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Nonadiabatic geometric quantum gates that are insensitive to qubit-frequency drifts
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Quantum manipulation based on geometric phases provides a promising way towards robust quantum gates.
However, in the current implementation of nonadiabatic geometric phases, operational and/or random errors
tend to destruct the conditions that induce geometric phases, thereby smearing their noise-resilient feature. In a
recent experiment [Y. Xu et al., Phys. Rev. Lett. 124, 230503 (2020)], high-fidelity universal geometric quantum
gates have been implemented in a superconducting circuit, which are robust to different types of errors under
different configurations of the geometric evolution paths. Here, we apply the path-design strategy to explain
in detail why both configurations can realize universal quantum gates in a single-loop way. Meanwhile, we
purposefully induce our geometric manipulation by selecting the path configuration that is robust against the
qubit-frequency-drift-induced error, which is the dominant error source on realistic superconducting circuits and
has not been deliberately addressed. Moreover, our proposal can further integrate with the composite scheme
to enhance the gate robustness, which is verified by numerical simulations. Therefore, our scheme provides a
promising way towards practical realization of high-fidelity and robust nonadiabatic geometric quantum gates.
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I. INTRODUCTION

Geometric phases [1–3] unveil important geometric struc-
tures of the evolution quantum states during quantum
dynamics. Different from the dynamical phases, geometric
phases are determined by the global property of the evolution
paths, so that they are largely insensitive to many local noises
[4–6] and have found many important applications nowadays
[7]. In contrast to the adiabatic cases [8–13], the built-in
noise resilience of the nonadiabatic geometric phases provide
a more practical way to implement quantum computation and
has been recently proposed based on both Abelian [14–19]
and non-Abelian geometric phases [20–37]. Therefore, many
renewed efforts have recently been given to their experimental
demonstration in various quantum systems [38–47].

Meanwhile, the superconducting quantum circuits system
[48–52] is a promising candidate for quantum information
processing, due to its distinct merits in scalability and sta-
bility. But, the coupling strength in the simplest capacitive
coupled superconducting qubits is hard to be tuned. For-
tunately, parametrically tunable coupling [53–60] between
two superconducting qubits with different frequencies can be
obtained by adding an ac driving on one of the qubits to
periodically modulate its transition frequency. Thus, with this
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technique, one can realize controllable interaction between
adjacent qubits in the simplest circuits when scaling up the
qubit lattice.

Generally, the implementation of nonadiabatic geometric
quantum computation (NGQC), particularly nontrivial two-
qubit gates, is very difficult due to the control imperfections
and randomized qubit-frequency-drift-induced error, which
respectively represent the σx and σz errors in superconducting
quantum circuits system and will inevitably induce errors in
the target quantum gates. Moreover, the need for complex
control of multilevel quantum systems and the intrinsic leak-
age of the quantum information are also non-negligible error
sources. Remarkably, theoretic NGQC schemes [17–19] have
been proposed based on only effective two-level systems and
two-body interactions, which can effectively suppress the σx

error by using the composite strategy [19]. Experimentally,
a recent elementary demonstration [47] in a superconduct-
ing circuit has verified that geometric gates can be robust
against two different types of quantum errors with two differ-
ent configuration settings. The enhancement of the robustness
of geometric gates against the σx error has also been ex-
perimentally verified using the pulse optimization [45] and
composite [46] schemes. But, for superconducting quantum
circuits, once the pulse envelope is calibrated, the σx error
can be stabilized within a deviation of a percent of its typical
Rabi frequency. However, as to the σz error, it can be up to
a few hundreds of kilohertz, i.e., several percentages of the
typical Rabi frequency, thus being the dominant error source.
Note that the frequency drift of a superconducting qubit is
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FIG. 1. (a) Illustration of geometric quantum gates induced from different evolution paths, i.e., configurations A and B. Noise-resilient
feature against the qubit-frequency drift σz error (b) in configuration A and (c) in configuration B.

usually of static nature; i.e., it is a constant during a gate-
operation time but may be randomly changed among different
gates.

