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Dynamic generation of Greenberger-Horne-Zeilinger states with coupled charge qubits
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In this paper, we present a proof of principle of the formation of pure maximally entangled states from
the Greenberger-Horne-Zeilinger (GHZ) class, in the experimental context of charged quantum dots. Each
qubit must be identified as a pair of quantum dots, sharing an excess electron, coupled by tunneling. The
electron-electron interaction is accounted for and is responsible for the coupling between the qubits. The
interplay between coherent tunneling events and many-body interaction gives rise to the formation of highly
entangled states. We begin by treating the problem of encoding three qubits in a system with three pairs of
quantum dots, and the numerical analysis of the exact quantum dynamics to find the conditions for the generation
of the GHZ states. An effective two-level model sheds light on the role of a high-order tunneling process behind
the dynamics. The action of the main decoherence process, the charge dephasing, is quantified in the process.
We then evaluate the physical requirements for the dynamical generation of GHZ states in an N-qubit scenario,
and its challenges.
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I. INTRODUCTION

Since the rise of the research on quantum information at
the end of the 20th century [1,2], semiconductor nanostruc-
tures have been pointed out as an interesting platform for
the experimental implementation of quantum information pro-
cessing. After 20 years, these at first theoretical expectations
have been gradually fulfilled, with successful experimental
realizations as the recent implementation of the fastest two-
qubit gate using a two-dimensional (2D) electronic gas in
silicon [3,4]. Although electron spin-1/2 states are the most
common system to encode qubits [5], semiconductors offer
other possibilities as the electronic state qubits defined in
charged quantum dots [6,7], the singlet-triplet qubit states of
two electrons in GaAs [8,9], and the exchange-only qubit with
spin states [10], among others.

Quantum dots (QDs) have been defined as artificial atoms,
once the spatial confinement favors the formation of a discrete
spectrum of electronic levels [11]. From all the possibili-
ties of encoding a qubit, as in the excitonic states [12–14]
and the electronic spin [15,16], the interest in the physics
of charged quantum dots has been increasing, once they are
scalable systems where initialization and readout are possible
through a process involving detection even of a single electron
[17,18]. In this physical system, the qubits are defined based
on the property of electronic tunneling [7,19], with the single-
qubit operations being controlled by external gate voltages
[7,19]. Moreover, the single-molecule electronics has been an
outstanding new field of research, due to its future feasible
implementations as the construction of a cheaper and faster
single-electron transistor [20,21].
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In this work, we encode a qubit using a pair of charged
quantum dots sharing one electron in excess, forming a
quantum molecule. Inside the molecule, the single-electron
tunneling and the electronic detuning guarantee the qubit en-
coding, while electrostatic interaction with the electron in an
adjacent similar system couples two qubits. Recently, propos-
als of a generation of the W states, another tripartite entangled
state, had been studied in the context of spin qubits [16] and
superconductor qubits [22]. Here, our main goal is to establish
physical conditions for the generation of genuine multipartite
maximally entangled states, belonging to the Greenberger-
Horne-Zeilinger (GHZ) class [23], in front of the results for
the case of two charge qubits [24–26]. We are interested not
only in exploring, by numerical simulations, this dynamic, but
also in the comprehension of the specific process behind the
formation of the states and the feasibility of the proposal, in
terms of the effects of the decoherence process due to charge
dephasing. As far as we know, this is the first theoretical
demonstration that many-body interactions yield highly en-
tangled GHZ states in semiconductor charged quantum dots.

This paper is organized as follows. In Sec. II, we present
the model used to describe our system of interest, introduc-
ing the Hamiltonian operator for the physical setup and then
showing the conditions for encoding three qubits. We also
present some entanglement quantifiers that will be used for
the characterization of the GHZ-class states. Section III is
devoted to the presentation of our main results: the numerical
simulations for the generation of GHZ states together with
the discussion about an effective two-level Hamiltonian which
illustrates how a three-order tunneling process explains the
formation of the target states. The action of charge dephasing,
the main mechanism of decoherence in our system of interest,
is discussed in Sec. IV. The scalability of our proposal for N
qubits encoded in quantum molecules is discussed in Sec. V,
and Sec. VI contains our final remarks.

2469-9926/2021/103(3)/032438(11) 032438-1 ©2021 American Physical Society

https://orcid.org/0000-0003-3042-4296
https://orcid.org/0000-0001-5812-1321
https://orcid.org/0000-0001-8962-5661
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.103.032438&domain=pdf&date_stamp=2021-03-30
https://doi.org/10.1103/PhysRevA.103.032438


NOGUEIRA, OLIVEIRA, SOUZA, AND SANZ PHYSICAL REVIEW A 103, 032438 (2021)

FIG. 1. Sketch of the physical system of three qubits: six quan-
tum dots are coupled by pairs, each pair being a quantum molecule.
Electronic coherent tunneling is permitted inside each molecule, al-
though it is forbidden between dots belonging to different molecules.
The allowed tunneling couplings are shown with blue solid lines.
Electrostatic coupling permits the interaction between electrons in
different molecules, and is indicated by dotted and dash-dotted lines.

II. MODEL AND ENTANGLEMENT QUANTIFIERS

In this section, we present the physical system considered,
its model Hamiltonian, and a summary of the entanglement
quantifiers. We begin with a model consisting of a three-
qubit system, codified in charged quantum dots. A sketch
of this particular physical system is shown in Fig. 1. Each
qubit is encoded in the electronic states of a double dot
molecular structure [6]. By attaching particle reservoirs to
the molecules, the system can be initialized in some specific
charge configuration, on demand. Additionally, Coulomb in-
teraction between molecules is considered at least for first
neighbors [7,27]. This kind of multiple-dot structure has been
experimentally explored in the last two decades [28,29].

