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Single-mode multiphoton polarization states under random Pauli noises
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We investigate behaviors of single-mode multiphoton polarization states under lossless random Pauli noises,
where “single-mode” means that all the photons are in the same spatiotemporal mode and cannot be distinguished
by any degree of freedom. We characterize the different decoherence effects of multiphoton and single-photon
polarization states via the normalized linear entropy. Our results show that, contrary to single-photon states,
multiphoton states cannot always evolve to the maximally mixed states. In particular, decoherence-free states and
subspaces are found for the random Pauli noises. We reveal that the distinct behaviors result from the bosonic
bunching effect and permutation symmetry, and hence our study may be generalized to other photon degrees of
freedom and even some other bosonic systems.
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I. INTRODUCTION

Photons not only play a key role in testing the foundations
of quantum mechanics [1] but also have wide applications in
various quantum technologies [2]. Compared with the single
photon, multiphotons have more complicated and striking fea-
tures [3], and hence have broader applications [4]. Here we
focus on a kind of multiphoton states called the single-mode
multiphoton polarization states. By saying “single-mode”
we mean the multiphotons occupy the same spatiotemporal
mode and cannot be distinguished by any degree of free-
dom. Such states have been extensively explored as qudit
states [5]. Since photon polarization is mathematically equiv-
alent to dual path but can enable stable interferometers,
such states are often employed in experiment to demonstrate
the precision phase measurement beating the standard quan-
tum limit, such as N00N states [6], Holland-Burnett state
[7], etc.

Decoherence, induced by system noise or unavoidable cou-
pling between a quantum system and the environment, is a
significant obstacle to the development of quantum technolo-
gies, especially in quantum communication and computation
[8]. In particular, decoherence of multiparticle quantum states
has attracted much interest due to the distinct properties in
contrast to single-particle states, for instance, the existence
of a “decoherence-free (DF) subspace” [9] and entanglement
sudden death effect [10]. With regard to the photonic system,
since a qubit is usually encoded in an individual photon, most
investigations of multiphoton decoherence are focused on
multiphotons lying in different path modes or time-bin modes,
such as verification of DF subspaces [11–15] and observations
of various entanglement dynamics [16,17]. Recently, Shaham
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and Eisenberg [18] investigated the decoherence effect on the
single-mode biphoton polarization states; however, their study
was made via splitting two photons into two separate path
modes. A comprehensive study on the decoherence effect and
the role that indistinguishability plays for the single-mode
multiphoton polarization states is still lacking.

In this paper we present a detailed investigation of the
decoherence effect on the single-mode multiphoton polariza-
tion states. We consider an important class of noisy channels,
namely, the lossless Pauli channels, where a photon (or more
generally, a qubit) suffers a random Pauli operation with an
arbitrary probability and the number of photons is conserved
during the dynamics. The family of Pauli channels represents
a wide range of noise processes such as bit flip, dephas-
ing, and depolarizing channels [8]. The Pauli channels are
one of the most common models in quantum communication
[19–21] and quantum error correction [22,23]. Such channels
have also been widely applied to study entanglement and
correlation dynamics [24–26]. We investigate behaviors of the
single-mode multiphoton polarization states under the Pauli
channels in comparison with those of single-photon states via
the normalized linear entropy. Decoherence-free states and
subspaces are found for the random Pauli channels. We re-
veal that the underlying physical property of the noise-robust
feature is the indistinguishability of the photons in a single
mode, leading to the bunching effect and permutation symme-
try. Similarly, the indistinguishability of particles, including
bosons and fermions, has been proven to protect some states
from environmental noises [27–29].

The paper is arranged as follows. In Sec. II we give a
brief introduction to the Pauli channels. Then in Sec. III
we present the investigations of the multiphoton polarization
states under the Pauli channels, and give some examples to
show our results. Discussions and conclusions are made in
Sec. IV.
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II. THE PAULI CHANNELS

A general method to characterize the evolution of a
quantum system under decoherence is the operator-sum rep-
resentation [8] that describes the dynamics of the interested
system without having to consider properties of the environ-
ment and the interactions. The action of the lossless Pauli
channels on the density operator ρ is described as

E (ρ) =
3∑

k=0

pkÊkρÊ†
k , (1)

where Ê0 is the identity operator Î , and {Êk} (k = 1, 2, 3)
are the three Pauli operators {X̂ , Ŷ , Ẑ}. The four operators
act randomly with probabilities pk , respectively, which sat-
isfy 0 � pk � 1 and

∑
k pk = 1. Hence we can see that the

Pauli channels are trace-preserving maps without including
rotations.

