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Performance of dense coding and teleportation for random states: Augmentation via preprocessing
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In order to understand the resourcefulness of a natural quantum system in quantum communication tasks,
we study the dense coding capacity (DCC) and teleportation fidelity of Haar uniformly generated random
multipartite states of various ranks. We prove that when a rank-2 two-qubit state, a Werner state, and a pure
state possess the same amount of entanglement, the DCC of a rank-2 state belongs to the envelope made by pure
and Werner states. In a similar way, we obtain an upper bound via the generalized Greenberger-Horne-Zeilinger
state for rank-2 three-qubit states when the dense coding with two senders and a single receiver is performed and
entanglement is measured in the senders:receiver bipartition. The normalized frequency distributions of DCC
for randomly generated two-, three-, and four-qubit density matrices with global as well as local decodings
at the receiver’s end are reported. The estimation of mean DCC for two-qubit states is found to be in good
agreement with the numerical simulations. Universally, we observe that the performance of random states for
dense coding as well as teleportation decreases with the increase of the rank of states, which we have shown to be
surmounted by the local preprocessing operations performed on the shared states before starting the protocols,
irrespective of the rank of the states. The local preprocessing employed here is based on positive operator valued
measurements along with classical communication and we show that unlike dense coding with two-qubit random
states, the senders’ operations are always helpful to probabilistically enhance the capabilities of implementing

dense coding as well as teleportation.
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I. INTRODUCTION

The basic quantum information processing tasks such as
dense coding [1,2] and teleportation [3] demonstrate the use-
fulness of quantum entanglement [4] in the field of quantum
information science. In particular, the idea of dense cod-
ing (DC) is to employ prior quantum correlation between
the sender and the receiver for enhancing classical message-
carrying capacity, while in teleportation, an unknown state
gets transferred to a remote location without physical trans-
portation with the help of a shared entangled state and two
bits of classical communication. The performance of dense
coding, which is called the dense coding capacity (DCC) of
the shared channel, is quantified by the number of messages
in a unit of bits carried from the sender to the receiver [5—8].
On the other hand, in teleportation, the relevant figure of merit
is the teleportation fidelity (TF), which measures the closeness
between the state obtained by the receiver and the target state
to be teleported at the sender’s end [3,9,10]. Over the years,
spectacular experiments have been performed to realize both
protocols by using photons, massive particles, nuclear mag-
netic resonance, etc. [11-15].

Since their inception, these two protocols have been gen-
eralized in many ways. Going beyond the bipartite scenario,
dense coding has been extended to a scenario of multiple
senders and multiple receivers, which enlarges the possibility
of encoding-decoding strategies in various ways [2,16-19].
In the case of multiple senders, it was shown that invoking
more general encoding than unitary, collective encoding is
better than the individual encoding [20], while for multiple
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receivers situated at far-apart locations, locally accessible in-
formation [21] plays a crucial role to obtain the DCC when
receivers are allowed to perform local operations and classical
communication (LOCC) for decoding [2,19]. Similarly, the
original teleportation protocol, which is commonly known
as the standard teleportation scheme (STS), also has been
generalized to include telecloning [22], multiport teleporta-
tion [23-25], teleportation with multiple sender-receiver pairs
[26,27], counterfactual teleportation [28], and reusing the tele-
portation channel [29].

In a realistic situation, ideal conditions to achieve perfect
DCC and TF are never met due to noises in the channel and
imperfections in the apparatuses. To circumvent this, Bennett
et al. proposed a method of distillation [30-33] which is a
collective preprocessing scheme involving many copies of
shared noisy entangled states and LOCC for obtaining pure
maximally entangled state, suitable for perfect DC and tele-
portation. The problem with distillation is that it requires a
large number of resources and successfully works only when
the singlet fraction is above some threshold value [31]. In the
context of teleportation, this problem has been resolved by
invoking a filtering operation, which acts at the single copy
level and can probabilistically provide an output having high
TF [33]. Surprisingly, it was also shown that for a certain class
of states, a dissipative channel can activate teleportation power
[34]. For two-qubit states, the optimal teleportation protocol is
known together with the optimal filter [35]. Very recently, it
has been shown that in higher dimensions, filtering can also
be effective for revealing the hidden teleportation power of
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a shared Werner state [36] and a class of rank-deficient state
used as the channel [37]. In obtaining a quantum advantage in
the dense coding protocol, coherent information [38] plays a
role similar to a singlet fraction in the case of teleportation.
Improving the DCC of a channel via filtering has not been
extensively investigated.

On a different front, randomly generated density matrices
[39—47] provide a vital tool for analyzing and studying the
trends of typical states in state space. They not only arise
naturally in the chaotic process [48], but also can be generated
in a systematic manner based on randomness in the outcome
of quantum measurement [46]. Moreover, against the intuition
of observing random behavior, it has been found that ran-
dom states show some universal properties—average quantum
correlations among randomly generated states increase with
the increase of the number of parties [33—-36]. Random states
were instrumental in disproving a longstanding conjecture in
quantum information science regarding additivity of minimal
output entropy [38] and in showing constructive feedback in
the presence of a non-Markovian noisy environment [49].

In the present work, we investigate the patterns of capabil-
ities obtained from two prominent quantum communication
tasks for Haar uniformly generated random shared channels.
In particular, we estimate the distributions of the dense cod-
ing capacity of states having different ranks in three specific
scenarios: (1) a single sender and a single receiver, (2) two
senders and a single receiver, and (3) two senders and two
receivers. Note that in the first two cases, the decoding is done
by global operations, while in the third situation, the encoded
states can only be decoded via LOCC. We prove that the DCC
of a rank-2 two-qubit state lies in the envelope of the DCC
of a pure state and a Werner state when all of them possess
the same amount of entanglement. We numerically confirm
that such upper and lower bounds also hold for rank-3 and -4
two-qubit states. On the other hand, we show that when three-
qubit generalized Greenberger-Horne-Zeilinger (gGHZ) [50]
and a rank-2 state have the same amount of entanglement in
the senders:receivers bipartition, the DCC of the gGHZ state
is higher than that of the rank-2 three-qubit state. The mean
of the frequency distribution for DCC is obtained numerically
for random states which are shown to be in good agreement
with the analytical estimation. In all scenarios of DC and tele-
portation protocols, we observe that the efficiencies decrease
with the increase of rank for the random states. We apply
local preprocessing operations in the form of dichotomic pos-
itive operator valued measurements (POVMs) on the shared
state before starting the protocol and report that the perfor-
mance can be enhanced by such preprocessing mechanism
for random states. Specifically, by employing three kinds of
figures of merit, we establish that the local preprocessing at
the sender’s or the receiver’s end or both ends can help to
probabilistically improve the capacities, as well as the tele-
portation fidelities, especially in higher ranked random states.
One should note that the preprocessing operations exploited
here cannot be included in the encoding-decoding strategies
(cf. [20]).

