances.

B. Optimization results for MP platforms

Having investigated the performance of information pro-
cessing platforms with regards to entanglement generation,
we now explore entanglement generation with multiplexed
elementary pair generation platforms. Not only are we in-
terested in how well entanglement can be generated with a
repeater chain built using a multiplexed elementary pair gen-
eration platform, but also in how the performance differs from
information processing platforms. As explained in Sec. I, we
expect that MP platforms perform better than IP platforms
for larger distances, provided the experimental parameters are
high enough. Our aim for this section is thus to investigate for
which parameters and network configurations this becomes
true.

First, let us discuss the set of protocols, the algorithm
parameters, and the hardware parameters we will consider.

We consider a protocol for elementary pair generation with
a tuneable parameter, one for swapping, and no protocol for
distillation.

The elementary pair generation protocol (see Sec. III B)
has one free parameter, the mean photon number Ns. Similar
to information processing platforms, we also optimize over
values of the mean photon number by considering a range
of values of Ns. In this case, the range is from 2 × 10−4 to
1
2 (

√
5 + 2

√
Fthreshold(Fthreshold+3)

Fthreshold
− 3), in steps of 10−4. The lowest

value of 2 × 10−4 was empirically found from the optimiza-
tions performed to be a good conservative lower bound, while
the upper bound corresponds to achieving a fidelity of the
elementary pair with fidelity equal to Fthreshold when η → 0
[see Eq. (E1)] [87]. Setting Fthreshold = 1

2 leads to |E | = 1039.
The swapping protocol is a photonic Bell state mea-

surement with fixed efficiency depending on the number of
ancillary photons (see Table IV). We thus have that |S| =
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TABLE III. Base parameters used for the multiplexed elementary
pair generation platforms considered in this paper.

tprep (entanglement preparation time) 6 μs
DcS (dark count rate) 10 per second
L0 (attenuation length) 22 km
nRI (refractive index of the fiber) 1.44 [83]

1. Similar to the optimization with information processing
platforms, to reduce the parameter space, we implement the
banded swapping heuristic (see Sec. II D).

We use the same algorithm parameters as with the in-
formation processing platform optimization. For all of the
schemes r ranges from rmin to rmax in (at most) rdiscr = 200
steps, where rmin and rmax are chosen such that the success
probabilities are equal to pmin and pmax, respectively. We set
εswap = εdistill = 0.05, εF = 0.01, εp = 0.02, and pmin = 0.9.
We consider only symmetric repeater chains, i.e., all the nodes
have the same parameters and are equidistant.

Regarding the hardware parameters, the base parameters
are given in Table III, while the four sets of parameters are
given in Table IV.

1. Entanglement generation for short distances with MP platforms

We expect that multiplexed elementary pair generation
platforms provide mostly a benefit over information process-
ing platforms for larger distances. However, it is still of
interest to investigate the performance of multiplexed elemen-
tary pair generation platforms for shorter distances. This is to
gain an understanding of what can be done experimentally in
the very near term. Thus, as in Sec. IV A 1, we first explore en-
tanglement generation with MP platforms for short distances.
We performed the heuristic optimization with parameter set
1 for distances of 15, 25, and 50 km, with zero, one, or two
intermediate nodes. We found that, except for a distance of
15 km with no nodes, no entanglement could be generated.
Even in the scenario of 15 km with no nodes, the maximum
fidelity that could be generated was approximately 0.56. It is
thus clear that, at least with the used parameters, information
processing platforms are better than multiplexed elementary
pair generation platforms for entanglement generation over
short distances. We now investigate what are the relevant
parameters to increase for MP platforms for entanglement
generation over short distances. To this end, we perform a
parameter exploration for a distance of 15 km. In particular,
we vary the success probabilities and the efficiency coherence
times from the values of parameter set 1 to those of set 2 in
Table IV (see Fig. 14).

TABLE IV. The different sets of parameters considered for mul-
tiplexed elementary pair generation platforms in this paper.

Set 1 Set 2 Set 3 Set 4

Tcoh (efficiency coherence times) 10−2 s 10−1 s 100 s 101 s
Nmodes (number of modes) 104 105 106 107

p (success probabilities) 0.9 0.95 0.99 0.999
pBSM (BSM efficiency) 1
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FIG. 14. Maximum generation rates for several different values
of the success probabilities (i.e., we vary pdet = pem = pPS simul-
taneously) and efficiency coherence times, and for several different
target fidelities, for a distance of 15 km and a single node for MP
platforms. Down and to the right in the plot indicate better parame-
ters. All the other parameters are fixed to those of set 2 (Table IV) or
the base parameters (Table III). The target fidelities are (a) F = 0.7,
(b) F = 0.8, and (c) F = 0.9, respectively. We also plot the gradient,
indicating the direction and magnitude of steepest ascent.

We observe that with modest increases in the efficiency
coherence times and success probabilities, entanglement gen-
eration becomes significantly more efficient. In particular,
parameter set 1 (i.e., top left corner of the parameter plots)
is only good enough for the generation of entanglement of
very low fidelity (≈0.56), while already a secret-key rate of
≈500 bits/s can be achieved for parameter set 2 (see Ta-
ble IV). We conclude from the plots that, for current and
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FIG. 15. Results of the achieved fidelity and generation time
for total distances of 50 (a), 100 (b), 150 (c), and 200 (d) km
using parameter sets 2 (solid), 3 (dashed-dotted), and 4 (dashed)
(see Table IV) for multiplexed elementary pair generation platforms,
where we consider having 0 (green), 1 (purple), or 2 (yellow) of such
intermediate nodes.

near-term parameters and short distances, increasing the
success probabilities is more important than increasing the
efficiency coherence times.

2. Intermediate-distance entanglement generation
using MP platforms

In the previous section we have found that at short dis-
tances MP platforms do not fare as well as IP platforms.
This motivates us to investigate for which parameters and
distances this does become the case. We thus investigate here
entanglement distribution over distances of 50, 100, 150, and
200 km, where we consider the improved parameters found in
sets 2, 3, and 4 in Tables III and IV in Fig. 15.
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FIG. 16. Secret-key generation using the six-state protocol, for
several different values of the efficiency coherence times (10−2–
100 s), and number of modes (104–107), for a distance of 200 km
and a single node for MP platforms. Down and to the right in the
plot indicate better parameters. All the other parameters are fixed to
those of set 2 (Table IV) and the base parameters (Table III). We also
plot the gradient, indicating the direction and magnitude of steepest
ascent.