Here we consider the Pauli operations to act on the pho-
tonic polarization basis states {|H〉, |V 〉}, where H and V
denote the horizontal and vertical polarization, respectively.
Explicitly, according to the linear optical evolution represen-
tation [30], the action of the Pauli operations on the creation
operators can be expressed as

Êk â†
j |vac〉 = Êk â†

j Ê
†
k Êk|vac〉 = Êkâ†

j Ê
†
k |vac〉, (2)

where j = H, V , and |vac〉 represents the vacuum state. Then
we obtain the following evolutions:

X̂ â†
H X̂ |vac〉 = â†

V |vac〉, X̂ â†
V X̂ |vac〉 = â†

H |vac〉,
Ŷ â†

HŶ |vac〉 = iâ†
V |vac〉, Ŷ â†

V Ŷ |vac〉 = −iâ†
H |vac〉,

Ẑ â†
H Ẑ|vac〉 = â†

H |vac〉, Ẑ â†
V Ẑ|vac〉 = −â†

V |vac〉. (3)

III. BEHAVIORS OF THE SINGLE-MODE MULTIPHOTON
POLARIZATION STATES IN THE PAULI CHANNELS

An arbitrary single-mode N-photon polarization pure state
can be expanded as

|�N 〉 =
N∑

n=0

cn|(N − n)H, nV 〉

=
N∑

n=0

cn√
(N − n)!n!

â†N−n
H â†n

V |vac〉, (4)

where the coefficients cn are arbitrary complex numbers satis-
fying

∑N
n=0 |cn|2 = 1. In the following we study the evolution

of the state in the Pauli channels. We should note that although
the channels given by Eqs. (1) and (3) are defined for single-
photon polarization states, since the N photons in a single
mode bunch together and are indistinguishable, they inher-
ently suffer the same Pauli operations. Hence, the evolution
of the state |�N 〉 under the Pauli operations can be written as

X̂ |�N 〉 =
N∑

n=0

cn√
(N − n)!n!

(X̂ â†
H X̂ )N−n(X̂ â†

V X̂ )n|vac〉

=
N∑

n=0

cn|nH, (N − n)V 〉, (5)

Ŷ |�N 〉 =
N∑

n=0

cn√
(N − n)!n!

(Ŷ â†
HŶ )N−n(Ŷ â†

V Ŷ )n|vac〉

= iN
N∑

n=0

(−1)ncn|nH, (N − n)V 〉, (6)

Ẑ|�N 〉 =
N∑

n=0

cn√
(N − n)!n!

(Ẑâ†
H Ẑ )N−n(Ẑâ†

V Ẑ )n|vac〉

=
N∑

n=0

(−1)ncn|(N − n)H, nV 〉. (7)

Then according to Eq. (1) we can obtain the density matrix of
the state after the Pauli channels as

ρ ′ =
N∑

n,m=0

ρ ′
nm|(N − n)H, nV 〉〈(N − m)H, mV |, (8)

with the matrix element given by

ρ ′
nm = [p0 + (−1)n+m p3]cnc∗

m

+ [p1 + (−1)n+m p2]cN−nc∗
N−m. (9)

We can see that the trace of the density matrix is preserved
under the Pauli noises, and therefore, the number of photons
is conserved.

