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Entanglement detection in triangle-free quantum states
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We present an alternative approach to unveil a different kind of entanglement in bipartite quantum states whose
diagonal zero patterns in suitable matrix representations admit a nice description in terms of triangle-free graphs.
Upon application of a local averaging operation, the separability of such states transforms into a simple matrix
positivity condition, the violation of which implies the presence of entanglement. We completely characterize the
class of triangle-free graphs, which allows for nontrivial entanglement detection using the above test. Moreover,
we develop a recipe to construct a plethora of unique classes of positive partial transpose (PPT) entangled states
in arbitrary dimensions. Finally, we link the task of entanglement detection in general states to the well-known
graph-theoretic problem of finding triangle-free-induced subgraphs in a given graph.
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I. INTRODUCTION

Termed “spooky action at a distance” by Einstein, quantum
entanglement has come a long way since its inception in
the first half of the twentieth century [1,2], both in terms of
theoretical and experimental relevance. Now understood as
one of the most fundamental nonclassical features of quantum
theory, entanglement has garnered a reputation as a resource
of immense practical worth, with its groundbreaking effects
visible in a wide array of quantum cryptographic [3,4], tele-
portation [5], and computation [6] protocols. However, even
after more than 85 years since its discovery, the theory of en-
tanglement has managed to retain its richness and complexity.

The first concrete signs of entanglement were explored by
Bell in terms of violations of spin correlation inequalities [7],
which were later shown by Werner to be sufficient but not
necessary to detect entanglement [8]. Connections with the
theory of positive maps were not made until the late 1990s,
when positivity under partial transposition (PPT) was shown
by Peres to be a necessary condition for separability [9], which
was later also proved to be sufficient in low-dimensional 2 ⊗ 2
and 2 ⊗ 3 systems [10]. Since then, the study of separability
has witnessed tremendous growth, with a myriad of tests now
available to detect entanglement in various different scenar-
ios, see [11, Sec. VI B] and [12]. The primary goal of all
these tests is to bypass a major theoretical hurdle which is
intrinsic to the structure of entanglement itself, namely, the
nondeterministic polynomial-time hardness (NP hardness) of
the weak membership problem for the convex set of separable
bipartite states [13,14]. Put simply, it is not possible for any
classical algorithm to efficiently determine whether a given
state is entangled or not (assuming that the widely believed
P�=NP result holds). Still, several algorithms with complexi-
ties scaling exponentially with the system dimension do exist
[15–17].
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In this work, we unearth a different kind of entanglement
in bipartite states, which is easy to detect but rich enough
to manifest itself in astonishing variety. For a d ⊗ d state,
this entanglement camouflages beneath an intriguing design
of zeros on the state’s diagonal, which, when rearranged in the
form of a d × d matrix, reveals a distinctive “triangle-free”
(�-free) zero pattern in the off-diagonal part of the matrix.
The terminology is akin to the one used in graph theory, where
�-free graphs have been a subject of interest for well over
a century. To detect entanglement in these �-free states, we
project them onto the subspace of local diagonal orthogonal
invariant (LDOI) matrices, through a local operation which
preserves the separability and �-free property of states. LDOI
states have been amply scrutinized in the literature [18–21]
since many important examples of quantum states are of this
type: Werner and Isotropic states [8,22], diagonal symmetric
states [23,24], canonical NPT states [25], to name a few
(see also [21, Sec. 3]). Separable states in this class admit
an equivalent description in terms of the cone of triplewise
completely positive matrices, which is a generalization of
the well-studied cone of completely positive matrices [26].
The already established significance of �-free graphs within
the theory of completely positive matrices [26, Sec. 2.4] is
the primary source of inspiration for the results we present
here. We will see that separability in �-free LDOI states
materializes into simple positivity conditions on certain asso-
ciated matrices, enabling one to easily detect entanglement in
such states. As the number of �-free zero patterns increases
rather tremendously with the system’s dimensions, so does
the number of distinct �-free entangled families of states. For
perspective, in a 15 ⊗ 15 system, we will provide an explicit
way to construct ∼1010 distinct families of PPT entangled
�-free states. Because of this sheer diversity, the traditional
methods for entanglement detection get crippled in the regime
of �-free states. In contrast, the simplicity of our method
cannot be overstated, which provides a highly nontrivial yet
computationally efficient technique for entanglement detec-
tion in a wide array of scenarios.
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Let us now briefly comment on this paper’s organization.
In Sec. II, we review the theory of LDOI states and graphs.
Section III contains the primary entanglement test and hence
forms the core of our work. In this section, we also classify
the subset of �-free graphs which allows for the possibility of
nontrivial entanglement detection using our test. A systematic
scheme to construct new families of PPT-entangled �-free
states in arbitrary dimensions is articulated in Sec. IV. Sec-
tion V discusses entanglement detection in non-�-free states,
and connects it to the triangle-free induced subgraph problem.
Finally, we present a summary of our results and important
directions for future work in Sec. VI.