Charged quantum dots are actually built at the intersection
of two semiconductors of different band gaps (e.g., GaAs
and AlGaAs), which sustains a two-dimensional electron gas
(2DEG). The QDs are then delimited by spatial confinement
obtained by the action of negative biased voltages on gate
electrodes at the top of the 2DEG. Additionally, some extra
gates couple the system with electronic reservoirs (not shown
in the scheme): a source provides electrons to enter in the sys-
tem and a drain withdraws charges, in a process that permits,
for example, measurements of the current through each qubit.
Extra electrodes attached at various points of the system are
also used to attain a fine control of the physical parameters of
tunneling, Vi j , and electronic energies, Ei, by simply varying
gate voltages [6,7,28,30].

We consider a closed system that is already initialized
in one of the eight possible states for three qubits. We as-
sume that the system is in the Coulomb blockade regime,
where only a single electron per qubit is allowed. Our model

Hamiltonian is written in second quantization as

Ĥ6QDs =
6∑

i=1

Ein̂i + V̂ + Û , (1)

where

V̂ = V12d̂†
1 d̂2 + V34d̂†

3 d̂4 + V56d̂†
5 d̂6 + H.c., (2)

Û = U13n̂1n̂3 + U14n̂1n̂4 + U23n̂2n̂3 + U24n̂2n̂4

+U35n̂3n̂5 + U36n̂3n̂6 + U45n̂4n̂5 + U46n̂4n̂6, (3)

with d̂†
i (d̂i) being the fermionic creation (annihilation) oper-

ator, and n̂i = d̂†
i d̂i is the number operator to the ith dot. The

first term in Eq. (1) is the energy of the electronic level in each
dot. The second, given by Eq. (2), describes the intramolecule
tunnel coupling, while the last term, Eq. (3), accounts for the
Coulomb interaction between molecules.

The Hilbert space H6QDs of the system is a 64-dimensional
space with elements being {|1〉⊗6 , . . . , |0〉⊗6}, and |1〉 (|0〉)
stands for the dot being occupied (empty). Imposing the con-
dition where a single electron per qubit is considered, the
accessible Hilbert space reduces to only eight states, with each
molecule occupying one of the states |10〉 or |01〉. Thus, defin-
ing |10〉 = |0〉 and |01〉 = |1〉, the complete basis turns out to
be {|000〉 , |001〉 , |010〉 , |011〉 , |100〉 , |101〉 , |110〉 , |111〉}.

At this point, we introduce a new set of physical parameters
in connection with the energies and couplings of the Hamilto-
nian of Eq. (1):

ε1 = (E1 − E2)/2, ε2 = (E3 − E4)/2, ε3 = (E5 − E6)/2,

�1 = −V12 = −V21, �2 = −V34 = −V43,

�3 = −V56 = −V65,

J12 = U13 = U24 = −U14 = −U23,

J23 = U35 = U46 = −U36 = −U45. (4)

With these definitions and using only the reduced computa-
tional basis {|0〉⊗3 , . . . , |1〉⊗3}, we can write the Hamiltonian
in the following way:

Ĥ3qb =
3∑

q=1

[
εqσ̂

(q)
z + �qσ̂

(q)
x

] +
∑
q′,q′′

Jq′q′′ σ̂ (q′ )
z ⊗ σ̂ (q′′ )

z , (5)

where σz = |0〉〈0| − |1〉〈1|, and σx = |0〉〈1| + |1〉〈0|. Here,
the index q = 1, 2, 3 denotes the qubits in the first two terms
while q′ = 1, 2 with q′′ = q′ + 1 is used in the third term.
The first term in Eq. (5) depends on the detuning of the elec-
tronic energies for each qubit, the second takes into account
the tunneling process inside each qubit, and the third term
describes the Coulomb interaction between qubits. Notice that
this Hamiltonian is an extension of the case for a two-qubit
system in the context of charged quantum dots studied in
earlier works [24–26].

As the number of qubits encoded in a quantum system
increases, to determine the entanglement degree of quantum
states becomes a challenge. To the well-known case of a two-
qubit system, one can easily characterize the physical states
as being separable or entangled. A similar analysis is not that
simple, even for the case of three qubits [31–33]. Apart from
the fully separable states, there are three classes of entangled
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states. We can say that two different entangled states belong
to the same equivalence class if it is possible to find a set
of stochastic local operations and classical communication
(SLOCC) that transforms one state into another. Thus, con-
cerning the classes of entangled states for three qubits, the
first is the class of biseparable states, where one qubit remains
separate while the remaining two qubits show bipartite entan-
glement. The second and the third classes, the W and GHZ
states, are two different families that show genuine tripartite
entanglement [32].

We are interested in studying the dynamical formation of
states belonging to the GHZ class. For instance, we can write

|�GHZ(φ)〉 = 1√
2

(|000〉 + eiφ |111〉), (6)

where φ is a relative phase. Notice that the application of the
operator I ⊗ σx ⊗ I on |�GHZ〉 results in a new state, which
we define as |�FLIP〉, written as

|�FLIP(φ)〉 = 1√
2

(|010〉 + eiφ |101〉), (7)

which belongs to the same GHZ class, once the operation is
an invertible local operator (ILO). This means that the states
in Eqs. (6) and (7) are SLOCC equivalent. In what follows,
we will focus on the formation of both GHZ and FLIP states.
This class of entangled states is interesting since it is well
defined for any number of a multipartite qubit system (N > 2).
A generic GHZ representative state is of the form

∣∣�N
GHZ(φ)

〉 = 1√
2

(|0〉⊗N + eiφ |1〉⊗N ), (8)

and analogously the |�N
FLIP(φ)〉 is obtained by applying the

ILO operation Î ⊗ σ̂x ⊗ Î ⊗ σ̂x · · · over |�GHZ
N (φ)〉.