Here, we first apply the path-design strategy to explain why
the experiment in Ref. [47] has two configurations that can
both realize universal geometric gates in a single-loop way.
Meanwhile, we can select the most robust path configuration,
and then show that the composite scheme can be introduced to
implement geometric quantum gates that are insensitive to the
qubit-frequency-drift-induced σz error. In addition, we further
exhibit the gate performance on a scalable two-dimensional
(2D) square lattice with capacitive coupled superconducting
qubits, where we only use an effective two-level system and
two-body interaction, and the leakage of quantum informa-
tion can also be effectively suppressed. Finally, our numerical
simulations verify the improvement of our geometric gate ro-
bustness while maintaining high fidelity, and gate robustness
is even superior to conventional dynamical gates [61]. There-
fore, our scheme provides a promising method to achieve
high-fidelity geometric manipulation for robust and scalable
solid-state quantum computation.

II. GEOMETRIC PATH DESIGN

Generally, the dynamics of a quantum system are captured
by the evolution of its eigenstates. Here, we aim to elaborate
how to design a suitable evolution path for a target geometric
gate. We first proceed to a general two-level system in an ideal
situation, under the interaction framework, assuming h̄ = 1
hereafter; the reduced Hamiltonian in the computational bases
|0〉 and |1〉 is

H(t ) = 1

2

( −�(t ) �(t )e−iφ(t )

�(t )eiφ(t ) �(t )

)
, (1)

where �(t ) and φ(t ) are the amplitude and phase of the
driving microwave field, respectively, and �(t ) is the time-
dependent detuning between the qubit transition frequency
and the frequency of the microwave field.

To get the target geometric gates and visualize their evolu-
tion details under the driven Hamiltonian H(t ), we choose a

pair of orthogonal dressed-state bases, i.e.,

|ψ1(t )〉 = cos
χ (t )

2
|0〉 + sin

χ (t )

2
eiξ (t )|1〉,

|ψ2(t )〉 = sin
χ (t )

2
e−iξ (t )|0〉 − cos

χ (t )

2
|1〉, (2)

where χ (t ) and ξ (t ) are time-dependent parameters, repre-
senting the polar and azimuthal angles of these evolution
states in a Bloch sphere, respectively, as shown in Fig. 1(a).
By letting the dressed states satisfy the von Neumann equation
of

∂

∂t
(|ψ j (t )〉〈ψ j (t )|) = −i[H(t ), |ψ j (t )〉〈ψ j (t )|], (3)

with j = 1, 2, we can obtain

ξ̇ (t ) = −�(t ) − �(t ) cot χ (t ) cos[φ(t ) − ξ (t )],

χ̇ (t ) = �(t ) sin[φ(t ) − ξ (t )], (4)

which indicate that arbitrary time-dependent variations of
the required evolution parameters χ (t ) and ξ (t ) can all be
realized through the changing of the Hamiltonian parame-
ters {�(t ),�(t ), φ(t )}. Therefore, we can drive the evolution
states |ψ1,2(t )〉 to follow different evolution paths. After a pe-
riod of cyclical evolution, at the final time τ , these two dressed
states will be |ψ j (τ )〉 = eiγ j |ψ j (0)〉, and the corresponding
evolution operator is

U (τ ) =
∑
j=1,2

eiγ j |ψ j (0)〉〈ψ j (0)|, (5)

with γ1 = −γ2 = γd + γg being a total phase, and the dynam-
ical phase part is

γd = −
∫ τ

0
〈ψ1(t )|H(t )|ψ1(t )〉dt

= 1

2

∫ τ

0

ξ̇ (t ) sin2 χ (t ) + �(t )

cos χ (t )
dt . (6)

