
PHYSICAL REVIEW A 103, 032437 (2021)

Determining the mixed high-dimensional Bell state of a photon pair
through the measurement of a single photon
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Recently, a theoretical method and corresponding experiment have shown that the information about entan-
glement in the state of the qubit photon pair can be retrieved by measuring only one of the photons, even though
the state is mixed. In this paper, we investigate this process with the high-dimensional photon pair and more
information about the state. We present a method that enables us to determine the state of the photon pair fully.
Our method measures only one of the photons while dropping the other one. Importantly, no adjustment of the
transformation is required in our method. Moreover, our method is robust to photon loss so that the state can be
perfectly determined as long as the photon is not all lost.
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I. INTRODUCTION

In 1991, Zou, Wang, and Mandel (ZWM) proposed a non-
linear interferometer of which the interference pattern of a
photon is controlled by the phase shift of the other undetected
photon [1,2]. The ZWM interferometer allows one to estimate
the transformations of the undetected photon, which inspires
various applications, e.g., quantum imaging [3,4]. Recently,
Lahiri et al. proposed another application that retrieves the
information of entanglement in the photonic qubit pair by
measuring only one of the photons and adjusting the trans-
formation of the other undetected photon [5]. The method has
been demonstrated with a photonic experiment by the same
group [6]. In this paper, we investigate a generalization of that
interesting method with high-dimensional photon pairs.

In both theoretical and experimental works [5,6], the au-
thors consider a ZWM interferometer with the photon sources
that emit identical qubit-qubit entanglement photon pairs (see-
ing Fig. 1). The photon pair of each source propagates in two
modes. A transformation is applied to a propagation mode of
the first source, and then this mode is aligned with one of the
second source. Such alignment induces coherence between
the other modes of the two sources. Based on this scheme,
the authors proposed a method to verify entanglement of the
photon pair. The method is adjusting the transformation of the
undetected photon and then measuring the other photon.

The method paves an avenue for verifying entanglement
without detecting both photons, which has been known to
be only possible in special situations, e.g., pure bipartite
state [7–10] or the state of qubit and pure-dephasing channel
[11,12]. The authors also left two questions: Can the method
be generalized to the high-dimensional case [5], and what
information other than entanglement can be learned [6]?

In this paper, we consider the scheme of Lahiri et al. [5,6],
with photon sources that generate the photon pair in the mixed
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high-dimensional Bell state. In this case, we propose a method
that can fully determine the state of the photon pair. The same
as the method of Lahiri et al. [5,6], our method only detects
one photon and drops the photon in the aligned mode, so it
does not require coincidence measurement or post-selection.
Therefore, this paper provides positive answers to the two
questions by Lahiri et al. [5,6].

Interestingly, different from the method of Lahiri et al.
[5,6], our method implements a fixed transformation to the
undetected photon, that is, no adjustment of transformation
is required. Moreover, we analyze two typical errors in the
interferometer: the losses that happened to the photon of the
first source and the uncertainty of the implemented transfor-
mation. Interestingly, we found that our method is robust to
photon loss by perfectly maintaining the ability to determine
the state of photon pairs as long as the photon is not all lost.

This article is organized as follows. In Sec. II we ana-
lyze the behavior of the optical circuit by Lahiri et al. with
sources that generate a high-dimensional entanglement state.
In Sec. III we demonstrate how and why our method can
fully recover the mixed two-particle state with measurement
of only one particle. In Sec. IV we analyze the behavior of our
method with two typical imperfections. The summarization
and discussion is given in Sec. V.