In order to characterize the dynamical formation of GHZ
states of three qubits, we calculate the 3-tangle (τ3), a useful
entanglement quantifier [34] which is defined as

τ3 = τA(BC) − τAB − τAC, (9)

with A, B, and C representing the qubits, and

τA(BC) = 4Det(ρ̂A), (10)

where ρ̂A is the reduced density operator obtained by taking
the partial trace with respect to both B and C qubits, i.e., ρ̂A =
TrB{TrC{ρ̂(t )}}. For the calculation of τ3 it is also necessary
to calculate

τAB = Tr(ρ̂AB ˜̂ρAB) − 2λ1λ2, (11)

where ρ̂AB = TrC{ρ̂(t )}, ˜̂ρAB = (σ̂y ⊗ σ̂y)ρ̂∗
AB(σ̂y ⊗ σ̂y) being

the spin-flip density operator, and ρ̂∗
AB is the complex con-

jugate of ρ̂AB. The values λ1 and λ2 are the only non-null
square-root eigenvalues of the operator ρ̂AB ˜̂ρAB. A similar
definition holds for τAC . As an auxiliary quantity, we define

τ2 = τAB + τAC, (12)

which quantifies the amount of bipartite entanglement in the
three-qubit system. This entanglement quantifier is used in
our numerical calculations to establish if some pure state ρ̂(t )
belongs to the GHZ class of entangled states, with a 3-tangle

value reaching τ3[ρ̂(t )] = 1 while τ2 = 0, showing genuine
multipartite entanglement.

A second useful quantity, used to establish the distance
between two quantum states, is the fidelity, which is given by

F = Tr[ρ̂(t )ρ̂target]. (13)

The fidelity reaches 1 as the evolved density matrix oper-
ator, ρ̂(t ), approaches the target state ρ̂target. We will use the
fidelity to check the dynamics of the formation of GHZ states
for the case of three qubits and the analysis of the scalability
of our proposal.

III. DYNAMICAL GENERATION OF GHZ STATES

In this section we discuss the main results of our work, the
dynamical generation of a state of three qubits with genuine
multipartite entanglement, belonging to the GHZ class. The
dynamics of the closed system is obtained by solving the
von Neumann equation for the density matrix operator ρ̂(t )
(h̄ = 1),

˙̂ρ(t ) = −i[Ĥ3qb, ρ̂]. (14)

Once the evolved density matrix ρ̂(t ) is obtained, we calculate
the population of states |000〉 and |111〉 via

Pe(t ) = Tr[ρ̂(t )ρ̂e], (15)

where ρ̂e = |e〉〈e| with e = 000 or 111. We also calculate
the entanglement measurements defined in Sec. II, and the
fidelity, choosing some target state from the GHZ class, con-
sidering a specific value of relative phase φ in Eq. (6).

In our studies, the Coulomb strength will be fixed at J12 =
J23 = J = 25 μeV [27], and we set all physical parameters in
Hamiltonian (5) in terms of J . In order to choose the value of
�, we run simulations looking for a combination of both low
times for formation of the GHZ state and high fidelity. In the
range J/10 � � � J/2, the numerical estimation of the time
of formation of a GHZ state falls from 20 to 0.1 ns. At the
same time, high values of � show a decrease of the fidelity
of the evolved state with a GHZ target state, from 0.99 to
0.91. Additionally, the analysis of the characteristics of the
energy spectrum and eigenstates of the Hamiltonian, Eq. (5),
shows that this choice of parameters favors the formation
of two eigenstates with fidelities above 0.9 with GHZ states
|�GHZ(π )〉 and |�GHZ(0)〉 (see Appendix A for details). This
analysis of the spectrum and dynamics shows that the best
conditions for the generation of a GHZ state occur when
the electronic levels are resonant (ε1 = ε2 = ε3 = 0), and the
molecules have equal tunneling couplings being �1 = �2 =
�3 = �.

In order to keep both short times of formation, important in
order to face processes of decoherence, and high fidelity, we
chose � = J/6 for the illustration of our proof of principle
of generation of GHZ states. Figure 2(a) shows both P000(t )
and P111(t ) against �GHZt , considering ρ̂(0) = |000〉〈000| as
the initial condition. The choice of the coupling �GHZ to
parametrize the temporal evolution will be made clear soon.
Notice that when P000 = P111 = 0.5 at �GHZt ′

GHZ ≈ π/4, we
obtain a highly entangled state, according to τ3 = 1, shown by
the black squares in Fig. 2(b). For this particular time we also
find τ2 = 0 (not shown here) [35]. To confirm the formation of
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FIG. 2. Quantum electronic dynamics in three quantum
molecules, as a function of the dimensionless parameter �GHZt
considering the initial condition ρ̂(0) = |000〉〈000|, and physical
parameters given by εq = 0, J = 25 μeV, and �q = J/6 in the
Hamiltonian, Eq. (5). (a) The populations P000(t ) (black dots) and
P111(t ) (brown open circles), together with the evolution of the same
quantities considering the effective two-level system as discussed
in Sec. III: P000,eff (t ) (brown solid line) and P111,eff (t ) (gray dashed
line). (b) Evolution of the entanglement quantifier τ3 (black squares),
and the fidelities FGHZ− (brown solid triangles), and FGHZ+ (brown
crosses). The blue dash-dotted line shows the time of formation of
the first GHZ state, corresponding to t ′

GHZ = 4.56 ns as predicted by
the effective two-level model.