The remaining part,

γg = i
∫ τ

0
〈ψ1(t )| ∂

∂t
|ψ1(t )〉dt

= −
∫ τ

0

ξ̇ (t )

2
[1 − cos χ (t )]dt, (7)
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is the geometric phase, which just represents half of the solid
angle enclosed by the evolution path in the Bloch sphere. In
the following, we utilize the path-design strategy to reverify
how to realize an universal geometric evolution in different
single-loop ways [47]. Moreover, we show how to realize a
noise-resilient geometric evolution based on a composite-loop
method in the presence of the dominant error source, i.e., the
qubit-frequency-drift-induced σz error.

First, to realize a pure geometric evolution in the resonant
case, i.e., �(t ) = 0, we set ξ (t ) = φ(t ) ± π/2 to completely
eliminate the dynamical phase, i.e., γd = 0. Thus, the con-
straints for the dressed-state parameters in Eq. (4) reduce to
ξ̇ (t ) = 0 and χ (t ) = χ (0) ∓ ∫ τ

0 �(t ) dt . In this case, a cycli-
cal evolution path is designed as follows:

χ (0)=χ −→ χ (τ1)=0 −→ χ (τ2)=π −→ χ (τ )=χ,

ξ (0)=ξ1−→ ξ (τ1−ε)=ξ1

ξ (τ1+ε)=ξ2
−→ξ (τ2−ε)=ξ2

ξ (τ2+ε)=ξ1
−→ξ (τ )=ξ1,

(8)

where, in detail, the polar angle changes from the initial value
χ to the north pole, and then back to χ from the south pole.
Meanwhile, the azimuthal angle remains unchanged on the
longitude, only changing from ξ1 to ξ2 and from ξ2 back to
ξ1 at the north pole and south pole, i.e., the intermediate time
points τ1 ∓ ε and τ2 ∓ ε, respectively, in which ε�0 is the
instantaneous jump time. The evolution details can also be
visualized in a Bloch sphere, as shown in Fig. 1(a), which
validates that half of the solid angle enclosed by this single-
loop path is exactly equal to the geometric phase γg = ξ2 − ξ1

[18,19]. In addition, the selection of the dressed-state param-
eters χ , ξ1, and ξ2 depends on the target gate type. Thus, the
resulting geometric evolution operator, at the final time τ , is

U (γg) = U (τ, τ2)U (τ2, τ1)U (τ1, 0)

= cos γg + i sin γg

(
cos χ sin χe−iξ1

sin χeiξ1 − cos χ

)
. (9)

Moreover, we find that there are two different evolution paths,
as shown in Fig. 1(a), namely, ξ2 − ξ1 = γ and γ − π , which
can both be used to realize the universal geometric operations.
That just reverifies and intuitively explains why two different
geometric evolution paths in Ref. [47] can be selected, i.e.,
“configuration A” and “configuration B” there.

Based on the restrictions of dressed-state parameters in
Eq. (8), we next return the settings of the correspond-
ing Hamiltonian parameters. In configuration A, the entire
orange-slice-shaped evolution can be realized with a three-
component microwave drive, with the driving amplitude �(t )
and phase φ(t ) of the three time intervals 0 → τ1, τ1 → τ2,
and τ2 → τ , satisfying∫ τ1

0
�(t )dt = χ, φ(t ) = ξ1 − π/2, t ∈ [0, τ1],

∫ τ2

τ1

�(t )dt = π, φ(t ) = ξ1 + γ + π/2, t ∈ [τ1, τ2],

∫ τ

τ2

�(t )dt = π − χ, φ(t ) = ξ1 − π/2, t ∈ [τ2, τ ].

(10)

And in configuration B, the geometric evolution is realized
by setting the phase ξ1 + γ − π/2 at the t ∈ [τ1, τ2] interval
in Eq. (10), while the resulting geometric operators are the
same as in Eq. (9). Then, arbitrary single-qubit nonadiabatic
geometric gates can be realized in a single-loop way with two
different evolution trajectories.