The paper is organized in the following way. In Sec. II, we
recapitulate the generation of random states of different ranks,
the dense coding capacity, the teleportation fidelity, and the

general dichotomic local POVM elements for preprocessing.
In Sec. III, we provide our analytical results and numerical
observations on dense coding capacity before preprocessing,
while the results obtained after local preprocessing are pre-
sented in Sec. IV. In Sec. V, observations and results on
teleportation fidelity before and after preprocessing are re-
ported. Finally, we conclude with a summary of results in
Sec. VL.

II. DEFINITIONS: DENSE CODING CAPACITY AND
TELEPORTATION CAPABILITY OF MULTIPARTITE
RANDOM STATES

In this section, we briefly describe the dense coding capac-
ity involving an arbitrary number of senders and a single as
well as two receivers and define the teleportation fidelity for
two-qubit states. Since we perform DC and teleportation for
randomly generated states, let us first elucidate the procedure
for such simulations [40]. Haar uniform generation of pure
states with an arbitrary number of parties having complex
coefficients, x; = a; + ib;, (a; and b; are real numbers), where
real numbers are taken from a Gaussian distribution with
mean O and standard deviation unity, denoted by G(0, 1) is
performed. Random mixed states of various ranks can be ob-
tained from an appropriate multipartite pure state after taking
partial traces of a suitable subsystem. For example, two-qubit
density matrices with rank 2, 3, and 4 can be simulated from
random tripartite pure states chosen in complex Hilbert spaces
of C?RC*°QRC% C*°RC*®C?, and C? ® C> @ C*, respec-
tively [40].

A. Dense coding capacity

Consider a multipartite communication channel formed by
multiple senders, Sy, S», ..., Sy, and a single receiver, R, in
which classical information transmission via quantum states
occurs. As originally proposed by Bennett and Weisner [1], it
can be shown that if senders and a receiver a priori share an
entangled state, p5152S%R 'more bits of classical information
can be encoded and sent to the receiver compared to a protocol
with unentangled states. The maximum classical information
accessible by the receiving party is called the dense coding
capacity [5-8,16]. We consider two scenarios depending on
the number of senders and receivers, as mentioned earlier.

(1) N senders and a single receiver (NS-1R). Suppose N
senders and a single receiver share an (N + 1)-party quantum
state, p51"S"R_ The dense coding capacity in this case reads

CNS—]R(pS].“SNR) — maX[lOg2 dSI Lt 10g2 dSN,
log, ds, + - - - + log, ds,, + S(p®) — S(p* %)), (1)

where dy,, .. ., ds, are the dimensions of the senders’ subsys-
tems Sy, ..., Sy, respectively. pg is the reduced state at the
receiver’s end and S(o) = —tr(o log, o) is the von Neumann
entropy. The first term represents the amount of classical
information that can be sent only by using a classical pro-
tocol, while a quantum state is suitable for dense coding if
S(pR) — S(p5-SvR) > 0. Notice that for two qubits involving
a single sender and a single receiver (1S-1R), it reduces to
14 8(p®) = S(0%).
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(2) N senders and two receivers (NS-2R). Let us now
consider that there are two receivers, Ry and R», in the dense
coding protocol, which again involves an arbitrary number
of senders, Sy, S», ..., Sy, sharing an (N + 2)-party quantum
state, p51SvRiR2 Ip this situation, although we do not know
the exact DCC, the upper bound is known [16]. Let k senders,
Si,..., S send their parts of the shared state to the first
receiver R, while the remaining senders, Sy, ..., Sy, send
their states to the second one R,. The upper bound on the
dense coding capacity is then represented by

CNS_ZR(pSI‘“SNR‘RZ) < max{10g2 dsl 4t 10g2 ds,\,,
log,(ds,) + - - - + log, (ds, ) + S(p™)

+8(p™)— max[S(p™ ), §(pSerIE = UM,
e)

where  pRt = trg,.5 g, 05 VIR and  pR = trg, gyr,
pStSvRiR - are the reduced states of the first and the
second receiver, respectively. Similarly, p51SF =

S]-“SNR[RZ “SNRIRZ

IS, -SyRy P and pSe VR — g g g pST
We will investigate the behavior of the upper bound for the
Haar uniformly generated four-qubit states where there are
two senders and two receivers.

B. Teleportation fidelity

In the teleportation protocol, the task is to send an unknown
quantum state to the receiver. If a shared state is maximally
entangled, such a task can be accomplished by performing the
entangled measurements at the sender’s side and communicat-
ing the outcomes to the receiver.

Let us suppose that the sender Alice and the receiver Bob
share an arbitrary bipartite state p5%. The teleportation fidelity
of pSR can be expressed as [9,10]

d
g A+l
d+1
where f = n{qul}x(¢|pSR|¢), with {¢} being the set of all max-

3)

imally entangled two-qudit states and d is the dimension of
the input state to be teleported. Notice that Alice and Bob
have the freedom to apply any trace-preserving local quantum
operations and classical communication (LQCC) in order to
maximize f, which is, in general, hard to perform even nu-
merically.

J

S1-SvR __

(VEs ®  ® JEs ®ls,, @ ®@1Lg)p" " SR(JEST®@ - ® \JEg ® 15, ® -+ ® Ig)

Given a two-qubit state 05%, we can calculate the optimal
teleportation fidelity by using the Horodecki’s prescription
[51], i.e.,

Fmax < 3(1 4 3trv/CiC), )

where the elements of the matrix, C = [Cj;], are given by
Cj= tr[p% (0; ® 0;)], where o’s are the Pauli spin matrices.
Furthermore, if the state pF violates the Clauser-Horne-
Shimony-Holt inequality [52,53], i.e., if it satisfies M (p5%) >
1 [51], where M(pSR) = (u; + up) with u; and u, being the
highest two eigenvalues of the matrix C*C, the inequality (4)
is replaced by an equality.
C. Preprocessing operations

We know that the initial DCC or TF of a state can prob-
abilistically be increased if some or all of the parties apply
local preprocessing operations [20,35,54,55]. If the DCC (TF)
is initially in the classical region and, after preprocessing,
it gives a quantum advantage, we say that the state ex-
hibits hidden DCC (TF). If the initial state already shows
a quantum advantage in dense coding (teleportation) and,
after preprocessing, the advantage gets improved with some
positive probability, those states demonstrate enhancements
in the DCC (TF). For the present study, we apply the most
general dichotomic POVMs [56-59] as local preprocessing
operations.

General dichotomic POVMs. The general dichotomic
POVMs can be represented as

1y, — A

EF =P+ —2 I, 5)
where A; is the sharpness parameter, such that 0 < A; < 1,
il + 1yl <1, and E;" + E7 =1, with 1 being the iden-
tity operator. P;* = cos %|0) + ¢ sin %|1) and its orthogonal
projector is P, . Here, i represents the party which applies the
POVM. To find the optimal POVM, we have to maximize over
the set of parameters, {6;, ¢;, A;}. If the shared state is two
qubits and both the parties perform local preprocessing be-
fore starting the protocol, we have to carry out maximization
over six parameters to evaluate the maximal DCC (TF). In a
multipartite shared state, p5'"*S¥R, considering preprocessing
operations performed by first k senders, the output state after
the action of local POVMs is given by

P

Notice that the DCC (TF) of the resulting state is investi-
gated after maximizing over 3k parameters involved in k local
POVMs.