II. ZWM INTERFEROMETER WITH MIXED
HIGH-DIMENSIONAL ENTANGLEMENT PHOTON PAIR

Let us consider the two identical d-dimensional entangle-
ment photon sources that generate photon pairs in the mixed
d-dimensional Bell state,

ρ =
0,...,d−1∑

μ,ν

Iμν |μ,μ〉〈ν, ν|, (1)

where Iμν are complex numbers satisfying Iμν = I ∗
νμ and∑

μ Iμμ = 1. Therefore, such state, which has a specific
form of rank d , is parametrized by d − 1 real numbers Iμν
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FIG. 1. Schematic of the ZWM interferometer with entangle-
ment photon pairs. Two identical sources, Q1 and Q2, individually
and never simultaneously emit identical d-dimensional photon pairs
with state ρ. The photon pair generated by each source Qj propagates
in two modes α j and β j . A transformation �(1) is applied to mode
α1 of the first source, and then the mode is aligned with mode α2

of the second source. Finally, the photon in mode α2 is lost, and
measurements (not shown) are only implemented to the photon in
modes β1 and β2 of the two sources, which is a single-photon 2d-
dimensional system.

for μ = ν = 0, . . . , d − 2 and d (d − 1)/2 complex numbers
Iμν for μ = 1, . . . , d − 1, ν = 0, . . . , d − 2, and ν < μ. Let
us consider each source Qj as an ideal one that converts a
pumping photon a†

μ j
|0〉 into photon pairs a†

μ j ,α
a†

μ j ,β
|0〉 that

propagate in mode α j and β j , where a† is the photon creation
operator.

To generate the state as Eq. (1), the pumping photon is in
the state,

ρP =
0,...,d−1∑

μ,ν

Iμνa†
μ|0〉〈0|aν .

This pumping photon is first split into two propagation modes
by a beam splitter (BS), which works as a†

μ → ∑1,2
j b ja†

μ j
.

In each mode j = 1, 2, the corresponding source Qj converts
that photon into photon pairs that propagate in mode α j and
β j , a†

μ j
→ a†

μ j ,α
a†

μ j ,β
.

The photon in mode α1 generated by the first source Q1 is
transformed by an operation �(1) and then aligned with the
one in mode α2 of the second source Q2,

a†
μ1,α

→
1,...,d,ξ0,...,ξe∑

ω

�( j)
ωμa†

ω2,α
,

where ξ0, . . . , ξe denote modes of the lost photon. To simplify
the expression, we define an identity operator �(2) that trans-
forms the photon in mode α2 generated by the second source,
where the identity operator satisfies �(2)

ωμ = 1 for ω = μ and
�(2)

ωμ = 0 for ω �= μ.
Taking account of those processes, the final state is

ρ f =
∑
μ,ν

∑
j,k

I jk
μν

∑
ω,χ

�( j)
ωμ�(k)

χν

∗
a†

ω2,α
a†

μ j ,β
|0〉〈0|aνk ,βaχ2,α,

where I jk
μν = Iμνb jb∗

k . The photon in mode α2 is undetected,
so we are only concerned about the state of the photon in
modes β1 and β2. After partially tracing out the photon in

mode α2 and using the ket expression | j, μ〉 = a†
μ j ,β

|0〉, we
obtain the state of photon in modes β1 and β2 of the two
sources as a single-photon state,

ρ f ,β =
∑
μ,ν

∑
j,k

(
I jk

μν

∑
λ

�
( j)
λμ�

(k)∗
λν

)
| j, μ〉〈k, ν|,

which is a 2d-dimensional system encoded in hybrid modes
(2-dimensional spatial modes | j〉 and d-dimensional inherent
modes |μ〉).

In this stage, we consider the transformation �(1) as
a unitary operation of the whole system including the d-
dimensional inherent modes of the photon and the loss modes.
The unitary transformation �(1) satisfies∑

λ

�
(1)
λμ�

(1)∗
λν =

{
1 for μ = ν,

0 for μ �= ν.
(2)

Therefore, the state of the photon in modes β1 and β2 can be
simplified as

ρ ′
f ,β =

∑
μ

∑
j

I j j
μμ| j, μ〉〈 j, μ|

+
[∑

μν

(
I 12

μν�
(1)
νμ

)|1, μ〉〈2, ν|

+
∑
μν

(
I 21

μν�
(1)
μν

)|2, μ〉〈1, ν|
]
. (3)

The final state of the single photon in modes β1 and β2,
ρ f ,β in Eq. (3), depends on both the photon pair state and
the transformation through parameters Iμν and �

(1)
λμ. There-

fore, through measuring that photon, one is able to estimate
the transformation with the known photon pair state, or re-
trieve the information about the photon pair state with known
transformation. The former corresponds to the applications
of the ZWM interferometer such as imaging, and the latter
corresponds to an application like characterizing mixed state
entanglement.