However, as experimentally demonstrated in Ref. [47],
the gate performance is usually influenced by the chosen
evolution path. Therefore, it is crucial to find a path that is
most resistant to the dominant errors in these two alternative
geometric paths A and B. In current quantum experiment
platforms, the qubit-frequency drift, in the form of δ|1〉〈1|
with δ = δ0� being the drift quantity, becomes one of the
main error sources, where �(t ) = � is set to be a square
pulse for simplicity. In the presence of the qubit-frequency
drift, the Hamiltonian in Eq. (1) turns to Hδ (t ) = H(t ) +
δ|1〉〈1|. To fully estimate the sensitivity of elementary gates
to qubit-frequency drift, under the two alternative geometric
configurations A and B, we calculate the fidelity of these gates
by using the formula [62]

FUδ
= Tr(U †Uδ )/Tr(U †U ), (11)

where U and Uδ represent a target gate and the gate affected
by the qubit-frequency drift, respectively. Here, we choose
the X - and Y -axis rotation operations Rx,y(θx,y) with different
rotation angles θx,y for our demonstration purpose, which are
two types of noncommutating gates that are a universal set for
single-qubit quantum gates. For our geometric quantum gates,
Rx,y(θx,y) can be realized by setting ξ1 to π and −π/2 when
χ = π/2 and γ = θx,y/2. By numerically simulating the in-
fidelity 1 − FUδ

of the geometric gates in the presence of the
qubit-frequency drift, as shown in Figs. 1(b) and 1(c), one can
clearly see that the well-designed evolution path in configura-
tion B has distinct advantages over configuration A in terms of
robustness against the qubit-frequency-drift-induced σz error.
To sum up, considering that if the dominant error source in
an experimental setup is the σz error, we purposefully select
the path in configuration B to implement universal geometric
gates.

III. NOISE-RESILIENT GEOMETRIC GATES

Generally, the existence of quantum errors will inevitably
cause the destruction of geometric conditions in Eq. (7), so our
handpicked geometric gates based on configuration B do not
have an obvious advantage over the dynamical counterparts
[61] (see Appendix A for details), as shown in Figs. 2(a) and
2(b). To further enhance geometric gate robustness against
the qubit-frequency-drift-induced σz error on a whole, we
here propose a composite scheme for the implementation of
noise-resilient geometric gates. We take Uc(γg) with γg=γ c

g =
γ /N − π in Eq. (9) as the elementary gate and sequentially
apply the elementary gate N times with N > 1; the details of
the evolution path are shown in Fig. 2(c). Then, the following
composite geometric gate (ignore a global phase),

Uc
(
Nγ c

g

) = [
Uc

(
γ c

g

)]N =
∑
j=1,2

eiγ |ψ j (0)〉〈ψ j (0)|, (12)

can be obtained. The gate infidelities of composite geomet-
ric gates with N = 2, 3 as a function of the qubit-frequency
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FIG. 2. The gate infidelities versus the qubit-frequency-drift-induced σz error for (a) conventional dynamical gates, (b) single-loop (N =1)
and (d), (e) composite (N >1) geometric gates. (c) Single-loop and composite-loop geometric evolution trajectories in the Bloch sphere.

drift are plotted in Figs. 2(d) and 2(e) under the same driv-
ing strength. We find that composite geometric gates greatly
improve the robustness against qubit-frequency-drift-induced
error and exhibit obvious advantages over the conventional
dynamical gates as well as single-loop (N = 1) geometric
gates. Note that, a similar discussion is available for the case
where the qubit-frequency drift is not static but fluctuates on a
timescale shorter than the gate-operation time (for details, see
Appendix B); our composite geometric gates can still exhibit
obvious advantages of gate robustness.