II. PRELIMINARIES

A. Local diagonal orthogonal-invariant states

We will exclusively be dealing with the finite d-
dimensional complex Hilbert space Cd and the space of d × d
complex matrices Md , with the canonical bases {|i〉}d

i=1 and
{|i〉 〈 j|}d

i, j=1, respectively. Positive semi-definite and entrywise
nonnegative matrices in Md will be denoted by A � 0 and
A � 0, respectively. Quantum states (A � 0, Tr A = 1) will be
denoted by ρ. We define [d] := {1, 2, . . . , d}. The following
class of bipartite states in Md ⊗ Md will play a crucial role
in this paper:

ρA,B,C =
d∑

i, j=1

Ai j |i j〉 〈i j| +
∑

1�i �= j�d

Bi j |ii〉 〈 j j|

+
∑

1�i �= j�d

Ci j |i j〉 〈 ji| , (1)

where A, B,C ∈ Md are matrices such that diag A =
diag B = diagC, A � 0, B � 0, C = C†, Ai jA ji �
|Ci j |2 ∀i, j ∈ [d], and

∑
i j Ai j = 1. These conditions ensure

that ρA,B,C is indeed a quantum state, as can easily be checked.
If the partial transpose ρ�

A,B,C � 0 as well (i.e., ρ is PPT),
then C � 0 and Ai jA ji � |Bi j |2 ∀i, j ∈ [d] [21, Lemma 2.12,
2.13]. These states enjoy a special local diagonal orthogonal
invariance (LDOI) property

∀O ∈ DOd , ρA,B,C = (O ⊗ O)ρA,B,C (O ⊗ O), (2)

where the group of diagonal orthogonal matrices in Md is
denoted by DOd . For an arbitrary state ρ ∈ Md ⊗ Md , we
define matrices A, B,C ∈ Md entrywise as Ai j = 〈i j|ρ|i j〉,
Bi j = 〈ii|ρ| j j〉, and Ci j = 〈i j|ρ| ji〉 for i, j ∈ [d]. Then, the
local averaging operation in Eq. (3) acts as the orthogonal
projection onto the subspace of LDOI matrices, where O is
a random diagonal orthogonal matrix with uniformly random
signs {±} on its diagonal, which are independent and identi-
cally distributed (i.i.d)

ρ 	→ EO[(O ⊗ O)ρ(O ⊗ O)] = ρA,B,C . (3)

The validity of Eq. (3) can be established by first showing
that the LDOI property of a state [as stated in Eq. (2)] is
equivalent to its invariance under the aforementioned local
averaging operation and then by checking that all matrix units
in Md ⊗ Md vanish under this operation except the ones of
the form |i j〉 〈i j| , |ii〉 〈 j j| , or |i j〉 〈 ji|, which stay invariant.

The interested reader should refer to [20, Secs. 6,7] to gather
more details about this argument.

Now, if C is diagonal in Eq. (1), we obtain a subclass of
LDOI states, which is defined by the conjugate local diagonal
unitary invariance (CLDUI) property

ρA,B =
d∑

i, j=1

Ai j |i j〉 〈i j| +
∑

1�i �= j�d

Bi j |ii〉 〈 j j| , (4)

∀U ∈ DUd , ρA,B = (U ⊗ U †)ρA,B(U † ⊗ U ), (5)

where DUd is the group of diagonal unitary matrices in Md .
Analogous to Eq. (3), the local averaging operation in Eq. (6)
defines the orthogonal projection onto the subspace of CLDUI
matrices, where U is a random diagonal unitary matrix having
uniform, i.i.d entries on the unit circle in C and A, B ∈ Md are
as defined before:

ρ 	→ EU [(U ⊗ U †)ρ(U † ⊗ U )] = ρA,B. (6)

Remark II.1. If B is diagonal in Eq. (1), we get the subclass
of local diagonal unitary invariant (LDUI) states, which we
choose not to deal with in this article. Since the two classes
are linked through the operation of partial transposition, the
separability results for CLDUI states will identically apply to
LDUI states as well.