III. DENSE CODING CAPACITY OF RANDOM STATES
WITHOUT PREPROCESSING

Let us first present the behavior of the dense coding ca-
pacity of Haar uniformly generated multipartite states. In

e[ ( Esi,®"'® E§t®ﬂsk+]®"'®11R)/0S""SNR( /E§T®-~-® E;;T@}ISM@'“@HR)].

(6)

(

particular, we analyze the frequency distributions in three
scenarios.

Case 1. A single sender—a single receiver (1S-1R)
pair shares two-qubit random states with different
ranks.

Case 2. Two senders and a single receiver (2S-1R) have
three-qubit Haar uniformly generated states having rank 1, 2,
3,4,5,and 6.
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FIG. 1. Upper panels and lower left panel: The normalized frequency distribution Fpc of Haar uniformly generated states (vertical axis)
against the DCC (horizontal axis). Upper panels: Single sender—single receiver (1S-1R) (left panel) and two senders—single receiver (2S-1R)
(right panel) scenarios. Lower left panel: Two senders—two receivers (2S-2R). Ry, ... R4 denotes the random states of rank 1 to rank 4. Lower
right panel: Fraction of states having quantum advantage in dense coding vs the rank of random states for three DC protocols. Notice that the
large fraction of high-rank mixed states has the DCC in the classical region and the general tendency to have a quantum advantage decreases
with the increase in rank. The rate of decrease of the upper bound for the DCC with rank in the 2S-2R case is significantly slower than the rate

of the DCC for 1S-1R and 2S-1R. All the axes are dimensionless.

Case 3. Haar uniformly simulated four-qubit pure as well
as mixed states having rank 2, 3, and 4 are initially distributed
among two senders and two receivers (2S-2R) situated in
distant locations.

Before proceeding further, note that quantum advantages
are not obtained when the DCC, C, is unity for 1S-1R, and two
for both 2S-1R and 2S-2R situations, provided the dimension
of each party is restricted to be two. In the cases of 1S-1R and
2S-1R, if the shared state is pure, the second term in Eq. (1)
vanishes and hence the DCC reduces to the von Neumann
entropy of the receiver’s part. Since the entanglement of a pure
bipartite state can uniquely be quantified by the von Neumann
entropy of the local density matrix [30], the quantum advan-
tage can always be achieved for all entangled pure states. For
mixed two-qubit states, we will show below, by proving a
theorem, that such a connection between shared entanglement
and the DCC cannot be established.

In a 2S-1R case, a relation between the genuine multipar-
tite entanglement content of the shared pure state and the DCC
does not hold [19] and, to our knowledge, no such results
are known for mixed three-qubit states, which will also be
established for rank-2 three-qubit states. In this work, we also
concentrate on mixed three-qubit states with rank up to six.

Let us first investigate the behavior of the dense coding ca-
pability of random states. The entire calculations and analysis
are based on 5 x 10* Haar uniformly generated states for each
case. In all of these scenarios, the normalized frequency distri-
bution of the DCC, given by Fpc = A%S(”)], with Npc[C(p)]
being the number of states having DCC, C(p) and Ny being
the total number of simulated states, is calculated, except
in the situation of the two senders and two receivers case,
where the normalized distribution of the upper bound is an-
alyzed, as depicted in Fig. 1. The observations in the figure
are listed below:

(i) Obtaining a quantum advantage in the DC protocol
decreases with the increase of the rank of the states. It can
be argued that such behavior is seen because the average
entanglement content of the Haar uniformly generated states
decreases with the rank of the states. However, such a simple
explanation may not hold, as we will show below.

(ii) The percentages of states showing DCC more than the
classical bound are 50.09%, 4.80%, and 0.30% for two-qubit
states with rank 2, 3, and 4, respectively. For the 2S-1R DC
scheme, it turns out to be 50.31% and 0.08% for rank-2 and
rank-3 states, while no states are found to give a quantum
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FIG. 2. Lower panel: Dense coding capacity of randomly gener-
ated two-qubit states (vertical axis) against entanglement (horizontal
axis), which is quantified by negativity. Blue line represents the
Werner state py , while the orange line represents the two-qubit pure
state. Upper panel: The maximal cost of the average DCC, defined
later in Eq. (28), of random two-qubit states of different rank after
two-sided POVMs is plotted with respect to negativity of the given
initial state. We notice that the lower bound still holds after local
POVMs applied by both of the parties. The vertical axis is in bits,
while the horizontal axis is in ebits.

advantage from rank > 4 random states. All pure states are
good for classical information transmission.

(iii) The upper bound in the 2S-2R case showing quantum
superiority is seen for 97.36% of rank-2 four-qubit states and
for all pure random states. For higher ranks, unlike the 2S-
1R DC protocol, the above percentage decreases but remains
significant, being 95.77% and 95.34% for ranks 3 and 4,
respectively.

(iv) The pattern of Fpc also changes with rank as well
as with the increase in the number of senders and receivers.
Specifically, we observe that the fraction of states showing
nonclassical capacity decreases with the rank of the random
states, as shown in Fig. 1 (lower right panel), irrespective of
the DC schemes. It can also be captured by computing the
mean and standard deviation (SD) of the distribution, which
we will discuss in the succeeding sections. We will also study
how the distribution changes with the introduction of prepro-
cessing in terms of POVM by different figures of merits.

To establish the fact that for mixed bipartite states, DC
and entanglement content is not related, we will now show
that the DCC of random states has a universal lower bound.
In particular, we find that the DCC of the Werner state,
given by

(I-p)
4

pw = plo*)(pT |+ Iy, )

where |¢T) = %@“00) +11)) with 0 < p < 1 and I, being

the identity matrix in C?> ® C2, gives a lower bound for all
randomly generated two-qubit states of rank 1 to rank 4 (see
Fig. 2). Moreover, we observe that the DCC of Haar uni-
formly generated states with rank 2, 3, and 4 lies between the

envelopes obtained for pure states, and the Werner states. Let
us now prove the lower and upper bounds for rank-2 states.

Theorem 1. The dense coding capacity of the arbitrary
mixed two-qubit state of rank 2 in the 1S-1R case is upper
bounded by the capacity of a pure state and lower bounded by
a two-qubit Werner state when all of them possess the same
amount of entanglement.

Proof. Any two-qubit mixed state of rank 2 can be ex-
pressed as [60]

P = pilvn) (Y| + (1 — po)lva) (¥al, (8)

where 0 < pi < L, [y1) = [0m) +[1m2), |¥2) = |0n7") +
173), Im) = cos 3[0) +sin 1), and |12) = cos F0) +
sin 2|1, with |n{") and |n3) being orthogonal states to |n;)
and |n;), respectively, and 0 < 6; < 7, i = 1, 2. The entan-
glement here is quantified by the negativity [61-63], which is
defined as the sum of the modulus of negative eigenvalues of
the partially transposed state. In this case, the negativity of p3
in Eq. (8) reads

Ni = [1/x—2(1 - p))]

N} = |3[vx = 2pi]

where x =2 +4p1(p1 + 1)+ 2(2p; — 1) cos(6; — 6,). Note
that for a fixed pi, 6; (i = 1,2), N(p3) = max{0, N}, N7}.