To quantify the mixedness of a density matrix σ after
decoherence, we employ the normalized linear entropy (NLE)
defined as [31,32]

SL(σ ) ≡ D

D − 1
[1 − Tr(σ 2)], (10)

where D is the dimension of the system. The NLE is 0
for pure states and 1 for completely mixed states, namely,
the normalized D-dimensional identity I/D. Then recall-
ing that a single-mode N-photon polarization state can be
seen as an (N + 1)-dimensional state under the basis of
{|(N − k)H, kV 〉}, (k = 0, . . . , N ) [5], we can calculate the
NLE of the density matrix ρ ′ as

SL(ρ ′) = N + 1

N
[1 − Tr(ρ ′2)]

= N + 1

N

(
1 −

N∑
n,m=0

|ρ ′
nm|2

)
. (11)

By substituting Eq. (9) into Eq. (11) we can obtain a general
expression for the NLE. We can see that for a fixed Pauli
channel the NLE varies against photon number and state ex-
pression. Note that in the above analysis we have restricted
our analysis to the lossless case, in which the number of
photons is conserved under the effect of the noise. However,
by employing the photon-number postselection technique [33]
widely used in photonic quantum information experiments,
namely, by only considering those states with all the photons
surviving from photon loss, our results can apply to the case
with polarization-independent losses.

In the following, we focus on the case of isotropic noise,
namely, the depolarizing channel, where

p1 = p2 = p3 = p

4
, p0 = 1 − 3p

4
. (12)
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Then by substituting the above equation into Eq. (9) we can write the matrix element of the density matrix after the depolarizing
channel as

ρ ′
d,nm = (1 − p)cnc∗

m + p

4
[1 + (−1)n+m](cnc∗

m + cN−nc∗
N−m). (13)

Thus from Eq. (11) we can calculate the NLE as

SL(ρ ′
d ) = N + 1

2N
p(2 − p)

{
1 + 1

2

N∑
n,m=0

{[1 − (−1)n+m]|cncm|2 − [1 + (−1)n+m]Re(cnc∗
mc∗

N−ncN−m)}
}

= N + 1

2N
p(2 − p)

{
1 −

N∑
n=0

|cncN−n|2 +
N−1∑
n=0

N∑
m=n+1

{[1 − (−1)n+m]|cncm|2 − [1 + (−1)n+m]Re(cnc∗
mc∗

N−ncN−m)}
}

.

(14)

We can clearly see that different state coefficients or photon
numbers may show distinct behaviors under the same chan-
nels. In the following, we investigate two extreme cases to
show the differences. One case is for the states most affected
by the noises which maximize the normalized linear entropy.
Such states could be resources for investigating the noisy
dynamics. The other case is for the decoherence-free states
that are immune to the noises.

A. States that maximize the normalized linear entropy

The first case we consider is the states that maximize the
NLE under any fixed depolarizing channel. These states can
be found straightforwardly by maximizing the value of the
NLE given by Eq. (14). However, when N is large the max-
imization process may become complicated. Alternatively,
since we can see from Eq. (14) that the effects of the state
coefficients on the NLE are the same for any nonzero value of
p, we can simplify this problem to the extreme case of p = 1.
In this case a possible maximal value of the NLE could reach
1 at the (N + 1)-dimensional identity IN+1/(N + 1). Thus we
can solve the state coefficients by letting the density matrix el-
ements equal to those of the identity. Explicitly, making p = 1
in Eq. (13) we can write the conditions for the nondiagonal
elements

ρ ′
d,nm(p = 1) = 1

4 [1 + (−1)n+m](cnc∗
m + cN−nc∗

N−m) = 0,

(15)

and the diagonal elements

ρ ′
d,nn(p = 1) = 1

2
(|cn|2 + |cN−n|2) = 1

N + 1
. (16)

The solutions can be obtained as follows.
(i) For 0 � n, m � N , n �= m, and n + m is even, the coef-

ficients satisfy

cnc∗
m + cN−nc∗

N−m = 0. (17)

(ii) For 0 � n � N , the coefficients satisfy

|cn|2 + |cN−n|2 = 2

N + 1
. (18)

Note that the above two equations may not be satisfied for any
photon number N . If the two equations can be satisfied for a
value of N , they constitute the necessary and sufficient condi-
tions for the state |�N 〉 given by Eq. (4) to reach the maximal

value of the NLE under a fixed depolarizing channel. Here we
should note that the normalization condition is omitted, and so
is it in the discussion below. The maximal value of the NLE is
given by

SL(ρ ′
d )max = 2p − p2. (19)

The corresponding density matrix is written as

ρ ′
d,max = (1 − p)ρd,max + p

N + 1
IN+1, (20)

where ρd,max represents the initial state satisfying the con-
ditions of Eqs. (17) and (18). We can see that in this case
the behaviors of the multiphoton states are the same for any
photon number N irrespective of the dimensions.