We now define the notions of pairwise and triplewise
completely positive (PCP and TCP) matrices, which are fun-
damentally connected to the separability of the CLDUI and
LDOI states, respectively. For |v〉 , |w〉 ∈ Cd , we denote the
operations of entrywise complex conjugate and Hadamard
product in Cd by |v〉 and |v � w〉, respectively. Recall that
ρ ∈ Md ⊗ Md (unnormalized) is said to be separable if there
exist a finite set of vectors {|vk〉 , |wk〉}k∈I ⊂ Cd such that

ρ =
∑
k∈I

|vkwk〉 〈vkwk| .

Definition II.2. Let A, B,C ∈ Md . Then,
1. (A,B) is said to be pairwise completely positive (PCP)

if there exists vectors {|vk〉 , |wk〉}k∈I ⊂ Cd such that

A =
∑
k∈I

|vk � vk〉〈wk � wk| B =
∑
k∈I

|vk � wk〉 〈vk � wk|.

2. (A,B,C) is said to be triplewise completely positive
(TCP) if there exists vectors {|vk〉 , |wk〉}k∈I ⊂ Cd such that

A =
∑
k∈I

|vk � vk〉〈wk � wk| B =
∑
k∈I

|vk � wk〉 〈vk � wk|

C =
∑
k∈I

|vk � wk〉 〈vk � wk| .

Theorem II.3. For A, B,C ∈ Md with equal diagonals:
1. ρA,B is separable ⇐⇒ (A, B) is PCP;
2. ρA,B,C is separable ⇐⇒ (A, B,C) is TCP.
Proof. We will prove the theorem for an unnormalized

LDOI state ρA,B,C . Assume first that the state is separable
and hence admits a decomposition of the form ρA,B,C =∑

k∈I |vkwk〉 〈vkwk|. Then, from the definition of the associ-
ated A, B,C matrices, it is evident that they admit the desired
TCP decomposition with vectors {|vk〉 , |wk〉}k∈I . Conversely,
assume that (A, B,C) is TCP with the vectors {|vk〉 , |wk〉}k∈I
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forming its TCP decomposition as in Definition II.2. Now,
construct the separable state ρ = ∑

k∈I |vkwk〉 〈vkwk|. It is
then easy to see that ρA,B,C is separable since it can be obtained
from ρ by a local projection:

ρA,B,C = EO[(O ⊗ O)ρ(O ⊗ O)],

see Eq. (3). �
For a more thorough analysis of the space of LDUI,

CLDUI, and LDOI matrices, the readers should refer to [21,
Secs. 2-5]. In particular, [21, Sec. 3] contains a comprehensive
list of many important examples of states (like the Werner and
Isotropic states, mixtures of Dicke states, 3 ⊗ 3 edges states,
etc.) from the literature which lie in the LDOI class.

B. Graphs

A (simple, undirected) graph G consists of a finite vertex
set V , together with a finite set of two-element (unordered)
subsets of V , known as the edge set E . G can be represented
pictorially by drawing the elements (vertices) of V as points,
with i, j ∈ V connected by a line if {i, j} ∈ E . For two
graphs G = (VG, EG) and H = (VH , EH ), we say that G
contains H (H ⊆ G) if VH ⊆ VG and EH ⊆ EG. For l � 3,
an l-cycle (denoted Cl ) in a graph is a sequence of edges
{i0, i1}, {i1, i2}, . . . , {il−1, il} such that i1 �= i2 �= · · · �= il , and
i0 = il . T hree-cycles are called triangles. A graph which
does not contain any triangles is called �-free. A graph is
termed cyclic if it contains a cycle and acyclic otherwise.
Given a matrix A ∈ Md , we associate a graph G(A) to it on
d vertices such that for i �= j, {i, j} is an edge if both Ai j and
Aji are nonzero. The adjacency matrix A ∈ Md of a graph G
(denoted ad G) on d vertices is defined as follows: diag A = 0
and Ai j = Aji = 1 if {i, j} is an edge for i �= j. If G is a graph
on d vertices, then B ∈ Md is called a matrix realization of
G if G(B) = G. We refer the readers to the excellent book by
Bondy and Murty [27] for a more thorough introduction to
graphs.

III. MAIN RESULTS

Maintaining close proximity with the graph-theoretic
terminology, we begin by introducing the concept of triangle-
free (�-free) bipartite states.