Let us first show the upper bound. The similar line of proof
leads to the lower bound. An arbitrary two-qubit pure state
written in a Schmidt decomposition reads

, ©))

, (10)

0 .0
V) = cos 51050k) + sin S{1s1g). Y

where |Og()) and |15)) are the eigenvectors of the re-
duced density matrices corresponding to the sender (re-
ceiver) and the eigenvalues of the local density matrix are
coszg and sin’ % The negativity of the pure state is the
square root of the determinant of its reduced density matrix,
i.e., sinf/2. Equating entanglements of rank 2 and a pure
state, we obtain

6 = sin”' (2N). (12)

On the other hand, the DCC of ,o% can be written as

C(p3) = 1+ H ({311 = Aipo]. 311+ AilpD]})
—H({p1, 1 = pi}), (13)

where  H({p;}) =—) ;pilog,(p;) is the Shannon
entropy of the probability distribution {p;}, and
fitpr) = 5(1 =2pp)cos(®32),  while  C(ly) =1+
(H{cosz(9/2), sin2(9/2)}). Due to Eq. (12), C(]y)) turns out
to be a function of p;, 6, and 6,, which can help to prove
the statement of the theorem, i.e., by showing the inequality
given by

1 1
H({E[l - filp)], 5[1 +f1(P1)]}) —H({p1,1-p1})

0 0
—H({0052 > sin? 5}) <0. (14)
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We substitute the value of 6 in terms of p;, 6;, and 6, using
Eq. (12), and numerically find that the inequality in (14) holds
true for all values of the above parameters.

In a similar fashion, we find that the negativity of the
Werner state, py, is (1_43”). If entanglements of ,o% and py

are equal, we get

1 —4N
= . 15
p 3 (15)

The DCC of py reads 1+ 1+H({122, 12 12 1ory)
since the local entropy of the reduced system of the Werner
state is unity. By using Eq. (15), we again numerically estab-
lish that DCC of any rank-2 state is always higher than that of
the Werner state when both of them possess the same amount
of entanglement for all values of p;, 6;, and 6,.

Notice that although the proof is presented for real pa-
rameters, we observe that if |n;), i = 1, 2, also have complex
coefficients, the proof holds. |

Remark 1. Numerically, we find that both the bounds re-
main true for all two-qubit states with rank 3 and 4.

Remark 2. Our numerical observations show that even
after preprocessing, our theorem holds (see the upper panel
in Fig. 2). It implies that when the receiver or both sender-
receiver pair apply the local POVMs to activate the dense
coding capability of shared states, the DCC of a random two-
qubit state is still lower bounded by that of the Werner state
having the same value of initial entanglement. However, the
upper bound does not hold any more under local POVMs.

Theorem 2. When negativities in the bipartition of senders
and receivers of a three-qubit rank-2 state and the generalized
GHZ state are equal, the dense coding capacity of the latter is
always higher than that of the former.

Proof. Any three-qubit rank-2 state, shared between S| S5, R,
can be written as [60]

P2 = pol W) (W3] + (1 — p2) W) (Wl (16)

where 0 <py <1, and [y3) = |0n3) + [1n4), |Yu) =
0n3) + 11ng),  |m3) = 0n3) +|1n}),  and 1n4) =
0n) + 1), with  [n3) = cos 10} +sin 1), In}) =
cos %lO) + sin %“ll), [ny) = cos%lO) +sin%3|1), [ny) = cos

%|O) + sin %H), with |?7§-) and |77j-) being orthogonal states
to [n3) and |n4), respectively.

Here, 0 < 6;, 0] < m, i = 3, 4. The entanglement in terms
of negativity [61] of the rank-2 state in the §;5,:R
bipartition is

(ND)' = L[/12 = 24p + 1693 — (1 = 2p2)y — 4p2]
if py < 0.5, (17)

2
(N3) = é[\/4 —8py + 16p3 + (1 — 2p2)y + 4py — 4]
if p; > 0.5, (18)
where y = cos(63 — 05) + cos(63 — 6;) + cos(9; — 6,) +
cos(f3 — 64) + cos(P; — 64) +cos(9; —04) and, hence,
N(p3) = max{0, (N§)!, (N7)?} quantifies the negativity of
,032. For the three-qubit generalized GHZ (gGHZ) state,

|pogHz) = c08(0,/2)|0s,05,0) + €% sin(0,/2)|15, 15, 1&),
(19)

3
R,
R, =
Ry
280 o .
Ry
Rg
2.6| gGHZ ~
24+
22
><><
2 o
0

FIG. 3. Dense coding capacity of Haar uniformly generated
three-qubit states (vertical axis) vs negativity (horizontal axis) in the
bipartition of senders and the receiver. The blue line represents the
generalized GHZ state, |¢ggrz). Subscripts, i (i=1,...,6) of R;
denote the rank of the three-qubit states. The vertical axis is in bits,
while the horizontal axis is in ebits.

where 0 < 0, < 5 and 0 < ¢, < 7, we have N(|¢ecnz)) =
—”;“’;29. When the entanglements of both the three-qubit
rank-2 and the gGHZ states coincide, we find

(1 —8N?
0, = w_ (20)

On the other hand,

C(p3) =2+H{301 = L)1, 311+ f£(p)]})
—H({p2, 1 — p2}), (21)

where fr(p2) = ﬁ\/(l —2p)2 (2 +y), while

C(lpecuz)) =

2 + H({cos? (6¢/2), sin® 6:/2)}). Mathematically, the
statement of the theorem requires the following inequality to
hold:

H({311 = f(p)], 311+ fo(p)1}) — H({p2, 1 = p2})
—H ({cos?(6,/2), sin*(6,/2)}) < 0. (22)

We substitute the value of 6, in terms of p», 63, 64, 65, and 6
using the relation given in Eq. (20) and we numerically find
that for all values of the above parameters, the inequality (22)
holds true. |

Remark 3. Like in two-qubit states, we also observe that the
DCC of other mixed states of rank > 3 are also upper bounded
by the DCC of the gGHZ state, as shown in Fig. 3.

Remark 4. Our numerical results show that after prepro-
cessing, some of the rank-2 states have higher DCC than that
of the gGHZ state when both of them possess the same amount
of initial entanglement. Hence, our theorem does not hold
when the senders and the receiver apply local POVMs.
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Analytical expression for mean DCC

Let us now derive the analytical expression of the mean
dense coding capacity of Haar uniformly generated two-qubit
states of different ranks in the 1S-1R scenario. These analyt-
ical expressions match significantly well with our numerical
results as obtained from the numerical data in Fig. 1.

From Eq. (1), the mean DCC for random two-qubit states
can be rewritten as

<(C]S_1R(pSR)) =14+ (S(pR) — S(pSR)> (23)

The mean entropy of a subsystem of dimension M, which is
obtained through partial tracing from a pure state of dimension
MK, can be expressed as [39]

Su) ~ log, M M 24
(Su) ~ log, K (24)

For arbitrary two-qubit states, pk, M = 4. Depending
upon the rank of the system, K can take value 1 .. . 4 for states
withrank 1, ..., 4, respectively. In order to calculate (S(o®))
for the reduced state, we use the principle of purification
of mixed states [64], according to which a mixed state is
obtained from a higher-dimensional pure state after tracing
out appropriate subsystems of a pure state. If we assume that
a (N + 2)-dimensional pure state leads to a single-qubit state,
the average entropy is found to be [65]

_ 10g26‘ (2N— 1)‘
(8(0)) = 755 (N —2){(N — 1)!