If Eqs. (17) and (18) cannot be satisfied for a value of N ,
the condition has to be found by maximizing the value of
the NLE directly. Consequently, in this case the maximally
mixed state cannot be reached under the depolarizing channel,
which means the robustness of multiphoton states compared
to single-photon states.

B. Decoherence-free states

The DF states mean the states that are not disturbed by
decoherence [9], which are of importance in encoding strate-
gies to deal with decoherence. Thus in the second case we
consider such type of states that are immune to the random
Pauli noises. Again we first consider the depolarizing channel.
We can find the DF states from the density matrix elements
given by Eq. (13) and find the solution for the equation of
ρ ′

d,nm(p = 0) = ρ ′
d,nm regardless of the value of p. Explicitly,

this equation can be written into the following two subequa-
tions.

(i) If n + m is odd, with 0 � n, m � N , we have

cnc∗
m = (1 − p)cnc∗

m. (21)

(ii) If n + m is even, with 0 � n, m � N , including n = m, we
have

cnc∗
m = (1 − p)cnc∗

m + p

2
(cnc∗

m + cN−nc∗
N−m). (22)

Then the solution can be expressed as follows.
(i) If n + m is odd, with 0 � n, m � N , the solution is

cnc∗
m = 0. (23)
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(ii) If n + m is even, with 0 � n, m � N , including n = m, the
solution is

cnc∗
m = cN−nc∗

N−m. (24)

The above solution gives the sufficient and necessary con-
ditions for a state |�N 〉 given by Eq. (4) to be immune to the
depolarizing noise. Moreover, we can infer that one necessary
condition for a DF state existing is that N should be an even
number.

Although the above conditions are obtained for the depo-
larizing channel, by substituting the conditions into Eq. (9),
we can know a state satisfying the conditions is a DF state un-
der any random Pauli noises as well. Consequently, Eqs. (23)
and (24) are also the sufficient (but not the necessary) condi-
tions to find a DF state immune to any random Pauli noises.

C. Some examples

We have studied behaviors of single-mode polarization
states with arbitrary photon numbers under random Pauli
noises and obtained the conditions for two typical cases. In
the following we give some examples with some particular
photon numbers to show the above results.

1. N = 1

We first consider the case of a single photon, i.e., N = 1,
and thus the initial state is an arbitrary single-photon polariza-
tion state given by

|�1〉 = c0|H〉 + c1|V 〉. (25)

Then according to Eqs. (8) and (13) the density matrix of
the state after the depolarizing channel is given by

ρ ′
d1 = (1 − p)|�1〉〈�1| + p

I2

2
. (26)

From Eq. (14) the NLE can be calculated as

SL(ρ ′
d1) = p(2 − p). (27)

Thus we obtain the commonly known statement, i.e., the
linear entropy increases monotonically as the depolarizing
noise increases [32], regardless of the state form. The maximal
value 1 is obtained at p = 1 where the state evolves to the
maximally mixed state I2/2. This result is consistent with
Eqs. (17) and (18), since they always hold when N = 1.

2. N = 2

Then we consider the case of N = 2. The single-mode two-
photon polarization state is a qutrit state expressed as

|�2〉 = c0|2H〉 + c1|H,V 〉 + c2|2V 〉. (28)

The NLE of the state |�2〉 after the depolarizing channel can
be calculated from Eq. (14) as

SL(ρ ′
d2) = p(2 − p)

{
1 − 1

4 (3|c1|2 − 1)2 − 3[Re(c0c∗
2 )]2}

,

(29)

where we use a formula that for arbitrary complex numbers,

[Re(ab∗)]2 = 1
2 [|ab|2 + Re(a2b∗2)]. (30)

The conditions for the state ρ ′
d2 to reach the maximal value

of NLE can be obtained by Eqs. (17) and (18) as

Re(c0c∗
2 ) = 0, (31)

|c1| = 1/
√

3, (32)

with the maximal value of p(2 − p). It is straightforward to
testify that the conditions coincide with that obtained through
maximizing the NLE given by Eq. (29). When p = 1 the state
becomes the maximally mixed state I3/3.