Moreover, the composite scheme can enhance gate robust-
ness more strongly with larger N , as shown in Fig. 3(a), by
taking the NOT gate without decoherence as a typical example.
The theoretical results using Eq. (11), listed in Table I, also
agree with the numerical results. However, as listed in Table I,
the composite geometric gate requires a multifold increase in
the evolution path or, equivalently, the gate-time cost; thus we
need to balance the influence from decoherence and qubit-
frequency drift. Considering that the decoherence process is
unavoidable, we further take the decoherence effect into con-
sideration and simulate the evolution process numerically by
the master equation [63] of

ρ̇ = −i[Hδ (t ), ρ] + [κ−L(|0〉〈1|) + κzL(|1〉〈1|)]/2, (13)

where ρ is the reduced density matrix of the considered
quantum system, and L(A) = 2AρA† − A†Aρ − ρA†A is
the Lindblad operator for operator A with κ− and κz be-
ing the decay and dephasing rates of the qubit, respectively.
For the general initial state of a single qubit as |ψ1〉 =
cos θ1|0〉 + sin θ1|1〉 with |ψ f 〉 = sin θ1|0〉 + cos θ1|1〉 being
the ideal final state, we define single-qubit gate fidelity as
F G

NOT
= 1

2π

∫ 2π

0 〈ψ f |ρ|ψ f 〉 dθ1, where the integration is numer-
ically done for 1001 input states with θ1 being uniformly
distributed within [0, 2π ], and ρ is a numerically simulated

FIG. 3. (a) NOT gate fidelities as a function of the qubit-frequency
drift without decoherence. Gate fidelities under the qubit-frequency
drift and decoherence for (b) the conventional dynamical NOT gate,
(c) single-loop (N = 1) and (d), (e) composite (N = 2, 3) geometric
NOT gates, respectively.
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TABLE I. Gate-performance comparison of the NOT gates from
different implementations.

Get type Gate fidelity Gate time

Dynamical gate 1 − (π/6)δ0
2 π/�

Geometric gate (N = 1) 1 − (π/7)δ0
2 2π/�

Geometric composite gate (N = 2) 1 − O(δ0
3) 4π/�

Geometric composite gate (N = 3) 1 − O(δ0
3) 6π/�

density matrix of the qubit system. In our simulation, we
select the decay and dephasing rates in the range of κ =
κ− = κz ∈ [0, 8] × 10−4�; the maximum value is still well
within that reached for current state-of-the-art experiments.
As shown in Figs. 3(b)–3(e), by considering the competition
of decoherence and qubit-frequency-drift-induced error, we
find the composite geometric gate with N = 2 is the best
choice for the implementation of the noise-resilient geometric
gates in our case. A similar discussion is also valid for the
two-qubit case. However, due to the increase of the number of
the involved physical qubits, the decoherence effect is more
destructive to the gate performance; thus the two-qubit gate in
a single-loop way in configuration B will be a better choice
and it is good enough. These results will be demonstrated in
the physical implementation section.

IV. PHYSICAL IMPLEMENTATION

In this section, we will demonstrate the distinct practical
merit of our noise-resilient geometric gates on a supercon-
ducting circuit, consisting of capacitively coupled transmon
qubits as shown in Fig. 4(a). The superconducting circuit
of a transmon qubit is composed of a capacitance and two
Josephson junctions, and its energy level structure is depicted
in Fig. 4(b), where the two lowest levels are used as our
qubit states. Meanwhile, we also apply the current experimen-
tally mature “derivative removal via adiabatic gate” (DRAG)
technology [63,64] to greatly suppress the qubit-leakage error
caused by the synchronous coupling of the high-energy levels
driven by the external microwave field, thereby implementing

FIG. 4. (a) Schematic diagram of scalable 2D square lattice
composed of capacitively coupled transmon, where the circles with
different colors denote the transmons with different frequency. The
subscripts m and n of Qm,n represent the position of the row and
column of the transmon qubit on a 2D square lattice, with m, n ∈
[1,+∞], respectively. The energy spectrum structures of (b) a driven
superconducting transmon with the weak anharmonicity and (c) two
parametrically tunable coupled transmons.