III. DETERMINING THE STATE OF PHOTON PAIR
THROUGH MEASURING SINGLE PHOTON

A. Theoretical proposal

In this section, we report our main result to fully deter-
mine the high-dimensional photon pair state by measuring the
single photon in modes β1 and β2 with known transformation.
Here, we consider the ideal case that implemented transforma-
tion �(1) is exactly the intended one �̄(1), �(1) = �̄(1), and the
transformation �(1) is lossless, �(1)

lμ = 0 for μ = 0, . . . , d − 1
and l = l0, . . . , le.

According to Eq. (3), the final state depends on all the
parameters Iμν that determine the state of the photon pair
via properly choosing the transformation �(1)

νμ �= 0. Let us
assume the state of the photon to be determined is ρ̃ =∑0,...,d−1

μν Ĩμν |μ,μ〉〈ν, ν|, where the parameters Ĩμν are
determined according to the final state ρ ′

f ,β and intended
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transformations �̄(1). The real parameters are

Ĩμμ =
∑

j

〈 j, μ|ρ ′
f ,β | j, μ〉, (4)

for μ = 0, . . . , d − 1. The complex parameters are

Ĩμν = 〈1, μ|ρ ′
f ,β |2, ν〉

b̃1b∗
2�̄

(1)
μν

,

for μ = 1, . . . , d − 1, ν = 0, . . . , d − 2, and ν < μ. Here,
the unknown parameter b̃1b∗

2 can be estimated as

b̃1b∗
2 = 〈1, μ′|ρ ′

f ,β |2, μ′〉
Ĩμ′μ′�̄

(1)
μ′μ′

for a μ′. Therefore, we have the complex parameters,

Ĩμν = 〈1, μ|ρ ′
f ,β |2, ν〉Ĩμ′μ′�̄

(1)
μ′μ′

〈1, μ′|ρ ′
f ,β |2, μ′〉�̄(1)

μν

. (5)

In the ideal case �̄(1)
μν , the parameters Ĩμν = Iμν according

to Eqs. (4) and (5), so the state is fully determined, ρ̃ = ρ.

B. A possible choice of measurements

Now, let us consider the measurement operators that enable
one to obtain the desired information. The estimation process
above requires one to know the final state ρ ′

f ,β and the trans-
formation �̄(1)

μν . Generally, to determine a 2d-dimensional
state, ρ ′

f ,β , requires a tomography process which uses 4d2

measurements. However, for the specific form of the state with
〈 j, μ|ρ ′

f ,β | j, ν〉 = 0 for μ �= ν, the number of measurements
can be simplified. We now give a method to determine the
state ρ̃ with only d2 + 3 measurements.

First, one applies projective measurements with projec-
tors onto state | j, μ〉, for j = 1, 2 and μ = 0, . . . , d − 1. The
probability of getting the result corresponding to the projector
onto the state | j, μ〉 is

p( j, u) = 〈 j, μ|ρ ′
f ,β | j, μ〉 = Iμμ|b j |2.

Since |b1|2 + |b2|2 = 1, the real parameter |b1|2 can be esti-
mated from two probabilities p( j, μ′′) with j = 1, 2 as |b̃1|2 =
p(1, μ′′)/[p(1, μ′′) + p(2, μ′′)]. Therefore, the real parame-
ters Iμμ can be estimated as

Ĩμμ = p(1, μ)

|b̃1|2
= p(1, μ)[p(1, μ′) + p(2, μ′)]

p(1, μ′)
. (6)

This stage requires d + 1 measurements with projectors onto
d states |1, μ〉 for μ = 0, . . . , d − 1 and another one |2, μ′′〉
for an arbitrary μ′′.