We find that, for most target fidelities in Figs. 15(a), 15(b)
and 15(c), the generation time is relatively independent of the
desired fidelity. We now explain this behavior. The fidelity is
most strongly controlled by the parameter Ns—lowering Ns

allows us to increase the fidelity, but lowers the success prob-
ability p of the elementary pair generation. However, the total
success probability of generating at least one elementary pair
1 − (1 − p)Nmodes does not decrease significantly, due to the
large number of modes Nmodes. In Appendix E we investigate
how the minimum number of modes changes, as a function of
the desired fidelity of the elementary pairs. We find that the

required number of modes scales at least as
exp( L

L0
)

(1−F )2 , where L is
the distance between nodes and L0 is the attenuation length.

Since MP platforms are expected to have an advantage
over IP platforms for longer distances, we investigate the
secret-key rate per unit time for a total distance of 200 km
(instead of 50 km for information processing platforms, see
Figs. 8 and 11), where we vary the number of modes and the
efficiency coherence time. In Fig. 16 we find that for most
parameters the secret-key rate per unit time is zero. As in the
previous parameter explorations performed, we observe that
increasing the efficiency coherence times is only (strongly)
beneficial up to a certain point (which depends on the number
of modes in this case), after which increasing the efficiency
coherence times further does not help. Interestingly, increas-
ing the number of modes has the greatest effect on the secret
key per unit time. Increasing the number of modes allows us to
push the mean photon number to smaller numbers, effectively
increasing the fidelity that can be generated within the same
time window.
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FIG. 17. Results of the heuristic optimization for total distances
of 200, 400, and 600 km, for MP platforms and ten intermediate
nodes. We use parameter set 2 for MP platforms (see Table III) as
a baseline, where we set the success probability of the Bell state
measurements to 3

4 , 7
8 , and 15

16 in the first, second, and third column,
respectively. We set the efficiency coherence time Tcoh to 1 and 10 in
the first and second row, respectively.

3. Long-distance entanglement generation with MP platforms

We observe by comparing Figs. 12 and 15 that MP plat-
forms start to outperform IP platforms for distances of around
≈200 km. Here we are interested in whether multiplexed ele-
mentary pair generation platforms still perform well for even
greater distances, which is the relevant scenario for large-scale
quantum networks.

Let us first focus on the effect of the efficiency coherence
times and Bell state measurement efficiency on long-distance
entanglement generation. In Fig. 17 we investigate a repeater
chain with ten nodes with the parameters from set 2; the
success probabilities of the Bell state measurements given by
3
4 , 7

8 , or 15
16 (corresponding to a number of ancillary photons

2, 6, and 14, respectively); and the efficiency coherence time
Tcoh set to 1 or 10. We find that even with the most optimistic
parameters it is not possible to generate entanglement for
distances of 800 km with ten nodes.

This leads to our results shown Fig. 18, where we plot
the heuristic optimization results using parameter set 4, for
distances of 200, 400, 600, and 800 km, and the number of
nodes running from 1 to 4. We find indeed that, even for
a distance of 800 km, entanglement can still be generated
at a high fidelity (≈0.95). This, combined with the fact that
entanglement generation for the same distance is not possible
in Fig. 17, suggests that it is essential to also increase the
number of modes and the success probabilities to generate
entanglement over large distances.

We give more detail of two schemes found from the op-
timization of Fig. 18. In particular, in Fig. 19 we give the
schemes that achieve the lowest nontrivial fidelity and highest
fidelity, respectively. As expected, the second scheme uses
smaller values of the mean photon number Ns for the el-
ementary pair generation. This increases the fidelity of the
elementary pairs, at the cost of a lower success probability.
Indeed, the number of attempts for the elementary pair gener-
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FIG. 18. Results of the achieved fidelity and generation time
for total distances of 200 (a), 400 (b), 600 (c), and 800 (d) km
using parameter set 4 (see Table IV) for MP platforms, where we
consider having 1 (purple), 2 (yellow), 3 (blue), or 4 (orange) of such
intermediate nodes.

ation ranges from 1 to 5 and from 8 to as high as 128, for the
schemes in Figs. 19(a) and 19(b), respectively.

Here, we also note that there is a nontrivial interplay
between the exponential decrease in output efficiency and
performing more rounds (i.e., attempting more times to gen-
erate the elementary pairs) to increase the success probability.
As we show in Appendix F, the requirement that each step
succeeds with probability at least pmin can lead to a scenario
where under a slight change of the network or parameters
entanglement suddenly cannot be generated anymore.

Interestingly, we observe that the second scheme in Fig. 19
requires a swap between multihop links of lengths 5 and 2 at
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FIG. 19. Visual representation of the schemes with the lowest
nontrivial fidelity (a) and highest fidelity (b), respectively, for a
distance of 800 km with MP platforms using parameter set 4 (see
Table IV) and four intermediate nodes or five hops. The “Ns= N∗

s ”
indicates the elementary pair generation (EPG) protocol with mean
photon number N∗

s used for MP platforms discussed in the main
text. The “r” here indicates the number of rounds the corresponding
subtree is attempted. Note that the second scheme requires a swap
between two schemes over multihop links of length 5 and 2 at the
end.
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FIG. 20. Optimization results for a total distance of 4000 km,
using a combination of multiplexed and information processing plat-
forms. We use parameter sets 4 from both the multiplexed and
information processing part of the platform (see Tables II and IV).
The solid lines are the optimization without the bisection heuristic
discussed in Sec. II D, while the dotted lines are with the bisection
heuristic.

the end. This shows that, as with information processing plat-
forms, exploring more complex asymmetric schemes provides
a benefit over more simplistic schemes.

C. Long-distance entanglement generation using
a combination of IP and MP platforms

Here we investigate combining the strengths of IP plat-
forms with those of MP platforms. For this, we generate
the elementary pairs with MP platforms, after which all the
operations are performed with IP platforms. We optimize then
over the same protocols as was done for IP and MP platforms
(see Secs. IV A and IV B). We expect that, with sufficiently
good parameters, the combination of the two outperforms the
individual platforms, and we can distribute entanglement over
significantly larger distances.

Using the parameter set 4 of both platforms, we plot the
results for 15, 25, and 35 nodes in Fig. 20, for a total distance
of 4000 km. Furthermore, we also plot a comparison here
when the optimization includes the bisection heuristic (see
Sec. II D).

From Fig. 20 we observe that, by combining both the
strengths from multiplexing and information processing plat-
forms, it is possible to generate entanglement with a high
fidelity near-deterministically over large distances by using a
large number of nodes. We find that the optimization results
with the bisection heuristic are similar to the results without,
while being significantly faster to perform. We find for the
cases of 15, 25, and 35 intermediate nodes that the algorithm
runtime drops from an order of magnitude of ≈100 min
to �10 min. We thus find that the bisection heuristic al-
lows for a faster heuristic optimization, without the resultant
schemes becoming significantly worse than without the bisec-
tion heuristic.