independent control of the qubit states |0〉 and |1〉. For a driven
transmon, its full Hamiltonian can be written as

H1(t ) =
+∞∑
n=1

1

2
{[2nω1 − n(n − 1)α1]|n〉1〈n|

+[
√

n�(t )|n − 1〉1〈n|ei(ωd t−φ(t )) + H.c.]},
(14)

where ω1 and α1 are the transition frequency and anhar-
monicity of the first transmon qubit; ωd and φ(t ) are the
driving frequency and adjustable phase of the microwave
field, respectively. In addition, �(t ) = �UD (t ) − i�̇UD (t )/2α1

is the pulse shape that has been corrected by DRAG, with
�UD (t ) = �0 sin2(πt/τ ) being the original uncorrected pulse
shape, where time t ∈ [0, τ ] with τ being the gate duration.

Moving into the rotating frame with respect to the driving
frequency ωd , and by taking ωd = ω, under the rotating-wave
approximation, we can obtain an effective interaction Hamil-
tonian, which is the same as the resonant form of H(t ) in
Eq. (1). To check the validation of our scheme under realis-
tic conditions, we next take the decoherence effect and the
high-order oscillating terms into consideration to quantita-
tively analyze how they influence an intended gate operation.
We simulate the evolution process numerically by the master
equation similar to Eq. (13):

ρ̇ = −i[H1(t ), ρ] + [κ−L(λ−) + κzL(λz )]/2, (15)

where λ− = �+∞
n=1

√
n|n − 1〉1〈n| and λz = �+∞

n=1 n|n〉1〈n| are
the standard lower operator and the projector for the nth
level, respectively. In our simulation, we choose the geometric
composite NOT gate with N = 2 as a typical example, which
corresponds to χ = γ = π/2 and ξ1 = 0 in Eq. (12). Con-
sidering the current state of the art of experiments, we select
the decay and dephasing rates of the transmon in the range
of κ = κ− = κz ∈ 2π × [0, 8] kHz, and the qubit-frequency-
drift-induced error in the range of δ ∈ 2π × [−2, 2] MHz.
When the anharmonicity of the transmon and effective cou-
pling strength are α1 = 2π × 320 MHz and �0/2 = 2π ×
30 MHz, the resulting gate fidelity can exceed 99.90% in the
area below the black line, as shown in Fig. 5(a). Therefore, our
composite scheme can also exhibit the strong noise-resilient
feature under realistic conditions, while maintaining high gate
fidelity.

Now, we move to the construction of a nontrivial two-qubit
geometric gate. Here, we consider a 2D square superconduct-
ing qubit lattice, where all the adjacent qubits are capacitively
coupled, as shown in Fig. 4(a). We can choose a pair of the
adjacent qubits, such as Qm,n and Qm,n±1 in the same row (or
Qm,n and Qm±1,n in the same column), hereafter simplified
as Qi with i = 1, 2. The form of their capacitive coupling
interaction can be expressed as

H2 =
2∑

i=1

∞∑
n=1

1

2
[2nωi − n(n − 1)αi]|n〉i〈n|

+ g12(S1S†
2 + S†

1S2), (16)

where ωi and αi are the associated transition frequency and
the intrinsic anharmonicity of transmon Qi, respectively; g12

is the coupling strength between transmons Q1 and Q2, and
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FIG. 5. Physical implementation of single- and two-qubit geometric gates. (a) Gate fidelity under the dual influence of the decoherence
and the qubit-frequency-drift-induced error for the composite geometric NOT gate with N = 2. (b) Gate-fidelity dynamics with and without
considering the effects of the decoherence and high-order oscillating terms (HOTs) for the geometric iSWAP gate. (c) Gate fidelity under the
dual influence of the decoherence and the qubit-frequency-drift-induced error for the geometric iSWAP gate.