N-2 N =2 (1) s+1 1
X;( s )(S+2)(2s+3);21+1' *)

dimension of initial pure state

Let us take N = 5 . The results
for different ranks are enumerated below.

(1) Pure states. In this case, (S(p5%)) = 0 and (S(p®)) =
0.5, which gives (C;R) = 1.5. The subscript in C;* denotes
the rank of the state.

(2) Rank-2 states. (S(pS%)) = 1 and (S(p®)) are calculated
using N = 4 in formula (25), giving the value 0.735. Hence,
(C3R) = 0.735.

(3) Rank-3 states. By using Egs. (24) and (25) with N = 6,
we get (S(p*F)) = % and (S(p®)) = 0.822, which leads to the
mean DCC as (C5R) = 0.489.

(4) Rank-4 states. In this case, (CiR) =0.366 since
(S(0%%)) = 3 and (S(p®)) = 0.866, which is obtained by us-
ing N = 8.

Remark 5. The average of the DCC obtained in the case of
two-qubit states having rank 2, 3, and 4 is below unity, which
implies that most of the states do not give a quantum advan-
tage in the dense coding protocol and, hence, the average DCC
decreases with the rank (cf. [49]).

Remark 6. Notice that the mean obtained by analyzing the
frequency distributions of the DCC in Fig. 1 is much higher
than the one reported above, as also shown in Table 1. We find
that if we increase the dimension of the composite system, N,
the analytical results match pretty well with the numerics. In
fact, with N = 100, the analytical and numerical results are in
good agreement (see Table I).

TABLE I. Comparison between analytical [in Eq. (25)] and nu-
merical values of (CS®).

Analytical
Rank N=2 N =dim/2 N =100 Numerical
2 0.481 0.735 1 1
3 0.15 0.489 0.667 0.711
4 0 0.366 0.5 0.536

IV. EFFECTS OF LOCAL PREPROCESSING ON THE
DENSE CODING CAPACITY OF HAAR UNIFORMLY
GENERATED STATES

The dense coding capacity, given in Eqs. (1) and (2), is
obtained by optimizing over the unitary encoding performed
by the sender(s) and the decoding by the receiver(s). How-
ever, it is expected that before starting the DC protocol, if
one includes preprocessing on the shared states between the
sender(s) and the receiver(s), the capacity can, in general,
be enhanced with a certain probability. Since we deal with
random states and our aim is to find out the effects of pre-
processing on random states, we illustrate by analyzing the
situation where some of the senders and receivers or all of
them apply the local dichotomic POVMs [in Eq. (5)] to acti-
vate the hidden DCC (to enhance the DCC) when a particular
choice of outcomes occurs. To that end, we try to derive ana-
lytical conditions which, when satisfied, ensure that the state
can exhibit enhanced DCC after preprocessing by POVMs.

Let us define the following figures of merit to monitor the
action of preprocessing operations on the DCC.

Optimal increase in dense coding capacity (via POVM).
After maximizing over all the parameters involved in local
POVM, we concentrate on the DCC of the resulting state,
which is obtained when a specific measurement outcome
clicks. The maximization is performed when POVM is per-
formed by the sender(s) or the receiver(s), or both. We define
the optimal increase in the DCC due to the action of POVM
by all the parties as

(o VEo(®E)

Opcec = max C — | (26)
= \uf(@ VEDo(® yE)]
where the numerator denotes the output state,

tr[(®\/ﬁ ),o((X\/E )] is the probability of obtaining the
outcome to normalize the state, and {o;} represents the
particular outcome that gives the maximal DCC. In case
some of the parties perform POVMs, we apply the identity
operator on the rest as given in Eq. (6). Although it may
occur that several sets maximize the capacity, in a realistic
situation, POVM is set to the optimal direction so that one of
the possible choices of outcomes can occur. The enhancement
can be measured by evaluating Opcc — C(p), with C(p)
being the DCC of the original state before the application of
POVM.

Average cost of optimum dense coding capacity. Let us
suppose that an outcome o; of a particular POVM gives
the maximal enhancement in the capacity of dense coding.
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The average cost of optimum dense coding capacity is then
defined as

A]DCC = Zpﬂic(poi)s (27)
{oi}

where p,, is the probability of occurrence of a particular
outcome of POVM, o; and C(p,,) represents the DCC of the
normalized state after the action of POVM for that particular
outcome, o;. Note that the DCC for other outcome choices
is calculated with the same choices of parameters in POVM,
which leads to the maximum increase in the DCC calculated
in Eq. (26).

Maximal cost of average dense coding capacity. After per-
forming local POVMs by the sender(s) and the receiver(s),
if we are interested to know the maximum enhancement that
can occur in the dense coding protocol on average, we can
evaluate the quantity, given by

AZ .. = max 0 C(00) 1, 28
Bec {Mwi}[;pi (pi)} (28)

where the maximization is performed over the set of param-
eters in POVM as given in Eq. (5), p,, is the probability of
occurrence of a particular outcome, and p,, is the normal-
ized state after the action of preprocessing for that particular
outcome. Notice that in the case of the average cost of the
optimum dense coding capacity, we perform the maximization
to identify a single outcome that gives the maximum DCC af-
ter POVM, while in this case, the maximization is performed
to optimize the entire quantity which is written in the square
brackets.

Based on the above three quantities, we now analyze the
consequence of preprocessing acted by different combinations
of the sender(s) and the receiver(s) mentioned before on the
dense coding. Similar quantities will also be considered for
teleportation, where capacities will be replaced by fidelities.

A. Random two-qubit states after POVM: A single-sender and
single-receiver scenario

In this scenario, a sender S and a receiver R share a
two-qubit random state, pS%, having different ranks. When
the shared state is pure, we know that whenever the state is
entangled, it is dense codable and, hence, the hidden DCC
cannot be revealed after POVM, although POVM can enhance
the dense coding capability of the shared pure state. On the
other hand, if the shared state is a two-qubit mixed state,
we find that the mean DCC is below unity, as shown in
Sec. III, thereby implying that most of the Haar uniformly
generated states do not show a quantum advantage in DC.
For these states, either the sender or the receiver, or both
of them, apply the preprocessing operations to extract the
hidden DCC. We now present the exact conditions (in terms
of eigenvalues of the shared state and reduced state before and
after preprocessing) which have to be satisfied by the rank-2
mixed states for extracting the hidden DCC. It is important
to mention here that when the preprocessing is a completely
positive trace-preserving (CPTP) map, which can be included
in the encoding-decoding process, it was shown that the DCC

can be enhanced by applying CPTP operations neither by the
sender nor by the receiver [20].