We conclude our results with a plot comparing entangle-
ment generation with the three implementations considered in
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FIG. 21. Results of the heuristic optimization for a total distance
of 800 km, where we compare the three implementations considered
in this paper, using five (solid) or ten (dashed) intermediate nodes.
We use parameter sets 4 from information processing (IP) platforms,
multiplexed elementary pair generation (MP) platforms, and the
combination of the two (IP+MP). The two crosses in the plot indicate
the schemes depicted in Figs. 27 and 28, respectively.

this paper for a distance of 800 km and five or ten intermediate
nodes. We find in Fig. 21 that, for large distances, the com-
bination of IP and MP platforms outperforms the individual
platforms. In fact, it can generate target fidelities below ≈0.9
an order of magnitude faster than the MP platform. We see
that, as expected, information processing platforms perform
significantly worse, where the maximum fidelity is limited to
≈0.6. This is due to the effects of losses during elementary
pair generation becoming too strong. This can of course be
counteracted by using more nodes, but this results in too
much decoherence. This suggests that, for large distances,
MP platforms outperform information processing platforms
for near-deterministic entanglement generation.

We depict the two schemes corresponding to the two
crosses found in Fig. 21 in Figs. 27 and 28 in Appendix G,
respectively. The first of these (blue cross) corresponds to
the lowest nontrivial fidelity achieved, while the second one
(red cross) corresponds to a state with fidelity F = 0.9605,
generated in time T = 17.7 ms. A higher fidelity was not
chosen, due to those schemes becoming too big to fit on a
page, demonstrating the nontrivial nature of the optimization
performed here.

V. CONCLUSIONS

The future quantum internet has the potential to change
our information society by enabling the implementation of
quantum communication tasks. For many of these tasks the
key resource is the availability of high fidelity entanglement
at the necessary rates. However, given the complex relation
between experimental parameters, entanglement distribution
protocols, and quantum network design, it is unclear what
are the necessary parameters to distribute entanglement except
for the most basic scenarios. Here, we develop an algorithm
to partially answer this question. In particular, our algorithm

optimizes the near-deterministic distribution of entanglement
over chains of quantum repeaters which are abstractly charac-
terized by a small set of relevant parameters.

Even in this abstract setting, the number of possible proto-
cols for a given quantum repeater chain is too large to attempt
brute-force optimization. To make optimization feasible, we
introduce a number of heuristics that render optimization fea-
sible by dramatically reducing the runtime of the algorithm.
Moreover, the heuristics can also be interpreted as approxi-
mate rules for protocol design as numerical results show that
optimal protocols follow the heuristics. We could expect these
heuristics to apply to more dynamic schemes, where the infor-
mation of the current present entanglement in the network is
used to make decisions on the fly by the network.

Any realistic quantum repeater network will be asymmet-
ric in the distances between the nodes and the experimental
parameters. We have applied our algorithm to an asymmetric
repeater chain, and have found that our optimization results
strongly outperform the results from a simplified optimization
over symmetric or hierarchical schemes, such as those pre-
sented in [13,14].

We have used the algorithm not only for optimizing en-
tanglement distribution, but also for parameter exploration.
In particular, we have optimized entanglement distribution
for several parameter regimes investigating the most relevant
parameters for both information processing and multiplexed
elementary pair generation platforms. For both, we find that
success probabilities (e.g., the emission probabilities, detector
efficiencies, etc.) have a strong impact on performance.

In contrast with previous work, our focus on near-
deterministic schemes allowed us to make exact statements
about the generation time and fidelities of the distributed
states. The ability to deliver states with high probability at
specific times could be of benefit for routing entanglement in
a network.

In conclusion, here we have developed an algorithm that
allows one to efficiently optimize and explore the parameter
space for near-deterministic entanglement distribution over
repeater chains. We have investigated a number of represen-
tative platforms but the algorithm is not particular to these
choices. We make the source code publicly available [25] to
facilitate the investigation of other implementations, parame-
ters, and/or error models.
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APPENDIX A: COMPLEXITY OF THE ALGORITHM

Here we discuss the complexity of the algorithm. For this,
first we bound from below the number of schemes that a brute-
force approach without heuristics would need to explore. We
then incorporate the heuristics and derive an upper bound
on the number of schemes of the algorithm as described in
Sec. II D. We finalize by deriving an upper bound on the
number of schemes in the particular case of “symmetric”
repeater chains, that is, chains where each node has the same
parameters and adjacent nodes are connected by identical
elementary links.

1. Lower bound on the complexity of the brute-force algorithm

Here we derive two lower bounds on the number
of schemes considered by a brute-force algorithm. The
two lower bounds are given by O[(rdiscr|E ||S||D|)2mn

] and
O{[(rdiscr )2|E ||S|]n}. These bounds correspond to the case
with and without distillation protocols considered, respec-
tively. Here, n denotes the number of elementary links in
the repeater chain (i.e., one less than the number of nodes),
m denotes the maximum number of distillation rounds, rdiscr

denotes the maximum different values of the number of at-
tempts, and |E |, |S|, and |D| denote the number of elementary
pair generation, swapping, and distillation protocols, respec-
tively.

To make the analysis tractable, while still obtaining a strict
lower bound on the number of schemes, we analyze a simpler
algorithm that explores a reduced set of swapping schemes.
At level i, instead of exploring all combinations of swapping
between schemes for every pair of adjacent (multihop) links
with a combined length i, this algorithm only considers swap-
ping between schemes on the leftmost link of length i − 1 and
one of length 1, i.e., the entanglement is propagated by one
elementary link at each level. Furthermore, we will assume
the worst-case scenario, where all generated schemes have
success probability greater than pmin, meaning that all of them
will be stored.

We first present a sketch of our derivation of the lower
bound. We find two maps fswap and fdistill which send the
number of schemes ζ before the swap operation and m distilla-

tion rounds to a lower bound on the number of schemes after
the swap and distillations, respectively. Denoting by ζinit the
number of schemes over an elementary link after distillation,
a lower bound for the number of schemes after two hops is
then given by

( fdistill ◦ fswap)(ζinit ). (A1)

Similarly, after n − 1 hops we find the following lower bound:

[( fdistill ◦ fswap)]n−1(ζinit ). (A2)

In what follows, we will find the maps fswap, fdistill, and
ζinit. The map fswap will depend implicitly on rdiscr, |S|, and
ζinit, while fdistill depends implicitly on rdiscr, |D|, and m.

Let us start with fswap. As mentioned above, for each multi-
hop link of length i, the simplified algorithm combines each of
the ζ schemes of the multihop link of length i − 1 with each
of the ζinit schemes stored for an elementary link. We obtain
the following map on the number of schemes:

ζ
fswap−−→ rdiscr|S|ζinitζ . (A3)

Let us now find the map fdistill. Assuming we start with
ζ schemes, each of the |D| distillations will generate a new
scheme for each possible pair of schemes, and for each of
the rdiscr possible values of attempts. Thus, after a single dis-
tillation round, we end up with rdiscr|D|ζ 2 + ζ � rdiscr|D|ζ 2

schemes, where we have only kept the schemes which had a
distillation step at the end.