Definition III.1. A bipartite state ρ ∈ Md ⊗ Md is said
to be triangle-free (�-free) if the associated matrix A ∈ Md

defined entrywise as Ai j = 〈i j|ρ|i j〉 for i, j ∈ [d], is such that
G(A) is �-free.

From the definition, it is clear that the property of �-
freeness of a state is nothing but a statement on the zero
pattern of the state’s diagonal. It is not too difficult to ascertain
whether a state has this property, as efficient polynomial-
time algorithms exist to determine whether a graph G is
�-free [28]; for example, trace[(ad G)3] = 0 ⇐⇒ G is �-
free. However, it should be noted that the notion of �-freeness
is basis dependent, i.e., given a �-free state ρ ∈ Md ⊗
Md , there may exist unitary matrices U,V such that (U ⊗
V )ρ(U ⊗ V )† is not �-free.

We now proceed towards exploiting the �-free property of
an LDOI state to obtain a powerful necessary condition for its
separability. Recall that for a vector |v〉 ∈ Cd , supp |v〉 := {i ∈
[d] : 〈i|v〉 �= 0}. We define σ (v) to be the size of supp |v〉. For
B ∈ Md , the comparison matrix M(B) is defined as M(B)i j =

|Bi j | for i = j and M(B)i j = −|Bi j | otherwise. It is crucial to
note that for B � 0, M(B) need not be positive semi-definite.
In fact, the constraint M(B) � 0 is far from trivial and is
actually used to define the so-called class of H matrices [29,
Chap. 6]. However, it turns out that the �-freeness of ρA,B,C

is strong enough to ensure that above constraint holds for
B,C � 0, as we now show.

Theorem III.2. If ρA,B,C is �-free and separable, then
M(B) and M(C) are positive semi-definite.

Proof. Since ρA,B,C is separable, (A, B,C) is TCP and there
exist vectors {|vk〉 , |wk〉}k∈I ⊂ Cd such that the decomposi-
tion in Definition II.2 holds. Now, if there exists a k ∈ I such
that σ (vk � wk ) � 3, then G(|vk � vk〉 〈wk � wk|) [and hence
G(A)] would contain a triangle, which is not possible since
ρA,B,C is �-free. Hence, σ (vk � wk ) = σ (vk � wk ) � 2 for
each k. Now, let

I1 = {k ∈ I : σ (vk � wk ) � 1},
Ii j = {k ∈ I : supp |vk � wk〉 = {i, j}} (for i < j),

so that the index set splits as I = I1 ∪i< j Ii j . Further, if we
define Bi j = ∑

k∈Ii j
|vk � wk〉 〈vk � wk|, it is easy to see that

M(Bi j ) � 0 for all i < j, since each Bi j is supported on a
two-dimensional subspace C |i〉 ⊕ C | j〉 ⊂ Cd . The following
decomposition then shows that M(B) � 0:

M(B) =
∑
k∈I1

|vk � wk〉 〈vk � wk| +
∑

1�i< j�d

M(Bi j ).

A similar argument shows that M(C) � 0 as well. �
Observe how the �-freeness of G(A) above is used to force

the vectors vk,wk to have small common supports. If we
define Ak = |vk � vk〉 〈wk � wk| and Bk,Ck as the rank-one
projections onto |vk � wk〉 , |vk � wk〉, it is clear that ρA,B,C =∑

k ρAk ,Bk ,Ck , where the small common supports imply that
each ρAk ,Bk ,Ck has support on a 2 ⊗ 2 subsystem (barring some
diagonal entries). This is what ensures that M(B), M(C) � 0,
as was shown in the proof above. Remarkably, for CLDUI
states, the converse also holds [i.e., if ρA,B is PPT and M(B) �
0, then ρA,B is separable] [19, Corollary 5.5]. Hence we ob-
tain a complete characterization of separable �-free CLDUI
states.

Theorem III.3. If ρA,B is �-free and PPT, then
ρA,B is separable ⇐⇒ M(B) � 0.

For LDOI states, the converse of Theorem III.2 ceases
to hold, see [21, Example 9.2]. Nevertheless, we do have
a nontrivial necessary condition for separability, which we
now exploit to arrive at our primary entanglement detection
strategy in arbitrary �-free states.