From the conditions given by Eqs. (23) and (24), we can
find the following three DF states:

|�2,DF1〉 = |H,V 〉, (33)

|�2,DF2〉 = 1√
2

(|2H〉 + |2V 〉), (34)

|�2,DF3〉 = 1√
2

(|2H〉 − |2V 〉). (35)

It is clear that the above three states can make SL(ρ ′
d2) = 0

regardless of the value of p. As we stated previously, it is
straightforward to testify that the above three states are im-
mune to the general random Pauli noises given by Eq. (1).
However, the three states cannot constitute a DF subspace
since they acquire different global phases under three Pauli
operations, which induce an arbitrary coherent superposition
of two of them not to be conserved under the random Pauli
noises.

To investigate the underlying physical property of the
noise-robust feature, as an example, we compare the noisy
dynamics of two indistinguishable and distinguishable pho-
tons in states |H,V 〉 and |H〉1|V 〉2, respectively, where the
indices 1 and 2 label the two distinguishable photons. Accord-
ing to Eqs. (5)–(7), for the state |H,V 〉, we have X̂ |H,V 〉 =
|H,V 〉, Ŷ |H,V 〉 = |H,V 〉, Ẑ|H,V 〉 = −|H,V 〉. It is clear
that the state is invariant up to a global phase under Pauli
noises. On the other hand, the evolution of state |H〉1|V 〉2
under Pauli noises can be written as X̂ |H〉1|V 〉2 = |V 〉1|H〉2,
Ŷ |H〉1|V 〉2 = |V 〉1|H〉2, Ẑ|H〉1|V 〉2 = −|H〉1|V 〉2. We can see
that such state cannot be preserved under X̂ and Ŷ noises. This
comparison shows that the permutation symmetry resulted
from the indistinguishability in a single mode leads to the
noise-robust feature against Pauli noises.

3. N = 3

For N = 3, the single-mode three-photon polarization state
is expressed as

|�3〉 = c0|3H〉 + c1|2H,V 〉 + c2|H, 2V 〉 + c3|3V 〉. (36)

The NLE of the state |�3〉 after the depolarizing channel can
be obtained via Eq. (14) as

SL(ρ ′
d3) = 2

3 p(2 − p)[1 + 2|c0c1 − c2c3|2]. (37)

Through Eqs. (17) and (18) we can get the condition for
maximizing the NLE as

c0c∗
2 + c3c∗

1 = 0, (38)

|c0|2 + |c3|2 = 1
2 . (39)
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The conditions can also be obtained by maximizing Eq. (37)
directly. The maximal value is p(2 − p) and hence the state
becomes the maximally mixed state I4/4 when p = 1.

From Eq. (37) we can see that when c0c1 = c2c3, the NLE
reaches the minimum 2p(2 − p)/3, and hence no DF state can
be found. This result agrees with the necessary condition we
deduced for a DF state existing, namely, N should be an even
number.

4. N = 4

The single-mode four-photon polarization state is written
as

|�4〉 = c0|4H〉 + c1|3H,V 〉 + c2|2H, 2V 〉
+ c3|H, 3V 〉 + c4|4V 〉. (40)

Through Eq. (14), the NLE can be expressed as

SL(ρ ′
d4) = 5

16 p(2 − p){3 − (1 − 2|c1|2 − 2|c3|2)2

− 8[Re(c1c∗
3 )]2 − 2[2Re(c0c∗

4 ) + |c2|2]2}, (41)

where the formula given in Eq. (30) is employed in the deriva-
tion.