GHZ states given by Eq. (6), we calculate the fidelities FGHZ−
(brown solid triangles) and FGHZ+ (brown crosses), which
correspond to target states with φ = −π/2 and φ = π/2 in
Eq. (6), respectively. Once, at time t ′

GHZ, the fidelity FGHZ−
becomes close to 1, these results allow us to conclude that, at
this particular time, the evolved state is given by

|�(t ′
GHZ)〉 ≈ |�GHZ(−π/2)〉 = 1√

2
(|000〉 − i |111〉). (16)

Also in Fig. 2(b), we find FGHZ+ close to 1, for �GHZt ≈
3π/4, thus revealing the formation of |�GHZ(π/2)〉. With
the same choice of physical parameters but considering the
initial condition ρ̂(0) = |010〉〈010|, we observe a similar be-
havior behind the formation of FLIP states (see Appendix B

for details). It is valid that, for the experimental value of
J = 25 μeV, the earliest time of generation of a GHZ state
is around t ′

GHZ ≈ 4.5 ns.
Let us search for a two-level model which will provide an

important insight into the generation of the GHZ states. We
start rewriting the three-qubit Hamiltonian from Eq. (5) as

Ĥ3qb = Ĥ0 + V̂ ,

where

Ĥ0 =
3∑

q=1

εqσ̂
(q)
z +

∑
q′,q′′

Jq′q′′ σ̂ (q′ )
z ⊗ σ̂ (q′′ )

z (17)

is the diagonal term of the Hamiltonian. The energies E0
k of

Ĥ0 are

E0
000 = E0

111 = 2J, (18)

E0
010 = E0

101 = −2J, (19)

E0
001 = E0

011 = E0
100 = E0

110 = 0, (20)

obtained from Eqs. (A1) in Appendix A, with εq = 0 for
all values of q, and J12 = J23 = J . As discussed also in
Appendix A, at this condition there are three subspaces en-
ergetically separated by a gap |2J|: the subspace spanned by
{|000〉 , |111〉}, the one given by {|010〉 , |101〉}, and finally the
largest one with {|001〉 , |011〉 , |100〉 , |110〉}.

The nondiagonal term of Ĥ3qb,

V̂ = �

3∑
i=1

σ̂ i
x, (21)

describes the action of tunneling. This coupling removes en-
ergy degeneracies of Ĥ0 inside each subspace. For � < J/4,
numerical calculations show that the eigenstates from the
original subspace with E = 2J become GHZ states with φ =
0 and φ = π in Eq. (6) (see Appendix A for details).

At this point, we consider the tunneling coupling as a
perturbation in order to find an analytical expression for the
effective two-level coupling, following a procedure used in a
recent work [24]. As we are interested in the formation of the
GHZ state given by Eq. (6), we can assume that the system
is initialized in one of the states |000〉 or |111〉. Since no
relaxation mechanisms are present (charge dephasing will be
accounted for in the next section), we expect a temporal evo-
lution from the initial state to a coherent superposition of both
|000〉 and |111〉 states. However, no direct coupling between
these two states is present. In order to undergo a quantum
evolution inside this subspace, the system needs to perform
virtual transitions via the other states of the three-qubit basis.
This virtual mechanism can be explained via perturbation
theory.

The calculation involves separating the original basis of
three qubits in two parts, where A is a two-dimensional
subspace with elements |000〉 and |111〉 and B contains the
remaining six elements. The matrix representation of the
Hamiltonian which describes the problem can be seen as

˜̂H = ˜̂H0 + ˜̂V =
( ˜̂HAA ˜̂HAB

˜̂HBA ˜̂HBB

)
. (22)
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Following the steps detailed in Appendix C, we arrive to a
two-level effective Hamiltonian written as

ĤGHZ
eff = �GHZ|111〉〈000| + H.c., (23)

where �GHZ corresponds to

�GHZ =
8∑

k=1

8∑
u=1

〈111| H̃AB|k〉〈k|(E − ˜̂HBB
0

)−1
V̂ BB

× (
E − ˜̂HBB

0

)−1|u〉〈u| ˜̂HBA |000〉 . (24)

Here the indices k and u run over all the states in the computa-
tional basis, and V̂ BB is the 6 × 6 matrix representation of the
perturbation V̂ in the subspace B. Notice that the sequence of
the operators H̃AB, V̂ BB, and ĤBA in the numerator of Eq. (24)
indicate that third-order processes are behind the emergence
of anticrossing of |000〉 and |111〉. Expanding the sum and
substituting the matrix elements, the expression becomes

�GHZ = �3

[
1

EA − E011

(
1

EA − E001
+ 1

EA − E010

)

+ 1

EA − E101

(
1

EA − E001
+ 1

EA − E100

)

+ 1

EA − E110

(
1

EA − E010
+ 1

EA − E100

)]
. (25)

The term EA in the equation can be approximated as the
eigenenergy of the unperturbed Hamiltonian H̃0 in the sub-
space A, which is EA = 2J (or EA = −2J , when describing
the dynamics inside the FLIP space). Finally, we arrive at the
expression of the effective coupling (in units of energy):

�GHZ = �3

J2
. (26)

By using Eq. (26) inside Eq. (23) and calculating the quantum
dynamics, we obtain the Rabi oscillations for the effective
populations P000,eff (t ) (brown solid line) and P111,eff (t ) (gray
dashed line), plotted in Fig. 2. Notice that the model describes
well the results of the exact calculation at short times. A
similar behavior can be observed for the dynamics considering
an initial condition for the formation of FLIP states, as shown
in Fig. 7 in Appendix B.

From our numerical calculations, we see that the quantum
dynamics do not behave as periodic and show ripples, both
signs of a more complex dynamics, which involves the whole
set of eight states on the unitary dynamics. Still, at short
times and small tunneling rates, the effective model becomes
a useful tool for the estimation of the value of the time of
formation of a high-fidelity GHZ state, which is

t ′
GHZ = π

4

J2

�3
. (27)

With this expression, we estimate t ′
GHZ = 4.56 ns for the phys-

ical conditions in Fig. 2. This time scale is shown in the figure
with the blue dash-dotted line, coinciding with the formation
of the state |�GHZ(−π/2)〉. Following the same procedure,
but considering the two-level system with energies E = −2J
as A, we arrive at an equivalent expression but the case of
formation of FLIP states. The final result gives �FLIP = �GHZ,

thus explaining the similarities between the dynamics of the
two cases, as observed by comparing Fig. 2 and Fig. 7
(Appendix B).