Theorem III.4. Let ρ ∈ Md ⊗ Md be an arbitrary �-
free state with the associated matrices A, B,C ∈ Md de-
fined entrywise as Ai j = 〈i j|ρ|i j〉, Bi j = 〈ii|ρ| j j〉, and Ci j =
〈i j|ρ| ji〉 for i, j ∈ [d]. Then, ρ is entangled if either M(B) or
M(C) is not positive semi-definite.

Proof. For LDOI states, the conclusion follows from The-
orem III.2. For an arbitrary ρ ∈ Md ⊗ Md , the result follows
from the fact that it can be transformed into a �-free
LDOI state through a separability preserving local operation:
ρA,B,C = EO[(O ⊗ O)ρ(O ⊗ O)]. �
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We should emphasise here that the above test is very
easily implementable. Given a �-free state ρ ∈ Md ⊗ Md ,
one simply needs to extract the appropriate entries from ρ

to form the B,C matrices and check for the positivity of
the corresponding comparison matrices. The test can also be
generalized to work for states ρ ∈ Md1 ⊗ Md2 with d1 < d2,
as we now illustrate. First define a d1 × d2 matrix (as before)
Ai j = 〈i j|ρ|i j〉, with i ∈ [d1], j ∈ [d2]. Now, corresponding
to all possible ways of choosing d1 different columns of A,
construct a total of

(d2

d1

)
matrices Ã ∈ Md1 . For each Ã with

a �-free G(Ã), construct the projector P = ∑
i |i〉 〈i|, where

the sum is over those i ∈ [d2], which were chosen to form
columns of Ã. Project the original state ρ locally to obtain a
d1 ⊗ d1 �-free state ρ̃ = (I ⊗ P)ρ(I ⊗ P), and apply the test
from Theorem III.4.

Remark III.5. At this juncture, it is crucial to point out
that before applying Theorem III.4, it is essential to find a
suitable product basis in which the given state ρ admits a
�-free matrix representation (as in Definition III.1), which
seems like a daunting task. We pose this as an open problem
in the concluding section.

With our primary entanglement test in place, we can
now begin to analyze the suitability of various kinds of �-
free graphs from the perspective of Theorem III.4. More
specifically, we wish to describe the class of �-free graphs
which allows for matrix realizations B � 0 to exist such that
M(B) � 0. In what follows, we will prove that this class
contains precisely those �-free graphs which contain a cycle
(of length � 4). The first step towards obtaining this charac-
terization is to show that acyclic graphs do not allow for the
proposed matrix realizations to exist, which forms the content
of our next result.

Proposition III.6. If B � 0 is a matrix realization of an
acyclic graph, then M(B) � 0.

Proof. Observe that M(B) � 0 if and only if det M(B̃)
is nonnegative for all principal submatrices B̃ of B [which
also correspond to acyclic graphs G(B̃) if G(B) is acyclic].
Hence, to prove the result, it suffices to show that det M(B) is
nonnegative for an arbitrary B � 0 such that G(B) = (V, E ) is
acyclic. With this end in sight, we first recall the formula

det B =
∑
σ∈Sd

Bσ =
∑
σ∈Sd

(−1)σ
∏
i∈[d]

B(i, σi ),

where the summation occurs over all permutations σ with
−1σ denoting their signs. Now, for some Bσ �= 0, we claim
that if {i, j} ∈ E is an edge for i �= j = σi, then σ j = i, which
implies that Bσ contains a factor of |Bi j |2. Since this fac-
tor stays invariant as B becomes M(B), the preceding claim
implies that det M(B) = det B � 0, which is precisely our
requirement. We now prove the claim. Assume on the con-
trary that σ j = k /∈ {i, j}. Then, since Bσ �= 0, B( j, k) �= 0 ⇒
{ j, k} ∈ E . Now, if σk = i, then {i, j}, { j, k}, {k, i} forms a
triangle, which contradicts the fact that G(B) is acyclic. Hence
σk = l /∈ {i, j, k} and, as before, {k, l} ∈ E . Continuing in
the fashion, it becomes evident that the sequence of edges
{i, j}, { j, k}, {k, l}, . . . must eventually terminate in a cycle
(see Fig. 1), which is not possible since G is acyclic. �

i j

k

l

m

FIG. 1. The sequence of edges {{i, j}, { j, k}, {k, l}, . . .} ⊂ E in
the proof of Proposition III.6 eventually terminates in a cycle.

If ρA,B,C is a PPT LDOI state with acyclic G(A) [which
implies that G(B), G(C) are acyclic as well], the above propo-
sition implies that M(B), M(C) � 0, thus rendering Theorem
III.4 incapable of detecting any entanglement. For CLDUI
states, Theorem III.3 allows us to trivially prove the following
result.