By substituting N = 4 into Eqs. (17) and (18), the maxi-
mizing conditions become

c∗
2(c0 + c4) = Re(c0c∗

4 ) = Re(c1c∗
3 ) = 0, (42)

|c0|2 + |c4|2 = |c1|2 + |c3|2 = 2|c2|2 = 2
5 . (43)

With calculations, we can see that these equations cannot
hold simultaneously. By maximizing Eq. (41), we can get the
following condition for reaching the maximal NLE:

|c1|2 + |c3|2 = 1
2 , (44)

Re(c1c∗
3 ) = 0, (45)

2Re(c0c∗
4 ) + |c2|2 = 0, (46)

with the maximal value of 15p(2 − p)/16.
We can find the following DF states via the condition given

by Eqs. (23) and (24):

|�4,DF1〉 = α
1√
2

(|4H〉 + |4V 〉) + β|2H, 2V 〉, (47)

|�4,DF2〉 = 1√
2

(|4H〉 − |4V 〉), (48)

|�4,DF3〉 = 1√
2

(|3H,V 〉 + |H, 3V 〉), (49)

|�4,DF4〉 = 1√
2

(|3H,V 〉 − |H, 3V 〉), (50)

where α, β are complex numbers satisfying |α|2 + |β|2 = 1.
We can see that the DF states given by Eq. (47) are arbitrary
superposition states on two orthogonal basis states |0〉L, |1〉L
expressed as

|0〉L = 1√
2

(|4H〉 + |4V 〉), (51)

|1〉L = |2H, 2V 〉. (52)

The above basis states can build up a two-dimensional DF
subspace, and thus a qubit can be encoded into the DF sub-
space by α|0〉L + β|1〉L. Again we should note that the DF
states and subspace also apply for arbitrary random Pauli
noises.

5. N = 5

The single-mode five-photon polarization state is

|�5〉 = c0|5H〉 + c1|4H,V 〉 + c2|3H, 2V 〉 + c3|2H, 3V 〉
+ c4|H, 4V 〉 + c5|5V 〉. (53)

Utilizing Eq. (14), we can write the NLE as

SL(ρ ′
d5) = 3

5 p(2 − p)(1 + 2|c0c1 − c4c5|2

+ 2|c0c3 − c2c5|2 + 2|c1c2 − c3c4|2). (54)

According to Eqs. (17) and (18), we can write the condition
for maximizing the NLE as

c0c∗
2 + c5c∗

3 = c0c∗
4 + c5c∗

1 = c1c∗
3 + c4c∗

2 = 0, (55)

|c0|2 + |c5|2 = |c1|2 + |c4|2 = |c2|2 + |c3|2 = 1
3 , (56)

with the maximal value of p(2 − p). When p = 1 the state
evolves to the maximally mixed state I6/6.

As we showed previously, for the odd photon numbers no
DF state exists. From Eq. (54) we can see the minimum of the
NLE is 3p(2 − p)/5.

6. N = 6

The single-mode six-photon polarization state is written as

|�6〉 = c0|6H〉 + c1|5H,V 〉 + c2|4H, 2V 〉 + c3|3H, 3V 〉
+ c4|2H, 4V 〉 + c5|H, 5V 〉 + c6|6V 〉. (57)

The NLE given by Eq. (14) is written as

SL(ρ ′
d6) = 7

24 p(2 − p){3 − (1 − 2|c1|2 − 2|c3|2 − 2|c5|2)2

− 8[Re(c0c∗
6 + c2c∗

4 )]2 − 2[2Re(c1c∗
5 ) + |c3|2]2},

(58)

where the formula given in Eq. (30) is employed in the deriva-
tion.

By substituting N = 6 into Eqs. (17) and (18), the maxi-
mizing conditions become

c0c∗
2 + c6c∗

4 = c0c∗
4 + c6c∗

2 = c3(c∗
1 + c∗

5 ) = 0, (59)

Re(c0c∗
6 ) = Re(c1c∗

5 ) = Re(c2c∗
4 ) = 0, (60)

|c0|2 + |c6|2 = |c1|2 + |c5|2 = |c2|2 + |c4|2 = 2|c3|2 = 2
7 .