After that, one implements two kinds of projec-
tive measurements with projectors onto states (|1, μ〉 +
|2, ν〉)/

√
2 and (|1, μ〉 + i|2, ν〉)/

√
2. The corresponding

probabilities are

q(μ, ν) = Re[〈1, μ|ρ ′
f ,β |2, ν〉] + 1

2 [p(1, μ) + p(2, ν)],

and

r(μ, ν) = −Im[〈1, μ|ρ ′
f ,β |2, ν〉] + 1

2 [p(1, μ) + p(2, ν)],

FIG. 2. A possible experimental setup. The pumping source is
prepared into the path state through a unitary operation U1, and then
split into two NLCs. The generated photon in mode α1 is transformed
by U2 and then aligned with the one in mode α2. The measurements
of the final state in modes β1 and β2 are completed using unitary
operations U3 and U4 followed by interference between those two
modes at a BS. The inset shows the setup of unitary operation using
BS and phase shifters. The optical compensation is not shown here.

respectively. Thus, according to Eq. (5), the complex terms
Iμν can be determined as

Ĩμν = Ĩμ′μ′�̄
(1)
μ′μ′

�̄
(1)
μν

×
[
q(μ, ν) − ir(μ, ν) − 1−i

2 [p(1, μ) + p(2, ν)]
][

q(μ′, μ′)− ir(μ′, μ′) − 1−i
2 [p(1, μ′)+ p(2, μ′)]

] .

(7)

This stage requires 2 + d (d − 1) measurements, including 2
ones for an arbitrary μ′ and d (d − 1) ones for μ = 1, . . . , d −
1, ν = 0, . . . , d − 2, and ν < μ.

It is to be noted that to determine the state of the photon
pair, the transformation should be chosen so that �(1)

μν �= 0
for all μ �= ν and at least one μ = ν = μ′. This choice of
transformation is not unique. As an example, it can be the
Grover diffusion operator [13,14], which is widely used in the
quantum-walk-based search algorithm. Here,

G = 2

d

0,...,d−1∑
μν

|μ〉〈ν| − 1, (8)

where 1 is the identity operator; that is, �(1)
μν equals 2

d for μ �=
ν and 2−d

d for μ = ν.

C. Possible experimental schemes

To realize our protocol, the high-dimensional photonic
system can be chosen as various degrees of freedom of the
photon, such as path, transverse spatial modes, and time-
frequency bins. Advances of relevant experimental techniques
can be found in a recent review [15] and the references therein.
Here, we give a possible experimental setup as shown in
Fig. 2, which adopts the path degree of freedom.
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Two core techniques required by the physical implemen-
tation are the entanglement photon source and the unitary
operations. In our setup, the path entangled photon pairs are
created through the spontaneous parametric down-conversion
process in nonlinear crystals (NLC). The d-dimensional uni-
tary transformation of such a path state is realized through
the universal scheme using only BSs and phase shifters [16].
Here, we implement four unitary operations, which are U1 to
prepare the state of the pumping source, U2 to transform the
photon in mode α1, and U3 and U4 to project the photon in
modes β1 and β2, respectively.

The final photon in modes β1 and β2 is a 2d-dimensional
single photon that propagates in 2d paths, which correspond
to states | j, μ〉 with j = 1, 2 and μ = 0, 1, . . . , d − 1. There-
fore, detections of the photon in those paths correspond to
the measurements with the projector onto states | j, μ〉. Our
protocol requires other kinds of measurements with projectors
onto states (|1, μ〉 + eiφ|2, ν〉)/

√
2. To realize those measure-

ments, one first transforms that state into |1, 0〉 and then
detects the photon on the path corresponding to this state.
This transformation is realized via two steps. First, two unitary
operations U3 and U4 are implemented to modes β1 and β2,
which transform states |1, μ〉 and |2, ν〉 into |1, 0〉 and |2, 0〉,
respectively. After that, a phase shifter is applied to the path
corresponding to |1, 0〉, followed by a 50:50 BS that induces
interference between two paths corresponding to |1, 0〉 and
|2, 0〉.

It is to be noted that the interferometric stability of this
setup can be improved by using the interferometer based
on calcite beam displacers [17–21] or the integrated optical
device [22–25].