We can now repeat the above for m = 2 distillation rounds,
by setting ζ = rdiscr|D|ζ 2. We then find that for m = 2 distil-
lation rounds a lower bound is given by rdiscr|D|(rdiscr|D|ζ 2)2.
In general, after m distillation rounds we find that

ζ
fdistill−−→ (rdiscr|D|)2m−1ζ 2m

. (A4)

Thus, starting from a number ζ of schemes, the com-
position of swapping with a scheme on an elementary link
[Eq. (A3)] and then distilling [Eq. (A4)] gives us the following
map for the lower bound on the number of schemes:

ζ
fdistill◦ fswap−−−−−→ (rdiscr|D|)2m−1(rdiscr|S|ζinitζ )2m = �ζ 2m

, (A5)

where we define � ≡ (rdiscr|D|)2m−1(rdiscr|S|ζinit )
2m

, which is
independent of ζ .

Repeating the above map in Eq. (A5) n − 1 times on ζinit (the number of schemes stored over an elementary link) yields the
following lower bound:

ζinit
fdistill◦ fswap−−−−−→ �(ζinit )

2m fdistill◦ fswap−−−−−→ �[�(ζinit )
2m

]2m fdistill◦ fswap−−−−−→ · · · = �1+2m+22m+...+2m(n−2)
ζinit

2m(n−1) = �
2m(n−1)−1

2m−1 (ζinit )
2m(n−1)

. (A6)

The only ingredient missing from our analysis now is ζinit, the number of schemes on an elementary link after m distillation
rounds. First, for elementary pair generation there are rdiscr different values of attempts per elementary pair generation protocol.
In other words, for each of the |E | elementary pair generation protocols that can be performed, there are rdiscr different choices
of r, leading to a total of |E |rdiscr schemes. To find the number of schemes after m distillation rounds we apply our map fdistill to
|E |rdiscr and find that

ζinit ≡ (rdiscr|D|)2m−1(|E |rdiscr )
2m

. (A7)

Inserting Eq. (A7) into (A6) and expanding gives

�
2m(n−1)−1

2m−1 (ζinit )
2m(n−1) = {(rdiscr|D|)2m−1[rdiscr|S|((rdiscr|D|)2m−1(|E |rdiscr )

2m
)]2m} 2m(n−1)−1

2m−1 [(rdiscr|D|)2m−1(rdiscr|E |)2m
]2m(n−1)

= (rdiscr )
(2m(n−2) )(4m+1−1)|E |(2mn+1 )(2m+1)|S|2m(n−1) |D|(2m(n−2) )(22m+1−2m−1) = O[(rdiscr|E ||S||D|)2mn

]. (A8)
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We note that this bound becomes trivial when no distillation is performed, i.e., m = 0. This is due to the fact that lower-order
terms were ignored in the number of schemes after distilling. We treat the m = 0 case separately here. For the case of no
distillation, we perform rdiscr|S| different swap protocols for n − 1 times. Since we start with a total number of rdiscr|E | schemes
on the elementary links, the total number of schemes is then given by

(rdiscr|S|)n−1(rdiscr|E |)n = (rdiscr )
2n−1(|E ||S|)n−1 = O{[(rdiscr )

2|E ||S|]n}. (A9)

We see that with distillation (i.e., m � 1) the number of schemes to consider grows superexponentially in the number of
elementary links n, while without distillation m = 0 the number of schemes grows exponentially. It is clear that a brute-force
optimization becomes infeasible for any reasonable number of protocols (i.e., |E |, |S|, |D|), number of distillation rounds m, and
elementary links n.

2. Upper bound on the complexity of the heuristic algorithm

In this section we consider the complexity with the heuristics implemented. The upper bound we find scales as O[n2 log2(n)]
for an arbitrary repeater chain, where n is the number of elementary links in the repeater chain. As discussed in the main text,
the optimization can be simplified for the scenario of a repeater chain where every node has exactly the same parameters and the
distance between each of the repeaters is equal. For such a symmetric repeater chain, we find a scaling of O[n log2(n)].

Let us first briefly discuss the effects the heuristics have on the complexity, before upper bounding the number of schemes.
First, we note here that in the worst-case scenario all the schemes are incomparable, leading to no pruning. Second, the
coarse-graining of the fidelity and probability imposes an upper limit on the considered schemes. The coarse-graining fixes the
maximum stored schemes to be � (1−Fthreshold )

εF
�� (1−pmin )

εp
� per (multihop) link. For instance, the number of schemes for elementary

pair generation does not change with the heuristic, namely, it remains n|E |rdiscr in total. However, at most � (1−Fthreshold )
εF

�� (1−pmin )
εp

�
of these are stored per elementary link.

Let us now consider swapping. The algorithm restricts the creation of a scheme on a multihop link of length i (equivalently,
a link requiring i hops) to swapping two links of length i

2 ± log2(i − 1), leading to at most 2�log2(i − 1)� + 1 different options
[see Eq. (5)]. The banded swapping heuristic further reduces swapping to schemes that verify Eq. (6) from the main text:∣∣∣∣ log2(F1)

i1
− log2(F2)

i2

∣∣∣∣ � εswap.

This equation becomes in the asymptotic limit

F1

F2
� exp

(
iεswap

2

)
,

since i1 ∼ i2 ∼ i
2 , and where we have assumed without loss of generality that F1 � F2. Now note that Fthreshold � 1

2 , which
implies that 1

2 � F1
F2

� 2. We thus have that, in the asymptotic limit, the banded swapping heuristic becomes void if εswap is fixed.

This means that asymptotically the algorithm considers the full rdiscr
(1−Fthreshold )2(1−pmin )2

(εF εp)2 schemes for swapping.