IV. DYNAMICAL BEHAVIOR UNDER
A DEPHASING CHANNEL

In this section we discuss the effects of charge dephasing,
the main decoherence process in the context of charged quan-
tum dots [36–38]. To quantify the effect of dephasing on the
generation of a GHZ state, we numerically solve a Lindblad
master equation [27] written as

˙̂ρ(t ) = −i[Ĥ3qb, ρ̂] + 1

2

8∑
k=1

�k (2L̂k ρ̂L̂†
k − L̂kL̂†

k ρ̂ − ρ̂L̂kL̂†
k ),

(28)

where �k are the rates associated with the dephasing channel
in energy units, L̂k are the jump operators, and the time scale
of the dephasing process is given by Tdeph = 1/γk = h/�k ,
with γk in hertz. The physical agent behind this process is
the background charge fluctuation. To model the effect of
dephasing, we consider the operators

L̂k = |k〉〈k| (29)

in Eq. (28). Here |k〉 is one of the elements of the compu-
tational basis where L̂1 = |000〉〈000|, L̂2 = |001〉〈001|, and
so on. We run our numerical simulation in order to solve the
master equation (28) considering �k = �deph for all k.

In Fig. 3, we plot our results for the dynamics of popu-
lations P000(t ) (black dots) and P111(t ) (brown open circles),
and the fidelity FGHZ− (brown triangles), considering three
different values of dephasing parameters: γdeph = 10−2 GHz
[Fig. 3(a)], γdeph = 10−1 GHz [Fig. 3(b)], and γdeph = 1 GHz
[Fig. 3(c)]. The physical parameters are the same as in Fig. 2.
We focus on the formation of the GHZ state |�GHZ(−π/2)〉
once this state is generated earlier in the dynamics.

The results show the high sensibility of the three-qubit
dynamics over this process. Even for small rates of dephasing
[Fig. 3(a)], the decreasing amplitude of oscillations is a clear
sign that the process promotes population to other accessi-
ble states in an incoherent evolution. At t ′

GHZ, we still have
the maximum for the fidelity with value FGHZ− ≈ 0.85 for
the target state |�GHZ(−π/2)〉, although the populations at
this time show a higher value for P000 (around 0.62), which
means the dephasing process affects strongly the third-order
tunneling processes behind the effective two-level dynamics
for the formation of the GHZ-class states. Increasing the value
of the dephasing rate to γdeph = 10−1 GHz, shown in Fig. 3(b),
the oscillatory behavior is lost and the fidelity shows a max-
imum with low value (≈0.55). Finally, for γdeph = 1 GHz,
shown in Fig. 3(c), the population P000 and fidelity decay
fast, with P111 increasing, until t ≈ 12 ns, when the density
operator becomes a statistical mixture. In fact, for the three
dephasing rates considered, it is true that limt→∞ ρ̂(t ) = I/8.
This behavior shows that the feasibility of the generation of a
GHZ-class state in the context of charged qubits is an open
experimental challenge, once it is important to guarantee a
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FIG. 3. Dynamics of populations P000(t ) (black dots) and P111(t )
(brown open circles), as well as the fidelity FGHZ− (brown triangles)
considering the action of the dephasing for εq = 0, J = 25 μeV, � =
J/6, and the initial condition ρ̂(0) = |000〉〈000| with (a) γdeph =
10−2 GHz, (b) γdeph = 10−1 GHz, and (c) γdeph = 1 GHz. The blue
dash-dotted line shows the time of formation of the first GHZ state,
corresponding to t ′

GHZ ≈ 4.46 ns.

setup with low values of dephasing rates. Even though we
find that the formation of GHZ states in the present system
is quite sensitive to charge dephasing, if low dephasing rates
are experimentally attained, one can find large fidelity values
for both GHZ and FLIP states.

FIG. 4. Dynamics as a function of populations P|0〉⊗N (t ) (black
dots) and P|1〉⊗N (t ) (brown open circles), and the fidelity FGHZN−
(brown triangles) calculated with the target state |�N

GHZ(−π/2)〉.
We also plot the corresponding quantities calculated considering the
effective two-level model: P|0〉⊗N ,eff (t ) (brown solid line), P|1〉⊗N ,eff (t )
(black dashed line), and the fidelity FGHZN

−,eff
(black dash-dotted line),

also calculated with the target state |�N
GHZ(−π/2)〉. The illustrated

cases correspond to (a) N = 4, (b) N = 6, (c) N = 8, and (d) N = 10.
Physical parameters are εq = 0, J = 25 μeV, � = J/8, and the initial
condition ρ̂(0) = |0⊗N 〉〈0⊗N |.

V. EXPLORING THE GENERATION OF GHZ STATES
FOR N QUBITS

After our careful analysis of the case with three qubits, we
proceed to explore an extension to a general case of N qubits,
for which the dynamics is governed by the Hamiltonian

ĤNqb =
N∑

q=1

[
εqσ̂

(q)
z + �qσ̂

(q)
x

] +
∑
q′,q′′

Jq′q′′ σ̂ (q′ )
z ⊗ σ̂ (q′′ )

z ,

(30)
where the physical parameters have the same interpretation:
2εq is the energetic detuning of the two electronic levels,
and �q accounts for the tunneling coupling inside a quantum
molecule, while Jq′q′′ describes the electrostatic interaction
between electrons from different qubits.