IV. IMPERFECTIONS OF TRANSFORMATION

Now, let us analyze the behavior of the method with ex-
perimental imperfections of the transformation �(1) applied
to the photon; that is, the implemented transformation �(1)

is different from the desired one �̄(1). According to Eq. (4),
the real terms Ĩμμ are unaffected. However, according to
Eq. (5), the complex terms Ĩμν for μ �= ν, which depends on
both �̄(1)

μν and �(1)
μν , are affected. More precisely, the complex

terms are

Ĩμν = �(1)
μν�̄

(1)
μ′μ′

�
(1)
μ′μ′�̄

(1)
μν

Iμν, (9)

for μ �= ν.
To quantify the effect of such difference in complex terms,

we compare the reconstructed state ρ̃ with the original one ρ

using the distance as

D(ρ̃, ρ) = 1
2 Tr[(ρ̃ − ρ)(ρ̃ − ρ)†].

This distance ranges between 0 for a perfect match and 1 for
a complete mismatch. Substituting the parameters Ĩμν and
Iμν , the distance is

D(ρ̃, ρ) = 1

2

0,...,d−1∑
μ,ν �=μ

∣∣∣∣∣�
(1)
μν�̄

(1)
μ′μ′ − �

(1)
μ′μ′�̄

(1)
μν

�
(1)
μ′μ′�̄

(1)
μν

Iμν

∣∣∣∣∣
2

. (10)

FIG. 3. LWM interferometer with loss. Two BS are placed in
mode 1 of source Q1 before and after transformation.

In this paper, we consider two typical imperfections: pho-
ton loss, which happens naturally during photon propagation,
and uncertainty of transformation, which is limited by the
accuracy of experiment.

A. Photon loss

To analyze the loss of photon in mode α1 of source Q1,
we consider inserting BS that partially reflects the photon. As
shown in Fig. 3, two BS before and after the transformation
reflect the photon with rates l1 and l2, respectively. Each BS
splits the photon a†

μ1,α
|0〉 into two modes as

a†
μ1,α

→
√

1 − lba†
μ1,α

+ eiφb
√

lba†
ξb(μ),α,

where b = 1, 2 denotes two BS, φb is the relative phase be-
tween the reflected photon and transmitted ones, and ξb(μ)
denotes the modes of the reflected path. Therefore, different
mode loss to different modes, ξb(μ) �= ξb(ν) for μ �= ν, and
the loss modes of two BS are different, ξ1(μ) �= ξ2(ν) for
arbitrary μ and ν.

Since one implements a lossless transformation �̄(1)
μν , the

actual transformation �(1)
μν transforms the photon as

a†
μ1,α

→
√

1 − l1
√

1 − l2

0,...,d−1∑
ω

�̄(1)
ωμaω2,α

+
√

1 − l1
√

l2
∑

ω

�̄(1)
ωμaξ2(ω),α +

√
l1aξ1(μ),α;

that is, the actual transformation �(1) is

�(1)
ωμ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

√
1 − l1

√
1 − l2�̄(1)

ωμ for ω = 0, . . . , d − 1√
l1 for ω = ξ1(μ)√
1 − l1

√
l2�̄

(1)
μ′μ for ω = ξ2(μ′) and

μ′ = 0, . . . , d − 1

0 otherwise

.

(11)
This transformation is a unitary operation of the 3d-
dimensional system.
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With this transformation, the final state of the photon in
modes β1 and β2 is

ρ ′′
f ,β =

∑
μ

∑
j

I j j
μμ| j, μ〉〈 j, μ|

+
√

1 − l1
√

1 − l2

[∑
μν

(
I 12

μν �̄
(1)
νμ

)|1, μ〉〈2, ν|

+
∑
μν

(
I 21

μν �̄
(1)
μν

)|2, μ〉〈1, ν|
]
. (12)

It can be seen that the losses induce decrease of the coherent
terms of the state; that is, losses of the undetected photon
induce decoherence to the state of modes β1 and β2.

Let us consider the task to determine the state of the
photon pair. Substituting the transformation in Eq. (11) into
Eqs. (4) and (5), it can be seen that Ĩμν = Iμν when l1l2 �= 0.
Therefore, our estimation protocol is robust to losses of the
undetected photon, since these losses do not affect the esti-
mated parameters. This can also be checked by substituting
the transformation in Eq. (11) into the distance in Eq. (10),
which gives D = 0.