The last heuristic is banded distillation. For a fixed distillation protocol, it reduces the number of schemes for performing
distillation to at most 2� εdistill

εF
�� 1−pmin

εp
�. Since there are � (1−Fthreshold )

εF
�� (1−pmin )

εp
� stored schemes, we find the following upper bound

on the considered schemes for distillation for a single multihop link, 2rdiscr|D|m εdistill (1−Fthreshold )(1−pmin )2

(εF εp)2 . We have removed here

and in what follows the ceiling functions, since we are interested in the asymptotic complexity and increasing readability.
Combining the previous arguments, we find the following upper bound:

n|E |rdiscr + rdiscr

n∑
i=2

(n − i + 1)

(
(2�log2 (i − 1)� + 1)|S| (1 − Fthreshold)2(1 − pmin)2

(εF εp)2

+ 2m|D|εdistill(1 − Fthreshold)(1 − pmin)2

(εF εp)2

)

= rdiscr

(
n|E | + (1 − Fthreshold)(1 − pmin)2

(εF εp)2

n∑
i=2

(n − i + 1)|S|((2�log2 (i)� + 1)(1 − Fthreshold) + 2m|D|εdistill )

)

∼ rdiscr

(
n|E | + (1 − Fthreshold)(1 − pmin)2

(εF εp)2

(
2(1 − Fthreshold)|S|n2 log2 (n) + 2m|D|εdistill

n2

2

))

= rdiscr

(
n|E | + n2 (1 − Fthreshold)(1 − pmin)2

(εF εp)2 (2(1 − Fthreshold)|S| log2 (n) + m|D|εdistill )

)
. (A10)

We observe that the algorithm is O[n2 log2 (n)], where the prefactor is given by 2|S|rdiscr(
(1−Fthreshold )(1−pmin )

εF εp
)
2
.
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In the case of a symmetric repeater chain (i.e., every node has exactly the same parameters and the distance between
each of the repeaters is equal) we can simplify the optimization by exploiting the symmetry. That is, the optimization
done over a (multihop) link of length i only needs to be done once, as opposed to n − i + 1 times in the general setting.
Furthermore, there are only �log2 (i − 1)� + 1 unique ways to perform swapping. The number of schemes is then upper bounded
by

|E |rdiscr + rdiscr

n∑
i=2

(
�(log2 (i − 1)� + 1)|S| (1 − Fthreshold)2(1 − pmin)2

(εF εp)2 + 2m|D|εdistill(1 − Fthreshold)(1 − pmin)2

(εF εp)2

)

∼ rdiscr|E | + rdiscr
(1 − Fthreshold)(1 − pmin)2

(εF εp)2 ((1 − Fthreshold)|S|n log2 (n) + nm|D|εdistill ). (A11)

We observe that for the symmetric scenario the algorithm is O[n log2 (n)], where the prefactor is given by

rdiscr|S|( (1−Fthreshold )(1−pmin )
εF εp

)
2
. As mentioned before, the algorithm developed supports both the general and symmetric

case.

APPENDIX B: ANALYSIS OF THE HEURISTICS

The algorithm detailed in this paper uses four different
parameters to reduce the search space of the optimization,
namely, εF , εp, εswap, and εdistill (see Sec. II D). The param-
eters εF and εp are responsible for the coarse-graining in
the algorithm, while the parameters εswap and εdistill govern
the restrictions on the states used for swapping and distilla-
tion, respectively. In this section we investigate the heuristics
and how they affect the algorithm runtime and accuracy of
the optimization, which we use to settle on values for εF ,
εp, εswap, and εdistill. The objective here is to find a good
tradeoff between the algorithm runtime and the accuracy of
the algorithm. We first investigate the coarse-graining, i.e.,
we vary εF and εp. Afterwards, we investigate the effects
of εswap and εdistill on the optimization results. Finally, we
compare the banded swapping heuristic with the naive heuris-
tic, i.e., where we require the two states to be close in
fidelity.

We first vary εF and εp simultaneously when optimizing
over schemes for a distance of 6 km and a single repeater with
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FIG. 22. Optimized schemes for a distance of 15 km using a
single node with the IP parameter set 2 (see Table II) for several
different pairs of εF and εp. Note that as εF and εp approach zero, the
curves converge.

the IP parameter set 2, of which the results can be seen in
Figs. 22 and 23. As expected, there is a tradeoff between the
accuracy of the algorithm and its running time as εF and εp are
varied. While a good tradeoff between the accuracy and the
runtime depends on each specific case, we use these results
to settle in this paper for εF = 0.01 and εp = 0.02. We settle
for these parameters since the important characteristics of the
generation time as a function of the fidelity appear to be sim-
ilar when a more fine-grained optimization is implemented,
without the runtime becoming infeasible.

In Figs. 24(a) and 24(b) we perform an optimization for
several different values of εswap and εdistill, using parameter set
4 with four intermediate nodes for a distance of 300 km. In
Fig. 24(a) we use the banded swapping heuristic [see Eq. (6)],
while in Fig. 24(b) we only swap between states that are εswap

close in fidelity. We observe that the optimization results in
Fig. 24(b) are significantly worse than those in Fig. 24(a),
while Fig. 25 indicates that the runtimes are comparable for
both heuristics. We use these results to settle on εswap =
εdistill = 0.05. Furthermore, we find that the heuristic plays
primarily a role for smaller fidelities. This implies that only for
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FIG. 23. The runtime of the algorithm for the optimizations per-
formed in Fig. 22. Notice the logarithmic scale, indicating the strong
growth rate as εF and εp become smaller.
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FIG. 24. Optimized schemes for a distance of 300 km using four intermediate nodes with the IP parameter set 4 (see Table II) for several
different pairs of εswap and εdistill. (a) Optimization results with banded swapping heuristic. The difference between εswap = εdistill = 0.1 and 0.2
is minimal, differing only slightly for very low fidelities. (b) Optimization results with naive swapping heuristic. Note that the curves converge
in a significantly poorer fashion than in part level (a).

small fidelities there is a benefit in swapping between states
with disparate fidelities.

APPENDIX C: AVERAGE NOISE DUE TO STORAGE

Here we discuss the average noise induced when repeating
a protocol with success probability p until success or until a
maximum number of r attempts. Denote the quantum channel
corresponding to storing for a single round by �. The aver-
age noise channel E[�] corresponds to having the channel
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FIG. 25. Algorithm runtimes for several different values of εswap

and εdistill. The right, solid bars are for the optimization with the
heuristic for swapping found in Eq. (6), while the left, hatched bars
are for the optimization where we only swap between states that
are εswap close in fidelity. We observe that both heuristics lead to
approximately the same runtime behavior, while the results with the
banded swapping heuristic are closer to optimal.

� ◦ � . . . ◦ �︸ ︷︷ ︸
r− j

with probability p(1−p) j−1

1−(1−p)r for 1 � j � r. Note

that we can calculate the average channel instead of the av-
erage density matrix at the output, due to the linearity of
quantum channels.

We consider two types of noise in this paper, depolarizing
and dephasing. These types of noise occur naturally in quan-
tum information processing systems, and have the following
exponential behavior:

Nd (ρ) = e− t
λd ρ + (1 − e− t

λd )
I

2
, (depolarizing)

NZ (ρ) = 1 + e− t
λZ

2
ρ + 1 − e− t

λZ

2

I

2
, (dephasing).