Calculations for the fidelity of the highest eigenstates of
the case N = 4 show that these states resemble the entan-
gled states |�4

GHZ(0)〉 (highest energetic, 16th, eigenstate)
and |�4

GHZ(π )〉 (15th state), as shown in Fig. 6(a). Careful
analytical calculations of the applicability of the extension
for N = 4 of the two-level effective model result in the
expression �GHZ

4 = �4

J3 [39], considering the same physical
conditions for the detunings εq = 0 and Coulomb parameters
Ji,i+1 = J = 25 μeV. The exact calculation of the dynamics
for N = 4 is shown in Fig. 4(a), where we plot numerical
results for the populations P|0〉⊗4 (t ) (black dots) and P|1〉⊗4 (t )
(brown open circles), and the fidelity FGHZ4

−
(brown triangles)

calculated with the target state |�4
GHZ(−π/2)〉. This dynamics

is compared with that resulting from the generalized effective
two-level model for N = 4: P|0〉⊗N ,eff (t ) (brown solid line),
P|1〉⊗N ,eff (t ) (black dashed line), and the fidelity calculated
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considering the two-level dynamics, FGHZ4
−,eff

(black dash-

dotted line). The results highlight that the state |�4
GHZ(−π/2)〉

is generated at time

tGHZ
4 = πJ3

4�4
,

with FGHZ4
−

∼ 1.
Based on this promising scenario, we propose an equation

which follows the same structure as those obtained for N = 3
and N = 4 given by

tGHZ
N ∼ π

4�GHZ
N

= πJN−1

4�N
. (31)

At this time, we expect the dynamical generation of a GHZ
state of N qubits as defined in Eq. (8) with φ = −π/2. We
check this proposition by comparing the exact dynamics, cal-
culated numerically, and effective dynamics for values from
N = 4 to N = 10. Without loss of generality, we choose
the values N = 6, 8, and 10 to illustrate the dynamics in
Figs. 4(b)–4(d), respectively. In all the cases presented, the
fidelity remains above 0.98, thus indicating the robustness
of the formation of the GHZ state for increasing number
of qubits. The decreasing of fidelity can be understood by
observing that the eigenstates of the two-level system with
the highest energy show a decreasing fidelity with the highly
entangled states |�N

GHZ(0)〉 (for the 2N th state) and |�N
GHZ(π )〉

[for the (2N − 1)th state], as shown in Fig. 6 in Appendix A.
Still, the main limitation on the generation of states of the

GHZ class is dephasing. Notice that the time of generation,
tGHZ
N , scales with πJN−1

�N . Once high fidelities are obtained
for � = J/ f with f > 1, we can rewrite a temporal scale
of formation of the GHZ state for N qubits as tGHZ

N ( f , J ) ∼
π
4 f N J−1, which would be generally high, even for small val-
ues of f and high values of J . For instance, if we consider
f = 6 and J = 25 μeV, the time scale of formation of the
state with N = 6 qubits |�6

GHZ(−π/2)〉 is around 1 μs. One
can say that, in terms of scalability, we face a conundrum: a
small value of f means a larger value of �, which impacts the
fidelity of the GHZ state, but the state is more robust against
dephasing once the time scale is shorter. On the other hand,
obtaining a state with a high degree of fidelity can be a hard
task to fulfill because of the action of dephasing.

VI. SUMMARY

In this work, we discuss the generation of genuine multi-
partite states belonging to the GHZ class, in the context of
semiconductor quantum dots. We first encode three qubits
in three pairs of charged quantum dots, each pair defining
a quantum molecule. In the Coulomb blockade regime, a
single electron can be injected into each pair of quantum dots.
This excess electron jumps back and forth between the dots,
thus encoding a qubit. Electrostatic interaction between the
quantum molecules guarantees the coupling between qubits.

We demonstrate that the unitary dynamics of this system
can be manipulated to generate states of the GHZ class at short
times, considering the resonance of the electronic energies and
equal values of tunneling rates. Depending on the setup of the
initial state, it is possible to create a GHZ or a FLIP state,

where the time of formation can be controlled by the value
of tunneling coupling. Although this time decreases as the
tunneling rate increases, the dynamic shows that high values
of � are not convenient for the formation of the entangled
state, once the dynamic starts to populate other electronic
states. Our analytical and numerical work considering three
qubits permits us to understand the origins of an effective
two-level dynamics based on a third-order tunneling process,
with the earlier time of formation of a GHZ class being ≈ πJ2

4�3 .
We simulate the action of charge dephasing, experimentally
pointed out as the main mechanism of decoherence in charged
quantum molecules. Our analysis of a situation considering N
qubits shows a promising scenario for the scalability of the
dynamical generation of GHZ states, although increasing the
number of qubits is a challenge, once the numerical calcula-
tion reveals that the time scale for the formation of the GHZ
state also increases.
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APPENDIX A: CHARACTERISTICS OF THE ENERGY
SPECTRUM AND THE EIGENSTATES OF CHARGED

QUANTUM DOTS HAMILTONIAN ENCODING QUBITS

In this Appendix, we discuss considerations about the spec-
trum and eigenstates of the three-qubit system, described by
the Hamiltonian in Eq. (5), and its extension considering N
qubits, Eq. (30).

Let us begin by writing the expressions for the diagonal
terms of the first Hamiltonian, which are the terms of Hamil-
tonian Ĥ0 in Eq. (17):

E0
000 = ε1 + ε2 + ε3 + J12 + J23,

E0
001 = ε1 + ε2 − ε3 + J12 − J23,

E0
010 = ε1 − ε2 + ε3 − J12 − J23,

E0
011 = ε1 − ε2 − ε3 − J12 + J23,

E0
100 = −ε1 + ε2 + ε3 − J12 + J23,

E0
101 = −ε1 + ε2 − ε3 − J12 − J23,

E0
110 = −ε1 − ε2 + ε3 + J12 − J23,

E0
111 = −ε1 − ε2 − ε3 + J12 + J23. (A1)