Rank-2 state in 1S-1R scenario. Let the shared state pSk
be a rank-2 state. We denote its eigenvalues by x; and x,,
with x; +x, = 1 and x, — x; = kg, while the reduced state
at the receiver’s side, p® = trg(pS®), have eigenvalues x| and
x, whose sum is still unity and whose difterence is taken as
x, — x| = kj. Obviously, since all the eigenvalues are positive,
both ko, k, < 1. The DCC (before preprocessing) expression
can then easily be written in terms of the sum and difference
of the eigenvalues of the density matrices as

C(p™) =1—[(1 — ky) logy (1 — kp)
+ (1 4 kj) logy (1 + kg)]
+ [(1 — ko) log, (1 — ko)
+ (1 4 ko) log, (1 + ko)1. (29)

After preprocessing has been applied, the resulting state is
py¥ with eigenvalues summing to unity and having k as their
difference. Similarly, for the reduced state after preprocessing,
(p]’f), the sum of the eigenvalues is unity, but their difference
is k¥ and 0 < k, k' < 1. In a similar spirit as above, we can
write the dense coding capacity after preprocessing in terms
of k and k' as

C(py") = 14 8(py) = S(p,") =1
—[(1 = K)logy(1 — k') + (1 + k') log,(1 + k)]
+[(1 = k)logy (1 — k) + (1 + k) log, (1 + k)].
(30)

It is straightforward to show that each entropy term S(o%),
S(p), S(p*F), and S(py®), in both C(p**) and C(p3"),
reaches their individual maximum values when ko, k, k, k'
are all vanishing. The DCC after preprocessing should possess
two properties—the DCC after preprocessing is in the quan-
tum region, i.e., C( pgR) > 1, and the DCC after preprocessing
is greater than that of before, i.e., C(p5F) > C(pF). We de-
rive the conditions for both of these traits and argue whether
both are necessary for a given rank or if we can work with
either of them.

Condition for nonclassical DCC after preprocessing. This
condition demands that S(p5) — S(py) > 0. Since both of
these terms increase when their differences, i.e., k, k', ap-
proach zero, and since after preprocessing we find numerically
that the differences decrease, i.e., k < ko and k' < kj, we
propose the following:

Proposition 1. The dense coding capacity after prepro-
cessing is nonclassical, i.e., S(o8) — S(p5F) > 0, when k' is
smaller than k, i.e., k' < k.

The above condition follows from Eq. (30) and guarantees
that (C(,o[‘fR) > 1, although it does not ensure enhancement
after preprocessing. States which satisfy it after preprocessing
will surely have nonclassical DCC, and vice versa. We see that
this condition involves two eigenvalues and it may seem that it
holds only for rank-2 states. However, our numerical analysis
suggests that some rank-3 and -4 states after optimal POVMs
are reduced to states with rank 2, and hence this condition is
true for such two-qubit mixed states as well.
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FIG. 4. Upper panels: Mean optimal increase in dense coding capacity, Opcc, (ordinate) in 1S-1R, 2S-1R, and 2S-2R scenarios with
varying rank of the shared state (abscissa). Lower panels: Average probability of obtaining the optimal increase in DCC, pg, ., in 1S-IR,
2S-1R, and 2S-2R DC protocol with ranks. All the axes are dimensionless.

Condition for enhancing DCC after preprocessing. This
condition demands that S(p}) — S(p‘ﬁR) > S(p®) — S(p5®),
which in turn depends on the changes that have occurred in the
difference of eigenvalues before and after the preprocessing.
In particular, we observe the following after POVM:

Proposition 2. The dense coding capacity of rank-2 two-
qubit states after preprocessing is greater than that of the state
without preprocessing, if (k) — k') > (ko — k).

As noticed, when the difference between eigenvalues of
the states vanishes, the individual entropies are maximized.
Therefore, we can get enhancement after preprocessing if the
rate in which k" in ,ollf goes closer to zero after changing
from k& to k' is higher than k in plS,R which changes from
ko to k; then the increase in S(p5) [from S(p*)] is greater
than the increase in S(0,*) [from S(o°*)], thereby implying
C(py*) > C(p*F). We observe that among randomly gener-
ated two-qubit rank-2 states, 80.04% states satisfy the above
condition, although there are states showing the advantage of
preprocessing which do not satisfy the above criteria.

Let us now move to the scenario where two-qubit Haar
uniformly generated states undergo preprocessing and we
first address the issue of activation of hidden DCC, with
the increase of ranks and with the number of parties doing
POVM.

(1) Effects of rank. As depicted in Fig. 1, the DCC of most
of the mixed random states lies just above the classical limit

if they have nonclassical DCC, and the percentage of states
that have nonclassical DCC decreases sharply with increasing
rank.

First of all, we notice that if POVMs are performed by the
sender, no increment in DCC is observed for two-qubit states
(cf. [20]).

Second, after POVM, the optimal increase in DCC shows
a rise on average (see Fig. 4), albeit with a finite probability.

In Table II and Fig. 4, we illustrate Opcc = 2 Oncee™) and

= N
SR
Popee = Z"O?V—Csc(’”, where N is the total number of states

simulated and pg,..(p5F) is the probability of obtaining the
outcome of the POVM which leads to the state having the

TABLEIIL. Average optimal increase in DCC (two qubits). Opcc
denotes the optimal increase in DCC on average. “Both” and “Re-
ceiver” indicate that POVM is performed both by the sender as well
as the receiver, and the receiver only. “Before” represents the mean
DCC for a given rank without local POVM.

Before Receiver Both

Opcc Opcc
Rank 1 1.48 1.8 1.97
Rank 2 1.07 1.11 1.25

Rank 3 1.0043 1.01 1.034
Rank 4 1.00026 1.002 1.01
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FIG. 5. Upper panels: The mean and standard deviation (shown as error bars) of the average cost of the optimum dense coding capacity,

Apcc, for randomly generated states against the rank of the state in 1S-1R and 2S-1R. Lower panel: The same quantity is plotted for two

senders—two receivers. All the axes are dimensionless.

maximum increase in the DCC. The increment and corre-
sponding probability are complementary to each other, i.e.,
more increment occurs with lesser probability, as is visible
from the upper and lower panels of Fig. 4. It is true that
since most of the rank-4 and above randomly generated states
without preprocessing are not advantageous for quantum DC,
after preprocessing, the increase is also very low on average.

To analyze the average cost of optimum dense coding
capacity and maximal cost of the average DCC, we evaluate
the mean and the standard deviation (SD) of these quantities
for randomly generated two-qubit states. We observe that al-
though POVMs by the receiver or both by the sender and the
receiver do not help to increase the mean and the SD of these
quantities for pure states, the preprocessing indeed enhances
the capability of showing quantum advantages in the dense
coding protocol in states with rank 2 and above, as shown in
the left columns of the upper panel in Figs. 5 and 6 as well as
in Table III. When both of the parties apply local POVMs, we
observe that SD of A} also decreases with rank, although
the SD obtained from the frequency distribution of the DCC
before preprocessing is lower than that of quantities after
POVM.