Thus, if we want to calculate the average amount of noise
for depolarizing and dephasing, it suffices to calculate the
average of e−c(k− j) with probability distribution p(1−p) j−1

1−(1−p)r ,

j = {1, . . . , r}, where c ≡ Tattempt

Tdepol/deph
quantifies the noise expe-

rienced in a single attempt for depolarizing and dephasing,
respectively. We find thus that the average channels corre-
spond to having the exponential terms in the above channels
set to

E[e−c(r− j)] =
r∑

j=1

p(1 − p) j−1

1 − (1 − p)r
e−c(r− j)

= pec((1 − p)r − e−cr )

(1 − (1 − p)r )(ec(1 − p) − 1)
. (C1)

Finally, the decay in the success probability for retrieving a
state from a memory for MP platforms is given by E[e−c(r− j)],
where c = Tattempt

Tcoh
.
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APPENDIX D: MODELING OF ELEMENTARY PAIR
GENERATION FOR MP PLATFORMS

Here we detail the calculations performed to derive the
analytical form of the resultant state during elementary pair
generation for MP platforms, and the success probability [see
Eq. (D1)]. We first discuss the effects of the losses on the state
emitted by the PDC sources. Second, the Bell state measure-
ment and the resulting postmeasurement state are discussed.
We will close with a brief discussion on the postselection
of having zero photons. We model all losses in the setup as
a pure-loss channel. Since we restrict ourselves to at most
two-photon excitations in each mode, we truncate the Kraus
operators from [88] to the {|0〉, |1〉, |2〉} subspace and find the
explicit matrix form of the truncated Kraus operators. They
are

A0 =
⎡
⎣1 0 0

0
√

1 − γ 0
0 0 1 − γ

⎤
⎦,

A1 =
⎡
⎣0

√
γ 0

0 0
√

2(1 − γ )γ
0 0 0

⎤
⎦, A2 =

⎡
⎣0 0 γ

0 0 0
0 0 0

⎤
⎦,

where γ = 1 − η is the loss parameter. Note that, even after
truncation, these Kraus operators still form a channel since∑2

i=0 A†
i Ai = I. We now let four such channels act on the

state:

|ψNs〉 = √
p0|00, 00〉 +

√
p1

2
(|10, 01〉 + |01, 10〉)

+
√

p2

3
(|20, 02〉 − |11, 11〉 + |02, 20〉),

where the early and late photonic modes in the direction
towards the memory each evolve under a truncated pure-loss
channel with parameter γ1, and similarly for the two modes
going towards the beamsplitter station with parameter γ2.
This results in a state ρ(Ns, γ1, γ2)a0a1b0b1 between the mem-
ory and the photon just before the beamsplitter. The same
situation holds for the other PDC source, such that the to-
tal state just before the beamsplitter is ρ(Ns, γ1, γ2)a0a1b0b1 ⊗
ρ(Ns, γ1, γ2)c0c1d0d1 , where we have assumed the prepared
states have equal mean photon number and experience equal
losses. Instead of applying the unitary corresponding to the
beamsplitter and then applying the positive operator-valued
measures (POVMs) for the detectors, we can apply the inverse
of the beamsplitter unitary on the POVMs corresponding to
success. Since we assume photon number resolving detectors,
we find our POVM elements corresponding to success to be

Ia0a1 ⊗ |�+〉〈�+|b0c0 ⊗ |�+〉〈�+|b1c1 ⊗ Id0d1 ,

Ia0a1 ⊗ |�−〉〈�−|b0c0 ⊗ |�+〉〈�+|b1c1 ⊗ Id0d1 ,

Ia0a1 ⊗ |�+〉〈�+|b0c0 ⊗ |�−〉〈�−|b1c1 ⊗ Id0d1 ,

Ia0a1 ⊗ |�−〉〈�−|b0c0 ⊗ |�−〉〈�−|b1c1 ⊗ Id0d1 .

We find that the postmeasurement states for each of these
POVM elements are equivalent up to local unitaries, such that
we only have to consider the first one. While one could call the
whole process described so far elementary pair generation, the
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FIG. 26. Comparison between the optimization results of the full
optimization with the optimization over BDCZ schemes. We con-
sider a repeater chain over 200 km with three intermediate nodes.
The parameters used are parameter set 4 for the intermediate nodes
and parameter set 2 for Alice and Bob. BDCZ schemes are those
schemes that only perform swapping and distillation between two
schemes that have used the same sequences of protocols. Contrary
to the comparison with BDCZ schemes in [20] we allow for an opti-
mization over the different ways of generating elementary pairs, i.e.,
we vary the number of attempts r and the θ parameter. We observe
that the schemes found with the full optimization outperform BDCZ
schemes, achieving a faster generation time by a factor of ≈10, and
extending the maximal achievable fidelity by a small margin.

state will have a fidelity equal to half or less for any Ns > 0.
The reason for this is that there has not been any postselec-
tion on detecting a valid click pattern on the detectors when
performing, say, Bell state measurements. For this reason, we
apply the following POVM to postselect on having nonzero
photons at each side of the memory:

Ia0a1b0b1 − (|00〉〈00|a0a1 ⊗ I + I ⊗ |00〉〈00|d0d1

− |0000〉〈0000|a0a1d0d1

)
.

The resultant state is too cumbersome to report here, but
can be found in the accompanying MATHEMATICA [89] and
PYTHON scripts. We find the success probability to be given
by

psucc = 4pBSM pnonzero photons

= 4η2 3p2
1 − 4(4η−3)p1 p2 + 4p2(1 + (3 − 8η + 4η2))

24
p2

app

(p1+4(η−1)p2(papp−2))(3p1+4(η−1)p2(papp−2))

4p2+(p1+(2 − 4η)p2)(3p1 + (6 − 4η)p2)
. (D1)
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FIG. 27. Visual representation of the scheme with the lowest nontrivial achieved fidelity for a distance of 800 km with a combination of
IP and MP platforms using parameter sets 4 (see Tables II and IV) and ten intermediate nodes or eleven hops. Elementary pair generation is
indicated by EPG, and the mean photon number used is indicated by the Ns.

APPENDIX E: THE INTERPLAY BETWEEN THE NUMBER OF MODES AND THE FIDELITY FOR MP PLATFORMS

Here we investigate the interplay between the number of modes, the fidelity, and the losses in the fiber for MP platforms. We
assume here that the only source of noise is from the PDC source, and there are no or negligible losses locally. We take the state
derived in the previous section (but which is too cumbersome to report here), and set papp = 1. The fidelity of the resultant state
is then calculated to be

F = 3

4(η − 1)2Ns
4 + 24(η − 1)2Ns

3 + 4(9η2 − 20η + 11)Ns
2 − 24(η − 1)Ns + 3

.

Solving for Ns, we find that

Ns = 1

2

⎛
⎝

√
−9ηF + 5F + 2

√
F (F + 3)

F − ηF
− 3

⎞
⎠.