Corollary III.7. If ρA,B is such that G(A) is acyclic, then
ρA,B is separable ⇐⇒ ρA,B is PPT.

With acyclic graphs now out of the picture, the next propo-
sition investigates the remaining class of cyclic �-free graphs.
This result will form the basis of our method to construct
exotic families of PPT-entangled �-free states in the next
section.

Proposition III.8. For a �-free cyclic graph, a matrix real-
ization B � 0 exists such that M(B) � 0.

Proof. We first show that the result holds for k cycles.
Assume k = 4. Let B = XX T , where

X =

⎛
⎜⎜⎝

1 0 0
1 1 0
0 1 1
1 −1 0

⎞
⎟⎟⎠, B =

⎛
⎜⎜⎝

1 1 0 1
1 2 1 0
0 1 2 −1
1 0 −1 2

⎞
⎟⎟⎠. (7)

Clearly, B � 0, G(B) = C4, and M(B) � 0. A similar con-
struction can be employed for arbitrary k > 4, by defining
X as a k × (k − 1) matrix entrywise: Xii = 1 for i ∈ [k −
1], Xi+1,i = 1, and Xki = (−1)i+1 for i ∈ [k − 2], and B =
XX T . It is then easy to see see that B � 0, G(B) = C4 and
M(B) � 0. Now, let G be an arbitrary �-free graph on d
vertices with Ck ⊆ G. Let B′ ∈ Md be such that it contains the
above constructed B as the principal submatrix corresponding
to the vertices which form the cycle Ck , with all other entries
defined to be zero. Let the adjacency matrix of G be ad G.
Then, it is easy to see that for every x > 0, ∃ 0 �= y ∈ C with
|y| � x such that xId + y ad G � 0. Now, observe that Bx =
B′ + xId + y ad G � 0 for all x > 0, and B′ = limx→0+ Bx is
such that M(B′) � 0. Since the cone of positive semi-definite
matrices is closed in Md , we can deduce that there exists an
x > 0 such that B = Bx � 0, M(B) � 0 and G(B) = G, thus
finishing the proof. �

IV. CONSTRUCTION OF NEW FAMILIES OF
PPT-ENTANGLED �-FREE STATES

By exploiting the property of cyclic �-free graphs from
Proposition III.8, we now present a simple protocol for con-
structing new families of PPT-entangled �-free states in
arbitrary d1 ⊗ d2 dimensions (d1, d2 � 4).

Step 1. Choose a �-free cyclic graph G on d vertices.
Step 2. Construct a matrix realization B ∈ Md of G such

that B � 0 and M(B) � 0.
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Step 3. Construct a family FB of matrix pairs (A,C)
in the following manner: choose A � 0, C � 0 such that
G(A) = G(B) = G(C) = G, diag A = diag B = diagC, and
Ai jA ji � max{|Bi j |2, |Ci j |2} ∀i, j. (Impose

∑
i, j Ai j = 1 to

ensure trace normalization). Then the two matrix-parameter
(∼d2 real parameters) family {ρA,B,C}(A,C)∈FB represents a
class of d ⊗ d G-PPT-entangled LDOI states, associated
with the �-free cyclic graph G and its matrix realiza-
tion B � 0 such that M(B) � 0. The construction can be
easily generalized to arbitrary dimensions with d1 �= d2

with the help of the discussion following Theorem III.4
in Sec. III.

Let us use the above method to explicitly construct a 4 ⊗ 4
PPT-entangled family of �-free LDOI states.

Example IV.1. We begin by choosing the unique �-free
(connected) graph on four vertices: the four-cycle C4. Next,

we take the matrix realization B � 0 [M(B) � 0] of C4 from
Eq. (7). To construct the family FB of matrix pairs (A,C),
we proceed as follows. First, observe from the general form
of A,C given in Eq. (8) that A, B,C have equal diagonals
and G(A) = G(B) = G(C) = C4. It should be noted that even
though a13 may be nonzero, G(A) does not contain the edge
{1, 3} as a31 = 0. Moreover, it is easy to choose complex
numbers ci j such that C � 0. For this illustration, we sim-
ply impose the constraint that cii �

∑
j �=i |ci j | for each i ∈

[4], so that C becomes (Hermitian) diagonally dominant and
hence positive semi-definite. Finally, we let ai j be nonnega-
tive real numbers such that ai ja ji � max{|bi j |2, |ci j |2} ∀i, j ∈
[4]. With these constraints in place, we obtain our fam-
ily of (unnormalized) C4-PPT-entangled �-free LDOI states
with ∼18 real parameters: {ρA,B,C ∈ M4 ⊗ M4 : (A,C) ∈
FB}. Trace normalization can be enforced by using the fact that
Tr ρA,B,C = ∑

i, j Ai j :

G(A) = 1

2

3

4

, A =

⎛
⎜⎜⎜⎜⎜⎝

1 a12 a13 a14

a21 2 a23 0

0 a32 2 a34

a41 a42 a43 2

⎞
⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎝

1 1 0 1

1 2 1 0

0 1 2 −1

1 0 −1 2

⎞
⎟⎟⎟⎟⎟⎠

, C =

⎛
⎜⎜⎜⎝

1 c12 0 c14

c12 2 c23 0

0 c23 2 c34

c14 0 c34 2

⎞
⎟⎟⎟⎠. (8)

It seems wise to pause here for a moment to appreciate
the richness of the above construction method. There is an
immense variety of �-free (cyclic) graphs, which directly
translates into a similar variety in the realm of PPT-entangled
�-free states. To gain perspective, we list the number of
distinct (connected) �-free cyclic graphs on d � 4 unlabelled
vertices in the following sequence (obtained by subtracting
the sequences [30, A024607 – A000055]):

1, 3, 13, 48, 244, 1333, 9726, 90 607, 1 143 510, . . . . (9)

For instance, in a 15 ⊗ 15 system, the ∼1010 (connected)
�-free cyclic graphs correspond to ∼1010 distinct classes of
PPT-entangled �-free states. Within each class, the ∼152 real
parameters and different matrix realizations B of the respec-
tive graphs only furthers the diversity.

V. GOING BEYOND �-FREE STATES

Let ρ ∈ Md ⊗ Md be such that the associated matrix A
has a triangle containing graph G(A), which means that the
test in Theorem III.4 is inapplicable. Nevertheless, there may
exist induced subgraphs G̃ within G(A) [these are of the
form G(Ã) for d̃ × d̃ principal submatrices Ã of A, d̃ < d]
which are �-free. For such a G̃, let us define the projector

P = ∑
i |i〉 〈i|, where the sum runs over those rows or columns

i ∈ [d] which are present in Ã. Clearly, (P ⊗ P)ρ(P ⊗ P) is
then �-free and hence a valid candidate for Theorem III.4.
We succinctly describe the above discussion in the form of a
theorem below.

Theorem V.1. Consider an arbitrary ρ ∈ Md ⊗ Md with
the associated matrices A, B,C ∈ Md defined as Ai j =
〈i j|ρ|i j〉, Bi j = 〈ii|ρ| j j〉, and Ci j = 〈i j|ρ| ji〉 for i, j ∈ [d]. If
there exists a principal submatrix Ã of A such that G(Ã) is
�-free and either M(B̃) or M(C̃) is not positive semi-definite,
then ρ is entangled.

Using Theorem V.1, we were able to successfully detect
entanglement in several randomly generated d ⊗ d non-�-
free LDOI states (where d ∼ 20). Let us see a simple exhibit
of how this method works.

Example V.2. Consider an unnormalized 6 ⊗ 6 PPT
CLDUI state ρA,B with matrices A, B ∈ M6 defined in Eq.
(10). Clearly, Theorem III.4 is not applicable here since G(A)
contains a lot of triangles. However, just by removing the fifth
row and column from A, we obtain the principal submatrix Ã
with a nice �-free graph G(Ã), see Eq. (11). Moreover, since
M(B̃) � 0, Theorem V.1 tells us that ρA,B is entangled:

G(A) =
5 6

2

1

3

4

, A =

⎛
⎜⎜⎜⎜⎜⎝

11 9 6 6 4 0
10 13 4 1 11 8
5 0 13 4 7 8
6 0 0 13 11 12
2 9 5 14 15 14
4 10 4 10 14 11