Interestingly, losses of the undetected photon can be in-
tuitively understood as the misalignment of modes α1 and
α2 of two sources. Therefore, our method is robust to the
misalignment, even though the method is based on the
alignment.

B. Uncertainty of transformation

Another imperfection is the uncertainty of the transforma-
tion, which comes from the accuracy in implementing the
transformation. Specifically, we consider that one intended
to implement the Grover diffusion operation, �̄(1) = G. Such
transformation is an evolution of the photon under Hamilto-
nian H for time π , G = e−iHπ , where

H = 1

d

∑
μν

|μ〉〈ν| − 1. (13)

When there is an uncertainty δt of evolution time, the actual
transformation �(1) for time π + δt becomes

G(δt ) = e−i(H+δh1)(π+δt ) = 1

d
(1 + eiδt )

∑
μν

|μ〉〈ν| − eiδt1.

(14)
In this case, the distance between the estimated state and

the actual one in Eq. (1) becomes

D(δt ) = 1

2

∣∣∣∣ deiδt − d

2 − 2deiδt + 2eiδt

∣∣∣∣2 0,...,d−1∑
μ,ν �=ν

|Iμν |2. (15)

Thus, the estimation is sensitive to the uncertainty of transfor-
mation. In Fig. 4, we plot the relation between distance and
time uncertainty δt for different dimensions. It can be seen
that the effect of the time uncertainty on distance decreases
for the higher-dimensional system.

FIG. 4. Relation between distance D(δt ) and uncertainty of time
δt for different dimensions (represented by different colors). Here,
we assume

∑0,...,d−1
μ,ν �=ν |Iμν |2 = 1.

V. CONCLUSION AND DISCUSSION

In summary, we have proposed a method to fully determine
the mixed state of the high-dimensional photon pair by mea-
suring one of the photons. Our method, as a generalization and
modification of the one with the qubit photon pair [5,6], gener-
alizes the applications of the LWM interferometer. Therefore,
we solve two concerns by the authors of Refs. [5,6], that we
deal with higher dimensional systems and acquire more infor-
mation than entanglement. Our method can be demonstrated
with recent experimental technologies in the generation of
high-dimensional entanglement photons [15,17–28].

An important feature of our method is that it does not
require adjustment of the implemented transformation. Con-
sidering that experimental noises might be introduced during
adjustment of transformation, our method avoids the risk of
suffering such noise. After analyzing two typical experimen-
tal imperfections, we found our method to be robust to the
photon loss, while sensitive to the uncertainty of transfor-
mation. Interestingly, the misalignment of the modes of two
sources equals the photon loss of the first source. Therefore,
our method, which is robust to photon loss, does not require
perfect alignment.

As proposed in Refs. [5,6], a natural question is to
consider the case with a mixed multiphoton entangle-
ment state. For a case that the multiphoton state is∑0,...,d−1

μ,ν Iμν |μ,μ, . . . , μ〉〈ν, ν, . . . , ν|, the state of two of
the photons is ρ that is considered in this paper. Therefore,
implementing our method to an arbitrary pair of those photons
can fully recover this multiphoton state. For a more complex
multiphoton state, it is worth further investigation. Here, we
conjecture that our method should help that investigation by
considering the multiphoton state as a high-dimensional com-
posite system. For example, a d-dimensional four-photon state
can be treated as a state of two d2-dimensional systems, which
include two photons.

The method to characterize the entanglement photon
source here is restricted to a particular scenario. It still needs
further investigation to determine whether there are prac-
tical applications of this method in quantum information
technologies. However, the method here to characterize a
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device without full tomography is a topic of great interest
[5,6,29,30].

Note that the high-dimensional system in our method can-
not be chosen as photon-number degree of freedom, which is
also a high-dimensional system of great interest [30]. There-
fore, we do not take account of the error of multiphoton
pair generation and non-number-resolving detectors. To adopt
our method, one should make sure that the photon sources
generate perfect single-photon pairs with very lower multipair
production. An interesting topic worth further investigation is

to analyze the LWM interferometer with the photon-number
state.
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