Let us now input the above relation into Eq. (D1) where we set p1 and p2 according to Eqs. (10). We find a success probability
of

p =
32η2

(√
−9Fη+5F+2

√
F (F+3)

F−Fη
− 3

)2

F
(√

−9Fη+5F+2
√

F (F+3)
F−Fη

− 1
)6 . (E1)
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FIG. 28. Visual representation of the scheme that achieves a fidelity of F = 0.9605 in time T = 17.7 ms (indicated by the cross in Fig. 21),
for a distance of 800 km with a combination of IP and MP platforms using parameter sets 4 (see Tables II and IV) and ten intermediate nodes
or eleven hops. Elementary pair generation is indicated by EPG, and the mean photon number used is indicated by the Ns. The structure of the
scheme is nonhierarchical, which can most clearly be seen in the final swap operation, which happens between two multihop links of lengths
4 and 9.

Since we need on the order of 1
p modes, we find that we need on the order of

1

p
=

F
(√

−9Fη+5F+2
√

F (F+3)
F−Fη

− 1
)6

32η2
(√

−9Fη+5F+2
√

F (F+3)
F−Fη

− 3
)2 =

F
(√

2
√

F (F+3)
F + 5 − 1

)6

32η2
(√

2
√

F (F+3)
F + 5 − 3

)2 + O(η−1)
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modes to achieve a fidelity of F for η ≈ 0. The η2 = exp(− L
L0

) term in the denominator is given by the total losses of the fiber.
The contribution due to the fidelity is then given by

F
(√

2
√

F (F+3)
F + 5 − 1

)6

32
(√

2
√

F (F+3)
F + 5 − 3

)2 = 32

(1 − F )2
+ O((1 − F )−1).

We thus find that the number of minimum required modes scales as e
L

L0

(1−F )2 , where L is the internode distance.

APPENDIX F: THE EFFECT OF EFFICIENCY
DECOHERENCE FOR MP PLATFORMS

In this section we explore the effects the exponential de-
crease of the output efficiency has on the ability of performing
schemes with probability greater than pmin. While for infor-
mation processing platforms it is always possible to achieve
any success probability by performing as many attempts r
as required, this is not the case for MP platforms due to
the decrease in output efficiency over time. Here we derive
conditions on the efficiency coherence times of the memories
for a given pmin, generation time T , and success probability p
of the underlying schemes, such that pmin can be achieved.

Since there are two memories used for state storage, the
success probability of emitting both states again is modeled
as given by

psingle success = (1 − (1 − p)r )E[e−(c1+c2 )(r− j)]

= pe(c1+c2 )((1 − p)r − e−(c1+c2 )r )

e(c1+c2 )(1 − p) − 1
. (F1)

We are interested in when the above quantity cannot be
larger than pmin. To this end, we take the derivative of Eq. (F1)
with respect to r and set it to zero to find the maximum value
of success probability. Setting c = c1 + c2, we find

ec p(ce−cr + (1 − p)r ln(1 − p))

ec(1 − p) − 1
= 0,

→ r = c − ln
(− ec ln(1−p)

c

)
c + ln(1 − p)

. (F2)

However, since r needs to be an integer equal to or greater
than 1, we choose the ceiling or floor of Eq. (F2), whichever
maximizes the resultant psucc. Furthermore, since we cannot
perform distillation, our main concern is the drop in suc-
cess probability after performing a Bell state measurement.
This motivates us to set p = 1 − 1

2N+1 [68,69,71–73]. Setting
Eq. (F1) equal to pmin = 0.9, we numerically find that N = 0
gives c ≈ 0.023, N = 1 gives c ≈ 0.053, N = 2 gives c ≈
0.101, and N = 3 gives c = ∞. Obviously, the assumption
here is that the initial success probability is given by 1 − 1

2N+1 ,
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FIG. 29. Optimization results for total distances of 200, 400, 600, and 800 km, using ten intermediate nodes. We use IP parameter set 2 as
a baseline, where we set the gate fidelities to be 0.99, 0.995, and 0.999 in the first, second, and third column, respectively. We set the coherence
times Tdeph and Tdepol to 10, 50, and 100 s in the first, second, and third row, respectively.
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which is not true due to other losses in the system. How-
ever, it is clear that increasing N can increase the total time
significantly during which entanglement can be generated in
a near-deterministic fashion. In particular, we find that the
sum of the reciprocals of the efficiency coherence times of
the memories should be at least 1

c times the generation time
of a scheme for MP platforms to successfully generate en-
tanglement near-deterministically. This results in factors of
approximately 43, 19, and 10 times the generation time for
Bell state measurement success probabilities of 1

2 , 3
4 , and 7

8 ,
respectively.

APPENDIX G: ADDITIONAL OPTIMIZATION RESULTS

This section contains the additional figures mentioned in
the main text.

First, we compare the optimization results of the full op-
timization with an optimization over BDCZ schemes only in

Fig. 26. BDCZ schemes are those schemes that for each con-
nection and distillation step only combine two schemes that
have used the same sequence of protocols, as in [13,14]. We
consider an asymmetric repeater chain with three intermediate
nodes over a distance of 200 km. We model the behavior of
the intermediate nodes with parameter set 4 and Alice and
Bob with parameter set 2 (see Table II). The full optimization
yields schemes that can achieve faster generation rates (by
approximately a factor of 10) than achievable with the BDCZ
schemes.

Second, we consider two visualizations (Figs. 27 and 28)
of the schemes found for a distance of 800 km with a com-
bination of IP and MP platforms using parameter sets 4 (see
Tables II and IV) and ten intermediate nodes. Finally, Fig. 29
contains the results found while performing a parameter ex-
ploration for total distances of 200, 400, 600, and 800 km,
using ten intermediate nodes for information processing plat-
forms.
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[35] Robert, A. Żak, B. Röthlisberger, S. Chesi, and D. Loss, Quan-
tum computing with electron spins in quantum dots, La Rivista
del Nuovo Cimento 33, 7 (2010).

[36] C.-W. Chou, H. De Riedmatten, D. Felinto, S. V. Polyakov, S. J.
Van Enk, and H. J. Kimble, Measurement-induced entangle-
ment for excitation stored in remote atomic ensembles, Nature
(London) 438, 828 (2005).

[37] D. Matsukevich, T. Chaneliere, M. Bhattacharya, S.-Y. Lan,
S. Jenkins, B. Kennedy, and A. Kuzmich, Entanglement of a
Photon and a Collective Atomic Excitation, Phys. Rev. Lett. 95,
040405 (2005).

[38] H. Krovi, S. Guha, Z. Dutton, J. A. Slater, C. Simon, and
W. Tittel, Practical quantum repeaters with parametric down-
conversion sources, Appl. Phys. B 122, 52 (2016).

[39] D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu,
and A. Sanpera, Quantum Privacy Amplification and the Se-
curity of Quantum Cryptography Over Noisy Channels, Phys.
Rev. Lett. 77, 2818 (1996).

[40] J. Dehaene, M. Van den Nest, B. De Moor, and F. Verstraete,
Local permutations of products of Bell states and entanglement
distillation, Phys. Rev. A 67, 022310 (2003).