(2) Effect of number of party doing preprocessing. As men-
tioned before, in the two-qubit scenario, no POVMs by the
sender enhance the DCC, while the receiver’s POVM helps.
However, when both parties apply POVMs, the enhancement
is more pronounced than the case when only the receiver acts,

which can be confirmed by all the figures of merit considered
here to measure the performance of DC in this case.

B. Local POVMs by two senders are more effective
than a single receiver

Three-qubit Haar uniformly generated states with rank 1
to rank 6 shared between two senders, S; and S5, and a sin-
gle receiver R are considered. All three-qubit pure random
states show a quantum advantage in DC since the random
states are typically genuinely multiparty entangled and, hence,
S(p®) is positive for all of them. With the increase of rank,

TABLE III. Mean of the average cost of optimum dense coding
capacity, KIIDCC’ and maximal cost of average dense coding capacity,

Apcc, for two-qubit random states. The columns labelled “Receiver”
and “Both” indicate, respectively, the quantities after POVMs are
applied by the receiver and after both of the parties perform POVMs.

Receiver Both
—1 —2 —1 —2
Before Apce Apcc Apcc Apce
Rank 1 1.48 1.373 1.48 1.39 1.48
Rank 2 1.07 1.07 1.21 1.11 1.22
Rank 3 1.0043 1.01 1.15 1.03 1.21
Rank 4 1.00026 1 1.02 1.013 1.2
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FIG. 6. Upper panels: The mean of the maximal cost of the average DCC, KZDCC, against ranks. All the other specifications are the same as

in Fig. 5.

states showing nonclassical DCC decrease and we do not find
a single randomly generated state having rank > 4, which
has C¥~1R(pS152R) > 2 as shown in Table IV. Unlike two-
qubit states, we observe that local POVMs applied by the
senders can also help to enhance the DCC probabilistically
(see Fig. 4). Figures 5 and 6 depict the enhancement on av-

erage by considering Kll)cc and KzDCC due to the application
of local POVMs before starting the protocol. In stark con-
trast with the two-qubit case, we observe that if senders can
apply local POVMs, the maximal cost of the average dense
coding capacity becomes more increased compared to the
situation when only the receiver performs POVM. Moreover,
our results demonstrate that to obtain a quantum advantage

in a multipartite DC scheme for random density matrices,
preprocessing is essential.

C. Effects of POVM on the upper bound of
DCC with 2S-2R case

Since for the two senders—two receivers DC scenario,
only the upper bound is known, we will now see whether
the upper bound can be enhanced by using preprocess-
ing on the shared states. It is interesting to note here that
there are states for which the upper bound on the DCC by
LOCC can be saturated. All the four-qubit pure states which

TABLE IV. Percentage of nonclassical dense coding capacity for three-qubit states with rank 1 to rank 6 before and after POVMs. All the
notations are the same as in Table III. “Before” denotes the percentage of states, giving a quantum advantage in the 2S-1R DC protocol without

preprocessing.
Senders Receiver Both
Before Apce Afce Apce Afce Apce Abce

Rank 1 100% 95.55% 99.96% 98% 99.99% 87.82% 99.83%
Rank 2 50.31% 86.72% 92.35% 92.28% 91.25% 45.83% 96.05%
Rank 3 0.08% 77.33% 79.64% 77.47% 78.45% 36.26% 87.36%
Rank 4 0% 58.1% 75.26% 38.91% 50.26% 30.6% 86.84%
Rank 5 0% 49.07% 73.96% 10.21% 48.85% 25.32% 85.28%
Rank 6 0% 39.78% 71.23% 7.26% 45.21% 18.96% 82.44%
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TABLE V. X;l)cc’ i=1,2, are listed for four-qubit states per-
forming a DC protocol with two senders and two receivers.

Senders Receivers Both
Before Apcc Ajec Apec Abce  Abce  Abec
Rank 1 2.4 2,16 2757 2.1 2412 245 2792
Rank2  2.16 215 2646 2.07 2182 241 2747
Rank 3 2.1 212 2586 2032 2115 235 2.63
Rank 4  2.06 2.1 2487 2021 2074 227 2.58

are, in general, genuinely multipartite entangled states show
C22R(pSi5:RiRy  J25=2R (> 2). Interestingly, we observe
that Ki)cc’ i = 1, 2, increases after applying optimal POVMs
by both of the parties, even for pure states, which is not
true for the DC protocol involving a single receiver. As seen
from Figs. 4-6 and Table V, for rank-2 to rank-4 four-qubit
Haar uniformly generated states, the upper bound can again
be improved substantially if the parties perform local POVM.
Like DC with the 25 — 1R scenario, senders can increase the
upper bound more by acting POVMs compared to the case

when receivers apply local POVMs, which is prominent for
—2
Apce-

V. TELEPORTATION FIDELITY FOR RANDOM STATES

Let us now move to another quantum communication pro-
tocol, in particular, quantum teleportation. Let us first analyze
the frequency distribution of the teleportation fidelity for ran-
dom two-qubit states with different ranks in Fig. 7. It was
realized from different studies that the higher the entangle-
ment, the higher is the TF of the two-qubit states, and all
pure two-qubit states are good for quantum teleportation and
violate Bell inequality. It was found [10] that TF and the
violation of Bell inequality [52,53] are connected. We observe

0.4 -

R,——

R; ==

0.35 | R
03} R

067 072 0.77 0.82 0.87 0.92 0.97 1.0

FIG. 7. Normalized frequency distribution of TF, as defined in
the case of DC, for Haar uniformly generated two-qubit states (ver-
tical axis) against nonclassical TF (horizontal axis). All the axes are
dimensionless.

that nonclassical TF for random states decreases with the
increase of the ranks of the states. For example, we find that
48.2% rank-4 states have TF in the classical range, while in
rank 2 and rank 3, the percentages turn out to be 10.14% and
20.91%, respectively.

Let us now show that with increasing rank, the relative
number of states that possesses the local hidden variable
model but gives nonclassical fidelity increases. For example,
90% rank-2 states have F > 2/3, out of which 67.9% are
local, while for rank 3 and 4, 93% and 98% are local among
73% and 51.8% states, which show a quantum advantage in
teleportation, respectively. The entire calculations and anal-
ysis are based on 10° Haar uniformly generated states for
each case. We demonstrate the action of local preprocessing
operations in revealing the hidden TF of such states. In this
regard, we later present the exact POVM operations that either
one party or both of the parties has to apply on the shared pure
random state to achieve optimum TF.

Effect of local preprocessing on teleportation fidelity

Like the DC protocol, either the sender or the receiver, or
both of the parties, apply the local dichotomic POVMs [in
Eq. (5)] to activate the teleportation fidelity with a nonva-
nishing probability. We show that preprocessing sometimes
allows us to enhance TF well beyond the classical limit (we
call it the hidden TF) or to increase the TF beyond the initial
fidelity, which we refer to as enhanced TF. Note that if the
postprocessed state has TF below 2/3, we discard the state
and follow the best classical protocol. As considered in the
dense coding protocol, we define three quantities to monitor
the action of preprocessing operations on TF. Specifically, we
evaluate the optimal increase in TF, denoted by Orp, average
cost of optimum TF, A'TF, and maximal cost of average TF,
A%F, which are, respectively, defined as in Egs. (26), (27), and
(28) by replacing C with .