Si = �+∞
n=1

√
n|n − 1〉i〈n| is the standard lower operator for

transmon Qi of nth level. However, due to the effect of the
intrinsic weak anharmonicity of the transmon, we need to take
the leakage interactions of the high energy level into account,
as shown in Fig. 4(c).

For the implementation of the parametrically tunable cou-
pling between the two adjacent transmons, we drive Q1 by
a well-controlled microwave as ω1(t ) = ω1 + ε sin(νt + ϕ).
This modulation can be experimentally achieved by biasing
the transmon with an ac magnetic flux in a particular dc
bias working point [57,59]. To see this, we move the system
Hamiltonian of Eq. (16) under the qubit-frequency driving
to the interaction picture, where the transformation matrix is
defined by Ut = UaUb with

Ua = exp

[
−i

2∑
i=1

∞∑
n=1

1

2
[2nωi − n(n − 1)αi]|n〉i〈n|t

]
,

Ub = exp

[
i

∞∑
n=1

nβ cos(νt + ϕ)|n〉1〈n|
]
, (17)

and apply the Jacobi-Anger identity of

exp[−iβ cos(νt +ϕ)]=
∞∑

m=−∞
(−i)mJm(β ) exp[−im(νt +ϕ)],

in which β =ε/ν, J−m(β )= (−1)mJm(β ), with Jm(β ) being
Bessel functions of the first kind. The transformed Hamilto-
nian under driving is

Hint =
∞∑

m=−∞
Jm(β )g12{|10〉〈01|ei�1t +

√
2|11〉〈02|ei(�1+α2 )t

+
√

2|20〉〈11|ei(�1−α1 )t }e−im(νt+ϕ+ π
2 ) + H.c., (18)

where |mn〉 = |m〉1 ⊗ |n〉2 and �1 = ω1 − ω2 is the qubit-
frequency difference between the two adjacent transmons Q1

and Q2. It is easy to see that the resonant interaction can be
achieved in both the single- or two-excitation subspaces by
a different choice of the driving frequency ν. Modulating the
qubit-driving frequency to meet �1 = ν, and neglecting the
high-order oscillating terms by rotating-wave approximation,

then we can obtain the effective Hamiltonian as

Heff = geff|10〉〈01|e−i(ϕ+ π
2 ) + H.c., (19)

where the effective coupling strength geff = J1(β1)g12, which
is also the same as the resonant form of H(t ) in Eq. (1). Note
that this effective interaction is within the single-excitation
subspace of the coupled qubit system, where quantum in-
formation leakage errors are well suppressed. Thus, we can
implement the geometric cyclical evolution under configura-
tion B in this effective two-level structure, and the resulting
geometric operator remains the same as that in Eq. (9) within
the two-qubit subspace {|10〉, |01〉}. By taking χ = γ = π/2
with ξ1 = π , the geometric iSWAP gate can be realized, which
is a nontrivial two-qubit gate for quantum computation. We
further simulate the performance of this gate numerically
by the master equation in Eq. (15) for the two-qubit case,
including the effects of both decoherence and high-order os-
cillating terms, under the current experimental parameters
κ = 2π × 4 kHz, the anharmonicity α1 = 2π × 320 MHz,
α2 = 2π × 300 MHz, coupling strength g12 = 2π × 10 MHz,
and the frequency difference of the two qubits being �1 =
2π × 500 MHz. By these settings, the fidelity of the iSWAP

gate can reach 99.56%, as shown in Fig. 5(b).
In addition, by analyzing the gate fidelity with and without