(61)

With calculations, we can see that these equations cannot hold
simultaneously. Hence, by maximizing Eq. (58), we obtain the
following conditions for reaching the maximal value of NLE:

|c1|2 + |c3|2 + |c5|2 = 1
2 , (62)

Re(c0c∗
6 + c2c∗

4 ) = 0, (63)

2Re(c1c∗
5 ) + |c3|2 = 0, (64)

with the maximal value of 7p(2 − p)/8.
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We can find the following DF states via the conditions
given by Eqs. (23) and (24):

|�6,DF1〉 = α
1√
2

(|5H,V 〉 + |H, 5V 〉) + β|3H, 3V 〉, (65)

|�6,DF2〉 = 1√
2

(|5H,V 〉 − |H, 5V 〉), (66)

|�6,DF3〉 = γ
1√
2

(|6H〉 + |6V 〉) + δ
1√
2

× (|4H, 2V 〉 + |2H, 4V 〉), (67)

|�6,DF4〉 = μ
1√
2

(|6H〉 − |6V 〉) + ν
1√
2

(|4H, 2V 〉

− |2H, 4V 〉),

(68)

where α, β, γ , δ, μ, and ν are complex numbers satisfying
|α|2 + |β|2 = 1, |γ |2 + |δ|2 = 1, and |μ|2 + |ν|2 = 1. It is
clear that three DF subspaces H1, H2, and H3 exist which
can be respectively spanned by the basis of {|0〉L1, |1〉L1},
{|0〉L2, |1〉L2}, and {|0〉L3, |1〉L3} expressed as

|0〉L1 = 1√
2

(|5H,V 〉 + |H, 5V 〉), (69)

|1〉L1 = |3H, 3V 〉, (70)

|0〉L2 = 1√
2

(|6H〉 + |6V 〉), (71)

|1〉L2 = 1√
2

(|4H, 2V 〉 + |2H, 4V 〉), (72)

|0〉L3 = 1√
2

(|6H〉 − |6V 〉), (73)

|1〉L3 = 1√
2

(|4H, 2V 〉 − |2H, 4V 〉). (74)

Thus a qubit can be encoded into any one of the three DF
subspaces by α|0〉L1 + β|1〉L1, γ |0〉L2 + δ|1〉L2, and μ|0〉L3 +
ν|1〉L3. Again we should note that the DF states and subspaces
also apply for arbitrary random Pauli noises.

IV. CONCLUSIONS AND DISCUSSIONS

We have studied behaviors of single-mode multiphoton
polarization states under lossless random Pauli noises. Due
to the photon bunching effect, the indistinguishable multi-

photons suffer the inherently collective random Pauli noises
acting on the polarization degree of freedom, and conse-
quently, the decoherence behaviors of multiphoton states are
different from that of single-photon states. The decoherence
effects are characterized by calculating the mixedness of
the states after the Pauli channels via the NLE. In contrast
to the single-photon states, multiphoton states cannot always
evolve to the maximally mixed states. More interestingly, we
have demonstrated DF states and DF subspaces exist when
photon numbers are even, which may find applications in
a variety of quantum technologies for overcoming the Pauli
noises. As examples, we gave detailed calculations for pho-
ton numbers ranging from N = 1 to 6, and in particular, we
revealed that the smallest DF subspace requires four photons.

From the physical point of view, the distinct decoher-
ence behaviors result from the bunching effect of bosons
and permutation symmetry. The collective decoherence with
permutation symmetry may lead to DF subspaces in a larger
Hilbert space as proved in our results. Compared with the pre-
vious studies on the DF states and subspaces [9,11–15] based
on the case of several individual qubits (photons) experiencing
collective decoherence, our approach employs indistinguish-
able photons lying in the same spatiotemporal mode which
experience decoherence collectively inherently. The indistin-
guishability of the bosons (photons) being all in the same
mode leads to the quantum coherence protection against the
Pauli noises. Our results also manifest that the indistinguisha-
bility of elementary systems can be a resource for quantum
information processing [34]. Hence, our investigations can be
generalized to other photon degrees of freedom, for example,
orbital angular momentum and also other bosonic systems
[35,36]. For instance, the decoherence-free state given in
Eq. (33) coincides with the noise-free state given in [28], when
two bosons are in the same mode and undergoes a preparation
noise leading to a Werner state. We hope our approach can
stimulate more such investigations in a broader field.
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