If we impose the condition of equal value for detunings, i.e.,
εq = 0 above (q = 1, 2, 3, being the number of qubits), and
if the Coulomb coupling is given by J12 = J23 = J , we obtain
only three different energy values given by E = −2J, 0, 2J .
That means, under this particular choice of physical parame-
ters, the spectrum of Ĥ0 shows energy degeneracy that permits
the definition of three different subspaces: (i) HE=2J with
degeneracy 2, and eigenstates are given by {|000〉 , |111〉};
(ii) HE=0 with degeneracy 4, and elements are given by
{|001〉 , |011〉 , |100〉 , |110〉}; and (iii) HE=−2J with degener-
acy 2 and eigenstates being {|010〉 , |101〉}.
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FIG. 5. (a) The energy spectrum of the three-qubit Hamiltonian,
Eq. (5), against the tunneling coupling � considering J = 25 μeV,
εq = 0, and equal tunneling rates for the three quantum molecules.
The values of energies and � are expressed in terms of J . The plot
includes the first eigenstate (red circles and dotted line), and the
second (red dashed line), originally from the HE=−2J subspace; the
third (blue dotted line), fourth (blue stars), fifth (blue dot-dashed
line), and sixth (blue crosses) eigenstates, originally from the HE=0

subspace; and finally the seventh (black circles) and eighth (gray
solid line) eigenstates, associated with the HE=2J subspace. (b) Cal-
culation of the fidelity of the states in subspace HE=2J as function of
�, considering |�GHZ(π )〉 as the target state for the seventh state and
|�GHZ(0)〉 as the target state for the eighth state. Lines and symbols
are the same used for the corresponding eigenvalues in (a).

We introduce the action of the tunneling, which corre-
sponds to include the nondiagonal part of the three-qubit
Hamiltonian described by operator V̂ , Eq. (22). In Fig. 5(a)
we plot the energy spectrum for J = 25 μeV against �, con-
sidering � = (0, J]. The energies are written in units of J for
the sake of clarity. The action of the tunneling is behind the
emergence of anticrossings with the subsequent removal of
degeneracy inside each subspace, which becomes important
for values above � = J/2.

At this point, we search for highly entangled eigenstates,
as in previous works [24,26], connected with anticrossings
observed on the energy spectrum. For the subspace HE=2J ,
we seek for eigenstates given by

|�GHZ(0)〉 = 1√
2

(|000〉 + |111〉),

|�GHZ(π )〉 = 1√
2

(|000〉 − |111〉). (A2)

We proceed to calculate the fidelity of the eigenstates which
emerges from subspace HE=2J considering values for tunnel-
ing coupling given by � < J/2. The results are shown in
Fig. 5(b), where the high value for the fidelity, above 0.9,
corroborates that the eigenstates with the highest energies
are approximately |�GHZ(0)〉 and |�GHZ(π )〉, although the fi-
delity decreases from 0.98 to ≈0.90 as � increases. A similar
result (not shown here) is for the fidelities of the ground and
first excited states, the first and second eigenstates, using as
target states |�FLIP(π )〉 and |�FLIP(0)〉, respectively. These
results give us confidence to search for an effective two-
level model to describe the dynamics behind the formation
of the GHZ states, considering the action of tunneling as a
perturbation.

Concerning the potential scalability of the physical sys-
tem, it is straightforward to find that the eigenstates of

FIG. 6. Fidelity of the states in subspace HE=(N−1)J , as a function
of tunneling parameter �, considering |�GHZ(π )〉 as the target state
for the (2N − 1)th state (black circles) and |�GHZ(0)〉 as the target
state for the 2N th excited state (gray solid line) considering (a) N =
4, (b) N = 6, (c) N = 8, and (d) N = 10.

a Hamiltonian of Eq. (30), considering no detuning (εq =
0) and no tunneling (�q = 0), now are organized in N
subspaces. Each subspace is associated with a value of en-
ergy given by EN = −(N − 1)J,−(N − 3)J, . . . , (N − 3)J,

(N − 1)J . We proceed to explore only the highest states of
the Hamiltonian given by Eq. (30), considering situations with
N > 3. We now focus only on exploring the fidelity of the
highest eigenstates considering as target states |�N

GHZ(0)〉 (for
the 2N th eigenstate) and |�N

GHZ(π )〉 [for the (2N − 1)th eigen-
state] in order to establish if there are similar anticrossings of
highly entangled states as those found for N = 3.

In Fig. 6, we plot our results for the fidelities, calculated by
exact diagonalization of Hamiltonian for N qubits, Eq. (30),
considering N = 4, 6, 8, and 10 in Figs. 6(a)–6(d), respec-
tively. Note that, for each N , both eigenstates lose fidelity with
their correspondent target states as � increases. Basically, this
is related to the fact that large � values tend to reduce the
energy separation between these and the rest of the spectrum,
becoming less similar to the GHZ states.

Also, the difference between the values of the fidelity val-
ues of 2N th and (2N − 1)th states with their target states starts
to decrease as N increases. In fact, for N = 10, Fig. 6(d), both
fidelity curves coincide. This behavior is explained by the fact
that, as the dimension of the problem increases with N , small
energetic differences between these states when � �= 0 have
less impact on the entanglement degree of the eigenstates.

Another aspect that becomes evident from Fig. 6(d) is that
low values of tunneling coupling are not enough to guarantee
entangled eigenstates. To favor the dynamical generation of
GHZ state for N qubits, a promising scenario is an experi-
mental fine control of the tunneling coupling to keep enough
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high values of �, which guarantees the formation of entangled
eigenstates of the Hamiltonian of Eq. (17) with high values of
fidelities with GHZ states, but low enough to allow treating
the tunneling as a perturbation.

APPENDIX B: GENERATION OF THE FLIP STATES

This Appendix is devoted to present our results for the
generation of the FLIP states, following the same procedure
discussed in Sec. III but considering the initial condi-
tion ρ̂(0) = |010〉〈010|, and the fidelity target states being
ρ̂FLIP(±π/2). In Fig. 7, we plot our results for populations,
fidelities, and τ3 panels below, considering � = J/6, the same
value of Fig. 2.