[41] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,
Quantum entanglement, Rev. Mod. Phys. 81, 865 (2009).

[42] As discussed later, we actually do consider distillation proto-
cols taking three or more states to a single one, but these are
composed of several distillation protocols taking two states to a
single one.

[43] Or, in the case of multiplexed elementary pair generation plat-
forms, the probability of having a single success for elementary
pair generation can be increased by having more modes.

[44] Since the success of a scheme follows a geometric distribution,
the average generation time can be computed from the success
probability and the generation time of one attempt.

[45] P. C. Humphreys, N. Kalb, J. P. J. Morits, R. N. Schouten,
R. F. L. Vermeulen, D. J. Twitchen, M. Markham, and R.
Hanson, Deterministic delivery of remote entanglement on a
quantum network, Nature (London) 558, 268 (2018).

[46] M. Pant, H. Krovi, D. Towsley, L. Tassiulas, L. Jiang, P. Basu,
D. Englund, and S. Guha, Routing entanglement in the quantum
internet, npj Quantum Information 5, 25 (2019).

[47] E. Schoute, L. Mančinska, T. Islam, I. Kerenidis, and S. Wehner,
Shortcuts to quantum network routing, arXiv:1610.05238.

[48] W. Dür and H. J. Briegel, Entanglement purification and
quantum error correction, Rep. Prog. Phys. 70, 1381
(2007).

[49] R. Van Meter, T. D. Ladd, W. J. Munro, and K. Nemoto,
System design for a long-line quantum repeater, IEEE/ACM
Transactions on Networking 17, 1002 (2009).

[50] B. Hensen, H. Bernien, A. E Dréau„ A. Reiserer, N. Kalb, M. S.
Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C.
Abellán et al., Loophole-free Bell inequality violation using
electron spins separated by 1.3 kilometres, Nature (London)
526, 682 (2015).

[51] B. Hensen, N. Kalb, M. S. Blok, A. E. Dréau„ A. Reiserer,
R. F. L. Vermeulen, R. N. Schouten, M. Markham, D. J.
Twitchen, K. Goodenough et al., Loophole-free Bell test using
electron spins in diamond: Second experiment and additional
analysis, Sci. Rep. 6, 30289 (2016).

[52] M. H. Abobeih, J. Cramer, M. A. Bakker, N. Kalb, M.
Markham, D. J. Twitchen, and T. H. Taminiau, One-second
coherence for a single electron spin coupled to a multi-qubit
nuclear-spin environment, Nat. Commun. 9, 2552 (2018).

[53] J. Cramer, N. Kalb, M. Adriaan Rol, B. Hensen, M. S. Blok,
M. Markham, D. J. Twitchen, R. Hanson, and T. H. Taminiau,
Repeated quantum error correction on a continuously encoded
qubit by real-time feedback, Nat. Commun. 7, 11526 (2016).

[54] C. T. Nguyen, D. D. Sukachev, M. K. Bhaskar, B. Machielse,
D. S. Levonian, E. N. Knall, P. Stroganov, R. Riedinger, H.
Park, M. Loncar and M. D. Lukin, Quantum Network Nodes
based on Diamond Qubits with an Efficient Nanophotonic In-
terface, Phys. Rev. Lett. 123, 183602 (2019).

[55] C. T. Nguyen, D. D. Sukachev, M. K. Bhaskar, B. Machielse,
D. S. Levonian, E. N. Knall, P. Stroganov, C. Chia, M. J. Burek,
R. Riedinger, H. Park, M. Loncar and M. D. Lukin, An inte-
grated nanophotonic quantum register based on silicon-vacancy
spins in diamond, Phys. Rev. B 100, 165428 (2019).

[56] G. Burkard, H.-A. Engel, and D. Loss, Spintronics and quan-
tum dots for quantum computing and quantum communication,
Fortschr. Phys.: Progress of Physics 48, 965 (2000).

[57] Y. Chen, M. Zopf, R. Keil, F. Ding, and O. G. Schmidt, Highly-
efficient extraction of entangled photons from quantum dots
using a broadband optical antenna, Nat. Commun. 9, 2994
(2018).

[58] D. Huber, M. Reindl, J. Aberl, A. Rastelli, and R. Trotta,
Semiconductor quantum dots as an ideal source of polarization-
entangled photon pairs on-demand: A review, J. Opt. 20,
073002 (2018).

[59] C. Cabrillo, J. I. Cirac, P. Garcia-Fernandez, and P. Zoller,
Creation of entangled states of distant atoms by interference,
Phys. Rev. A 59, 1025 (1999).

032610-30

https://github.com/KDGoodenough/RepeaterchainOptimisation
https://doi.org/10.1126/science.1231298
https://doi.org/10.1103/PhysRevLett.118.250502
https://doi.org/10.1038/s41467-018-04341-2
https://doi.org/10.1557/mrs.2013.20
https://doi.org/10.1038/s42005-019-0158-0
https://doi.org/10.1103/PhysRevX.8.011018
https://doi.org/10.1103/PhysRevApplied.11.014044
https://doi.org/10.1103/PhysRevA.73.042303
https://doi.org/10.1103/RevModPhys.79.1217
https://doi.org/10.1393/ncr/i2010-10056-y
https://doi.org/10.1038/nature04353
https://doi.org/10.1103/PhysRevLett.95.040405
https://doi.org/10.1007/s00340-015-6297-4
https://doi.org/10.1103/PhysRevLett.77.2818
https://doi.org/10.1103/PhysRevA.67.022310
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1038/s41586-018-0200-5
https://doi.org/10.1038/s41534-019-0139-x
http://arxiv.org/abs/arXiv:1610.05238
https://doi.org/10.1088/0034-4885/70/8/R03
https://doi.org/10.1109/TNET.2008.927260
https://doi.org/10.1038/nature15759
https://doi.org/10.1038/srep30289
https://doi.org/10.1038/s41467-018-04916-z
https://doi.org/10.1038/ncomms11526
https://doi.org/10.1103/PhysRevLett.123.183602
https://doi.org/10.1103/PhysRevB.100.165428
https://doi.org/10.1002/1521-3978(200009)48:9/11<965::AID-PROP965>3.0.CO;2-V
https://doi.org/10.1038/s41467-018-05456-2
https://doi.org/10.1088/2040-8986/aac4c4
https://doi.org/10.1103/PhysRevA.59.1025


OPTIMIZING REPEATER SCHEMES FOR THE QUANTUM … PHYSICAL REVIEW A 103, 032610 (2021)

[60] M. Lucamarini, Z. L. Yuan, J. F. Dynes, and A. J. Shields,
Overcoming the rate–distance limit of quantum key distribu-
tion without quantum repeaters, Nature (London) 557, 400
(2018).
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