⎞
⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎝

11 −7 1 −3 −1 0
−7 13 0 0 6 7

1 0 13 0 −2 3
−3 0 0 13 −9 −8
−1 6 −2 −9 15 10

0 7 3 −8 10 11

⎞
⎟⎟⎟⎟⎟⎠

, (10)
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G(Ã) =
1

2

5

3

4

Ã =

⎛
⎜⎜⎜⎝

11 9 6 6 0
10 13 4 1 8
5 0 13 4 8
6 0 0 13 12
4 10 4 10 11

⎞
⎟⎟⎟⎠, B̃ =

⎛
⎜⎜⎜⎝

11 −7 1 −3 0
−7 13 0 0 7

1 0 13 0 3
−3 0 0 13 −8

0 7 3 −8 11

⎞
⎟⎟⎟⎠. (11)

It is relevant to point out that the complexity of the above
method scales badly with d since the problem of determining
the existence of �-free induced subgraph in a graph is NP
complete. Let us quickly prove this. It is trivial to check that
the problem is NP. Now, for a graph G = (V, E ), it is not too
hard to see that G contains an independent set of size k (this is
an induced subgraph on k vertices with no edges) if and only if
HG contains a �-free induced subgraph with |E | + k vertices,
where HG is constructed from G by adding vertices ve and
edges {i, ve} and { j, ve} for each edge e = {i, j} ∈ E . Hence,
the NP completeness of the problem of determining whether a
graph contains an independent set or not [31] imparts a similar
hardness to the problem of finding �-free induced subgraphs
within a given graph.

VI. CONCLUDING DISCUSSION

In this paper, we presented a unique test to detect a differ-
ent kind of bipartite entanglement which is present in states
with peculiar �-free distribution of zeros on their diagonals.
We have thus shown a connection between the entanglement
of a state and its diagonal zero pattern. From our recipe to
construct families of PPT-entangled �-free states in arbitrary
dimensions, it is evident that the ease of �-free entangle-
ment detection does in no way restrict its diversity. We also
established an intriguing link between the problems of de-
tecting entanglement in non-�-free states and finding �-free
induced subgraphs within a given graph. Several avenues of
research stem from our work. The most obvious question
to ask is whether the usual entanglement criteria (such as
the realignment [32,33] or the covariance [34] criterion) can
detect entanglement in �-free states? In a more practical
setting (especially when the full state tomography is im-
possible [35]), one would like to know the structure of the
entanglement witnesses, which can detect this kind of entan-
glement. These questions are not straightforward to answer
because of the incredibly diverse nature of �-free entangle-
ment. For example, even if we consider the most trivial family
of C4-PPT-entangled �-free states from Sec. IV, the 18 real
parameters inside provide the states with ample freedom to
evade detection from any of the usual entanglement tests.
We have even been able to tweak the parameters so that the
semi-definite hierarchies from [16,17] give up on detecting

entanglement in any reasonable time frame. Hence, one can
deduce that our comparison matrix entanglement test is highly
nontrivial and has strong potential to provide drastic compu-
tational speed-ups over its regular counterparts in a variety of
circumstances. We now conclude our discussion with a few
pertinent remarks and open problems.

First, as has already been pointed out, the property of �-
freeness of a state is basis-dependent. In other words, if ρ ∈
Md ⊗ Md is �-free and U,V ∈ Md are unitary matrices,
then (U ⊗ V )ρ(U ⊗ V )† need not be �-free. Thus, a natural
question arises: Is there a basis-independent description of
the �-free property of a state? More specifically, given ρ ∈
Md ⊗ Md , how does one guarantee the existence of local
unitaries U,V ∈ Md such that (U ⊗ V )ρ(U ⊗ V )† is �-free?
The answer to the above question can give us insights into
what it physically means for a state to be �-free and hence
provide us with a deeper understanding of the nature of �-free
entanglement itself. Other entanglement-theoretic properties
of �-free states (distillability, entanglement cost, etc.) deserve
further scrutiny.

Second, observe that our main result relies heavily on
Theorem III.2, where the idea is to show that the vectors
{|vk〉 , |wk〉}k∈I in the TCP decomposition of (A, B,C) have
small common support [σ (vk � wk ) � 2 for each k]. While
the �-freeness of ρA,B,C is sufficient to guarantee this, it is
clearly not necessary. Thus, other constraints on ρA,B,C which
ensure that the above property holds can allow one to detect
analogues of �-free entanglement. More generally, a hier-
archy of constraints σ (vk � wk ) � n for n ∈ N on vectors
{|vk〉 , |wk〉}k∈I in the TCP decompositions of (A, B,C) can
be analyzed to see if they entail simple necessary conditions
on separability of ρA,B,C . Significant progress along these di-
rections has been made in [36, Sec. 3], albeit in a different
context.
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