By comparing these results with those discussed in the
main text, we observe a similar behavior for populations,
entanglement degree, and fidelities with the main difference

FIG. 7. Quantum dynamics against �FLIPt considering the initial
condition ρ̂(0) = |010〉〈010| for εq = 0, J = 25 μeV and � = J/6.
(a) Populations P010(t ) (black dots) and P101(t ) (brown open circles)
and the dynamics of the effective two-level system for the popula-
tions P010,eff (t ) (brown solid line) and P101,eff (t ) (gray dashed line).
(b) Evolution of τ3 (black squares), and the fidelities FFLIP− (brown
solid triangles), and FFLIP+ (brown crosses). Fidelities are calculated
using Eq. (13) for the target states |�FLIP(−π/2)〉 and |�FLIP(π/2)〉,
respectively. The blue dash-dotted line shows the time of formation
of the first GHZ state, corresponding to t ′

FLIP ≈ 4.56 ns.

being that the dynamically accessed populations are now P010

and P101. The fidelity calculations and τ3 show that the state
|�FLIP(−π/2)〉 is generated at t ′

FLIP = t ′
GHZ. The continuous

lines in Fig. 7(a) show the results of the effective two-level
model, for which the coupling parameter is obtained follow-
ing a similar process as that discussed in Sec. III for the
GHZ state.

APPENDIX C: THE NONLINEAR EFFECT OF THE
TUNNELING PROCESS AND THE TWO-LEVEL

EFFECTIVE MODEL

Once the analysis of the spectrum and eigenstates success-
fully points out the emergence of a well-separated two-level
system where the states |000〉 and |111〉 are coupled by tunnel-
ing considered as a perturbation, we are ready to understand
the underlying processes behind the formation of the GHZ
state. We first split H3qb into two parts, where A contains
the eigenstates of H̃0, being {|000〉 , |111〉}, and a segment B
contains all the remaining states of the computational basis.
We further reorganize the Hilbert space into these two blocks.
A state in this new format is represented as

|ψ〉 =
(

CA

CB

)
, (C1)

where CA is a 2 × 1 vector of |ψ〉 with components in the A
subspace, and CB is a 6 × 1 vector related with the B subspace.
Operators also have an associated block representation in this
format. For an operator O this is given by

Ô =
(

ÔAA ÔAB

ÔBA ÔBB

)
. (C2)

In this case, ÔAA is a 2 × 2 matrix in the A subspace and ÔBB

is a 6 × 6 matrix. The coupling between A and B is given by
ÔAB, a 2 × 6 operator, and ÔBA, a 6 × 2 matrix. Following this
definition, we consider ˜̂H = Ô acting over |ψ〉 in Eq. (C1),
obtaining the following system of coupled equations:

˜̂HAACA + ˜̂HABCB = ECA,

˜̂HBACA + ˜̂HBBCB = ECB. (C3)

Isolating CB from the second line above, and replacing in the
first line, we obtain

{ ˜̂HAA + ˜̂HAB(E − ˜̂HBB)−1 ˜̂HBA}CA = ECA. (C4)

Note that Eq. (C4) describes the effective dynamics in sub-
space A where

˜̂HGHZ
eff = ˜̂HAA + ˜̂HAB(E − ˜̂HBB)−1 ˜̂HBA (C5)

is the effective Hamiltonian operator.
At this point, we define

�GHZ = 〈111| ˜̂HGHZ
eff |000〉 , (C6)

which means the problem of calculating the effective coupling
behind the formation of the GHZ states becomes the problem
of computing the expression above, considering � 
 J .

To begin the calculation, we start with finding the explicit
form of the operators ˜̂HAA, ˜̂HAB, ˜̂HBA, and ˜̂HBB, by defining

032438-9



NOGUEIRA, OLIVEIRA, SOUZA, AND SANZ PHYSICAL REVIEW A 103, 032438 (2021)

the projector operators P and Q such that

P̂ = |000〉 〈000| + |111〉 〈111| ,
Q̂ = I − P̂,

(C7)

where I stands for the identity operator. Using the definitions
for Ĥ0 and V̂ , Eqs. (17) and (21), we obtain

˜̂HAA = P̂( ˜̂H0 + V̂ )P̂,

˜̂HBB = Q̂( ˜̂H0 + V̂ )Q̂,

˜̂HAB = P̂( ˜̂H0 + V̂ )Q̂,

˜̂HBA = Q̂( ˜̂H0 + V̂ )P̂. (C8)

Here the operators ˜̂HAA and ˜̂HBB are diagonal matrices, while
˜̂HAB and ˜̂HBA are nondiagonal, depending only on the param-

eter �. Substituting Eq. (C5) into Eq. (C6) leave us with

�GHZ = 〈111| ˜̂HAB(E − ˜̂HBB)−1 ˜̂HBA |000〉 , (C9)

where we used the fact that ˜̂HAA is diagonal in A. Using the
second line in Eqs. (C8), we have

˜̂HBB = Q̂ ˜̂H0Q̂ + Q̂V̂ Q̂ ≡ ˜̂HBB
0 + V̂ BB. (C10)

Using Eq. (C10) we can write

E − ˜̂HBB = (
E − ˜̂HBB

0

)(
I − (E − ˜̂HBB

0 )−1V̂ BB
)
, (C11)

and thus it follows the identity

(E − ˜̂HBB)−1 = {
I − (

E − ˜̂HBB
0

)−1
V̂ BB

}−1(
E − ˜̂HBB

0

)−1
.

(C12)

Substituting (C12) into Eq. (C9), we have

�GHZ = 〈111| ˜̂HAB
{
I − (

E − ˜̂HBB
0

)−1
V̂ BB

}−1

×(
E − ˜̂HBB

0

)−1 ˜̂HBA |000〉 . (C13)

At this point, we substitute the operator {I − (E −
˜̂HBB

0 )−1V BB}−1 for a Taylor expansion written as
{
I − (

E − ˜̂HBB
0

)−1
V̂ BB

}−1 = I + (
E − ˜̂HBB

0

)−1
V̂ BB,

which is valid for � small if compared with the Coulomb cou-
pling J . By substituting this term in the definition of �GHZ and
inserting two identity operators we obtain Eq. (24) from the
main text. Notice that one can follow the same procedure to
determine �FLIP by changing the segment A for the subspace
with E = −2J , with elements {|101〉, |101〉}.
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