considering the effects of the decoherence and high-order
oscillating terms, as shown in Fig. 5(b), we can find that the
high-order oscillating terms induce about 0.20% gate infi-
delity. And the residual infidelity comes from the decoherence
of the qubit system. However, for the composite two-qubit
gate, although one can still obtain the improvement of the
gate robustness, the diploid decoherence and high-order os-
cillating terms are more destructive, resulting in a gate fidelity
below 99.10% for N = 2; thus the integration of the compos-
ite scheme and geometric gate in the two-qubit case is not
preferable when pursuing high fidelity. Nevertheless, under
the effects of both decoherence and the qubit-frequency-drift-
induced error in the form of �1 + δ′, the gate fidelity of our
two-qubit geometric gate can still exceed 99.40% in a large
parametric range, as shown in Fig. 5(c), and it also has a
gate-robustness advantage over the corresponding dynamical
one (see Appendix A for details). Therefore, our two-qubit
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geometric gate performance in a single-loop way with config-
uration B is good enough, where it can also obtain high fidelity
and exhibit the strong noise-resilient feature under the current
experimental conditions.

V. CONCLUSION

In conclusion, we have proposed a noise-resilient NGQC
scheme against the qubit-frequency drifts with a simple setup.
We here have applied the path-design strategy to explain in
detail why there are two path configurations that can both real-
ize universal geometric gates in a single-loop way. In addition,
we can purposefully select the most robust path configuration,
and then further integrate with the composite scheme to im-
plement high-fidelity and noise-resilient geometric quantum
gates, which are even superior to conventional dynamical
gates in terms of gate robustness. Requiring only the current
level of technique, our scheme can be immediately tested in
experiments and therefore provides a promising method to
achieve high-fidelity geometric manipulation for robust and
scalable fault-tolerant quantum computation.
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APPENDIX A: CONSTRUCTION OF DYNAMICAL GATES

For the construction of dynamical gates, we also start from
a two-level system driven by a resonant microwave field with
�(t )=0; the corresponding Hamiltonian in Eq. (1) is given
by H(t ) = 1

2�(t )e−iφ(t )|0〉〈1| + H.c. Different from the geo-
metric case, the construction of dynamical gates only needs to
ensure that the relative phase φ(t ) is constant, i.e., φ(t )=φd ,
so that there is no accumulated geometric phase. Thus, the
final dynamical evolution operator is

Ud (θd , φd ) =
(

cos θd −i sin θd e−iφd

−i sin θd eiφd cos θd

)
, (A1)

where θd = 1
2

∫ τ

0 �(t )dt . In this way, arbitrary X - and Y -axis
rotation operations Rd

x,y(θx,y) can also be obtained by setting
φd =0, π/2 with θd =θx,y/2. Note that, to ensure the fairness
of our gate robustness comparison, we set the pulse shape and
error form to be the same in the cases of both dynamical and
geometric gates.

Similarly, for the two-qubit dynamical case, we start from
the two-qubit effective Hamiltonian in Eq. (19). Then, by
setting geffT=π/2 and ϕ=π/2, the dynamical iSWAP gate
can be realized. We here also set the parameters to be the same
as that of our geometric gate, i.e., take the decoherence rate

FIG. 6. Gate fidelities versus the qubit-frequency-drift-induced
σz error for dynamical and geometric iSWAP gates under the same
qubit parameters.

κ = 2π × 4 kHz and frequency difference of the two qubits
as �1 = 2π × 500 MHz. Under these current experimental
parameters, comparing with the dynamical iSWAP gate, our
geometric iSWAP gate still possesses the advantage of resisting
the qubit-frequency-drift-induced error, as shown in Fig. 6.

APPENDIX B: GATE ROBUSTNESS
FOR A FLUCTUANT ERROR

Here, we also consider the case where the qubit-frequency
drift is not static but fluctuates on a timescale shorter than the
gate-operation time. We take the fluctuation in the form of
δ sin(πt/τ ) as an example. As shown in Fig. 7, our composite
geometric gates can still exhibit an obvious advantage for gate
robustness over the conventional dynamical gates as well as
single-loop (N = 1) geometric gates.
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