We now consider the action of preprocessing when the
shared state is a random pure two-qubit state.

TF after POVM on arbitrary two-qubit density matrices.
The effectiveness of local preprocessing operations in en-
hancing the TF of two-qubit random states is studied. In the
two-qubit scenario, the optimal TF achievable from a shared
two-qubit state is already known [34,35]. Here, we compare
the optimal fidelity already known with the POVMs consid-
ered in this paper.

(1) Efficacy of POVMs increases with ranks. For a fixed
rank, the number of states showing teleportation fidelity more
than the classical bound increases probabilistically if the
sender or the receiver, or both, perform local dichotomic
POVMs (see Tables VI and VII). If one increases the rank,
such increment is dramatic, as quantified by @Tp, espe-
cially after the action of POVM by both of the parties, as
shown in Fig. 8. Unlike the DC protocol with two qubits,
the sender can also help to increase the TF by applying local
POVM.

(2) We observe that the mean values of A%F, i=1,2,do
not change very much after the action of POVMs, which is
different from the one observed in the case of the DC protocol
(compare Table VI and Fig. 9 with Table III and Fig. 5).
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FIG. 8. Left: The optimum increment in teleportation fidelity on average, denoted by O, vs ranks of two-qubit states. Right: Doy, against
ranks. The plots clearly show the trade-off between the increment in TF and the success probability. All the axes are dimensionless.
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FIG. 9. The left plot represents the mean of the average cost of optimum TF, K;F, while the right one is for KﬁF vs ranks. SD are shown as
error bars. All the axes are dimensionless.
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TABLE VI. Mean of the average cost of optimum TF and max-
imal cost of average TF after applying POVMs. “Before” represents
TF of random states on average for a given rank, without the action
of local POVM.

Sender Receiver Both

—1 -2 —1 -2 —1 -2

Before A Agp  Arp  Anp A Ap

Rank2  0.747 0.761 0.78 0.758 0.77 0.769 0.77
Rank 3  0.702 0.723 072 0719 0.73 0.73 0.73
Rank 4  0.675 0.702 0.7 0.701 0.7 0.708 0.71

(3) In general, we observe that TF can be enhanced max-
imally when both of the parties perform an optimal POVM,
although the probability of obtaining such outcome on average
is less in this case compared to the one when the sender or
the receiver performs POVM. On the contrary, we find that
for rank-2 random states, the average cost of optimum TF is
more when preprocessing is on the sender’s side only instead
of on both sides. This is possibly due to the fact that during
averaging, TF corresponding to some of the outcomes is very
small and, for both-sided POVMs, a number of such outcomes
are more compared to the single-sided ones.

VI. CONCLUSION

It is hard to emphasize the role of dense coding and tele-
portation protocols to build a new arena of research dealing
with quantum technologies. In laboratories, perfect dense
coding capacity (DCC) and teleportation fidelity cannot be
achieved due to the presence of different decohering factors
and imperfections. Therefore, it is of utmost importance to
devise a technique to restore the quantum advantage as much
as possible from low-performing states. It is usually done
via preprocessing of channels, which include distillation and
filtering processes. By using these techniques, specific pro-
tocols are known for a specific class of states or for two
qubits.

In this work, we characterized TF for random two-qubit
states and DCC for random two, three, and four qubits before
any preprocessing. We then showed that substantial activation
and enhancement in capacities, as well as fidelities, can hap-
pen after applying local preprocessing by the sender(s) and
the receiver(s). For rank-2 two-qubit and three-qubit states, we
analytically found that DCC of rank-2 states having the same
amount of entanglement with pure two-qubit states and the
three-qubit generalized Greenberger-Horne-Zeilinger state is
lower than that of the pure states, thereby establishing the fact
that DCC and the entanglement content of the shared states
are not interconnected. We also proved that the Werner state

provides a lower bound on the DCC of rank-2 two-qubit states
provided they possess the same amount of entanglement. Both
the upper and lower bounds that were obtained turned out to
be true for any two- and three-qubit density matrices. Nu-
merical simulations also showed that the lower bound holds
for rank-2 states after local preprocessing. We defined three
distinct figures of merit to access the advantage of local pre-
processing. We found that the fraction of states exhibiting
quantum advantage in DC and teleportation decreases with the
increase of rank, which can be overcome by means of local
preprocessing operations before beginning the protocols. In
the case of teleportation, it is interesting to see that for rank-3
and rank-4 states, 93% and 98% of states showing nonclas-
sical TF do not violate the Clauser-Horne-Shimony-Holt Bell
inequality [53].
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APPENDIX: STATE-DEPENDENT PREPROCESSING
BY PURE STATES

In the case of pure two-qubit states, we know that all of
the states are dense codable and can give nonclassical telepor-
tation fidelity. Any pure two-qubit state can be written in the
Schmidt form [67] as

PR = cos(0/2)|00) + sin(0/2)[11), (A1)

where |0) and |1) are the orthonormal basis. Let us consider
two situations, when the sender (the receiver) performs pre-
processing and when both of them perform preprocessing.

(1) Preprocessing by sender (receiver). Let us suppose the
sender S (the receiver R) performs the following preprocess-
ing operations on its part of the qubit [55]:

PS+=<tan(0> o>; PS=<\/1—tan2(0) 8) (A2)

0 1 0

If S gets the outcome “+,” the resultant state becomes a
maximally entangled state whose dense coding capacity is
2 and the TF is unity. Note that following the notations in

Eq. (6), \/EJ = P{, and the normalized state after the action

TABLE VII. Percentage of states showing nonclassical teleportation fidelity before and after the actions of POVM. All other specifications

are the same as in Table VI.

Sender Receiver Both
Before A A A Ao A Ao
Rank 2 89.96% 95.99% 99.5% 94.88% 99.45% 87.68% 99.65%
Rank 3 79.09% 87.51% 99.26% 79.3% 99.17% 86.03% 99.58%
Rank 4 52.04% 82.62% 99% 78.87% 89.95% 83.51% 99.48%
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of preprocessing is given by Eq. (6). The success probability
is tr[(Py ® 1) - p5F - (P§" @ 1x)].

(2) Both sender and receiver do preprocessing. When both
the sender and the receiver apply the following operations on
their part of the qubit:

5 -

Pt — («/tan(Q) 0) P — (~/1 —tan(0) 0)
s - 0 1 S ’

0 0
pt— Jtan(@) 0). P — J1—tan(@) O
R = 0 1) "R 0 o)

and if they get the outcome “++,” the output state is maxi-
mally entangled, giving maximal DCC and TF. As in Eq. (6),

E§ =Py,
action of preprocessing is given by Eq. (6). The success prob-
ability is t[(P{ ® Pi)- pSR - (P{' ® P{')]. We find that the
probability of success in both situations is equal to 2(sin ).
We find that although the above preprocessing leads to a
higher Opcc and Opr compared to the state-independent
method described in the paper, the average cost of opti-
mum dense coding capacity, as well as the maximal cost of
average DC (TF), turn out to be higher in the state-
independent POVMs (see Figs. 5 and 6).

Ef = Pg, and the normalized state after the
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